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The  optimal  selection  of controlled  variables  is  a well-known  plant-wide  control  subproblem.  In this
paper,  a novel  approach  based  on  spectral  graph  theory  is proposed.  This  strategy  is useful  from  both
graphical  and mathematical  point  of views.  It is shown  here  that  if the closed-loop  process  is represented
by  a  specific  weighted  graph,  deviations  in  plant  variables  are  bounded  by  the  graph  singular  energy.
eywords:
lant-wide control
eighted graphs energy

ingular energy

Moreover,  this  graph-based  methodology  supports  the  fast interpretation  of  the  magnitude  and  direction
of influences  between  process  variables  at steady  state.  The  suggested  spectral  approach  is  compared  with
the recently  proposed  minimum  square  deviation  (MSD)  methodology  in detail.  Indeed,  both  strategies
have  strong  structural  and  behavioral  resemblances,  i.e.  reducing  specific  deviations  and  improving  the
conditions  of  the  subprocess  to be  controlled.  The  introduced  graph  representation  is  tested  in  the Shell

iving
election of controlled variables oil fractionator  process,  g

. Introduction

Modern industrial processes are complex and highly inter-
onnected; process plants operation is limited by environmental,
conomical and operational restrictions. As a consequence, they
equire the definition and implementation of proper control poli-
ies to attain the desired operation performance, maintaining
tability and minimizing the effects of unmeasured disturbances.

The plant-wide control (PWC) area addresses the above stated
roblem from a global perspective. Some of the objectives of PWC
re the optimal selection of controlled and manipulated variables
CVs and MVs), the input–output variable pairing, the controller
tructure (decentralized or centralized) and tuning. Most of these
ecisions are combinatorial problems in nature, which generally
re solved by using heuristic concepts as well as engineering
nowledge. While the processes dimension (i.e. amount of inputs
nd outputs) increases this heuristic treatment becomes quickly

mpractical, and the problem is frequently reduced ad-hoc gen-
rating suboptimal solutions. In this context, a systematic and
eneralized tool for PWC  design is very helpful.

∗ Corresponding author. Tel.: +54 0341 4237248x332; fax: +54 0341 482 1772.
E-mail addresses: zumoffen@cifasis-conicet.gov.ar (D. Zumoffen),

usulin@cifasis-conicet.gov.ar (E. Musulin).
1 Address: Universidad Tecnológica Nacional – FRRo, Zeballos 1341, S2000BQA,
osario, Argentina.
2 Address: Universidad Nacional de Rosario – FCEyA, Pellegrini 250, S2000BTP,
osario, Argentina.

098-1354/$ – see front matter ©  2013 Elsevier Ltd. All rights reserved.
ttp://dx.doi.org/10.1016/j.compchemeng.2013.05.014
 a  complete  set of evaluations  and  results.
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There are several approaches for dealing with the PWC  problem,
most of them based on process control and system analysis theories
(Khaki-Sedigh & Moaveni, 2009; Skogestad & Postlethwaite, 2005).
These methodologies range from simple steady-state analysis to
complex frequency-based optimization routines. The systematics,
generalization, and efficiency of such strategies are varied. The
development of scalar indexes are welcomed by process and con-
trol engineers because they promote their use into optimization
algorithms which systematize and generalize the PWC  problems.
An example of such methodologies is the recently appeared min-
imum square deviation (MSD) approach (Molina, Zumoffen, &
Basualdo, 2011; Zumoffen & Basualdo, 2012, 2013). MSD  uses the
sum of square deviations (SSD) and the net load evaluation (NLE)
indexes to quantify several steady-state deviations of the pro-
cess variables at closed-loop. These indexes are integrated into
combinatorial problems and multi-objective binary optimization
algorithms to evaluate the multivariate process interaction caused
by changes on set points and disturbances.

In this work a new perspective for representing and solving
some PWC  subproblems is presented. The motivation here, relies
on the general idea of unifying the process information manage-
ment (control, modeling, monitoring) via spectral graph theory.
Due to the graphical potential and the well-defined mathematical
background of this theory, the classical control/process engineers’
tasks could be improved with suitable information (quantity and

quality). In this context, the work proposed here, summarizes
interesting preliminary results related to the first step the PWC,
addressed from the spectral graph point of view. It is shown that
some PWC  subtasks such as the optimal CVs selection can be

dx.doi.org/10.1016/j.compchemeng.2013.05.014
http://www.sciencedirect.com/science/journal/00981354
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Nomenclature

Acronyms
CVs controlled variables
DVs disturbances variables
IMC  internal model control
MSD  minimum squared deviation
MTF  matrix of transfer functions
MVs  manipulated variables
NLE net load evaluation
PWC  plant-wide control
SSD sum of squared deviations
UVs uncontrolled variables

Variables
A adjacency matrix
Aw weighted adjacency matrix
Acl

w weighted adjacency matrix – closed-loop
d(s) disturbance vector
E(G) energy of graph G
Es(G) singular energy of graph G
e(i) vector with unitary entry in the ith location
D(s) disturbance MTF
Dr(s) disturbance MTF  for UVs
Ds(s) disturbance MTF  for CVs
F(s) diagonal low pass MTF  filter
G(V, E) undirected weighted graph
G(s) process MTF
Gc(s) controller MTF
Gr(s) process MTF  for UVs
Gr(s) process MTF  for CVs
G̃s(s) process model MTF  for CVs
m number of outputs
n number of inputs
p number of disturbances
s Laplace variable
SSD(a) sum of squared deviations of a
t time
u(s) input vector
y(s) output vector
yr(s) UVs vector
ys(s) CVs vector
ysp

s (s) set point vector

Greek symbols
� condition number
�i ith eigen value
�i ith singular value
� minimum singular value

e
e
u

a
F
p
f
r
t
s
v
2

� maximum singular value

fficiently solved by analyzing the spectral properties of a prop-
rly defined weighted graph. Before going into further details, let
s introduce some general graph concepts.

Many real-world situations can conveniently be represented by
 diagram consisting of a set of vertices joined by a set of edges.
or example, vertices could be people, communication centers or
rocess variables, and the corresponding edges could represent
riendship links, communications links and interactions degree,
espectively. A mathematical abstraction of these situations led to

he concept of graph (Bondy & Murty, 1985). A graph can be repre-
ented by its adjacency matrix A; the analysis of A based on eigen
alues, eigen vectors, singular values and energy (Gutman & Shao,
011; Nikiforov, 2007) is called the theory of graph spectra. This
hemical Engineering 56 (2013) 80– 88 81

theory attempts to utilize linear algebra including, in particular,
the well-developed theory of matrices, for purposes of graph theory
and its applications (Cvetković, Rowlinson, & Simić, 2010).

Spectral graph theory has acquired great relevance in the last
decade, particularly in the computer science area. An excellent
survey of these applications can be found in Cvetković and Simić
(2011). Other research areas such as process engineering have very
few applications of this spectral approach. Anyway, there are some
works related to graph theory such as Castaño Arranz and Birk
(2012) where new methods for the analysis of complex processes
are suggested. The authors formulated a flexible framework to help
the designers in comprehending a process by representing struc-
tural and functional relationships. Yang, Shah, and Xiao (2012)
suggested a fusion of information from process data and process
connectivity. Signed directed graphs are used to capture the process
topology and connectivity, thus depicting the causal relationships
between process variables. Gutierrez-Perez, Herrera, Perez-Garcia,
and Ramos-Martinez (2011) introduced a methodology based on
spectral measurements of graphs to establish the relative impor-
tance of areas in water supply networks. These areas are analyzed
using a flexible method of semi-supervised clustering.

Here, we present a methodology to optimally select CVs based
on the singular energy of a graph. We  found that if the closed-loop
process is represented by a weighted graph, its energy (based on
its adjacency matrix A) is strongly related to deviations in some
plant variables. Moreover, the singular energy is an upper bound
for the interaction effects between all the vertices of the weighted
graph in a SSD sense (Frobenius norm). Explicitly, it is show that
the SSD concept applied to the overall graph structure is equivalent
to quantify the deviations in the vertices corresponding to MVs  and
uncontrolled variables (UVs) only.

This result shows a clear structural resemblance with the
approach called MSD-SSD presented by Zumoffen and Basualdo
(2012, 2013), but in this case from a spectral graph point of view.
Hence, the optimal CVs selection can be performed by minimizing
the singular energy of the graph. Furthermore, the analysis shows
that this minimization has similar properties to those obtained
using the SSD approach. Particularly, both methodologies tend to
improve the matrix-properties of the subprocess to be controlled
(i.e. tend to maximize their minimum singular value). This is an
important quality, strongly related to the final closed-loop behav-
ior, as stated by (Garcia & Morari, 1985; Grosdidier, Morari, & Holt,
1985; Skogetad & Morari, 1987).

The work is organized as follows. Section 2 gives a background
on some already existing tools and methodologies. Section 2.1
presents a simplified description of the MSD  approach suggested by
Zumoffen and Basualdo (2012, 2013). In particular, the optimal CVs
subproblem is described. In Section 2.2 the main graphs concepts
used in this work are defined. The most important contribution of
this paper is introduced in Section 3, where the main links between
the classical SSD and the singular energy-based approaches are
highlighted. Both methodologies are applied to the well-known
Shell oil fractionator process in Section 4, where several simulation
results are presented. Conclusions and future work are discussed
in Section 5.

2. Background and tools

2.1. Minimum square deviation

The minimum square deviation (MSD) approach suggested by
Zumoffen and Basualdo (2012, 2013) addresses several PWC  tasks
such as: the optimal selection of CVs and MVs, the input–output

pairing, the controller interaction degree (decentralized, full or
sparse), and the controller oversizing analysis (order). In this case,
for clarity, only a simplified version of the MSD  methodology is
considered.
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Fig. 1. IMC  structure.

Let us consider an industrial process with m potential CVs, n
vailable MVs, p disturbances (DVs), and assume that m > n. The
ain PWC  objective is to select the optimal n CVs from a total of m,

hus squaring-down the overall control problem.
The model of the process can be represented and partitioned by

everal matrices of transfer functions (MTF) in the Laplace domain
s shown in Eq. (1),

(s) = G(s)u(s) + D(s)d(s) =
[

ys(s)

yr (s)

]
=

[
Gs(s)

Gr (s)

]
u(s) +

[
Ds(s)

Dr (s)

]
d(s) (1)

here y(s), u(s), and d(s) are the potential CVs, the available MVs,
nd the disturbance vectors with dimensions m × 1, n × 1, and p × 1,
espectively. On the other hand, the subvectors and submatrices
isplayed in Eq. (1) have the following representation and descrip-
ion,

ys(s) =
[

y1
s (s), . . . , yn

s (s)
]′

, yr(s) =
[

y1
r (s), . . . , ym−n

s (s)
]′

Gs(s) =

⎡
⎢⎣

g11
s (s) · · · g1n

s (s)

...
. . .

...

gn1
s (s) · · · gnn

s (s)

⎤
⎥⎦ , Gr(s) =

⎡
⎢⎣

g11
r (s) · · · g1n

r (s)

...
. . .

...

g(m−n)1
r (s) · · · g(m−n)n

r (s)

⎤
⎥⎦

Ds(s) =

⎡
⎢⎣

d11(s) · · · d1p(s)

...
. . .

...

dn1(s) · · · dnp(s)

⎤
⎥⎦ , Dr(s) =

⎡
⎢⎣

d11(s) · · · d1p(s)

...
. . .

...

d(m−n)1(s) · · · d(m−n)p(s)

⎤
⎥⎦

(2)

here the output variables has been split in two subsets, being
s(s) the n controlled outputs (CVs) and yr(s) are the remaining

 − n uncontrolled variables (UVs). Moreover, Gs(s), Gr(s), Ds(s), and
r(s) are MTF  that account for the multivariable effects of MVs  and
Vs on these subsets. Note that yi

s(s) is the ith component of the
ector ys(s) and similarly gij

s (s) represents the ijth component of
he MTF  Gs(s). Since the matrices Gr(s), Ds(s), and Dr(s) are directly
etermined by Gs(s), the main objective in this PWC  problem (i.e.
he selection of controlled variables) can be reduced to the optimal
election of the subprocess Gs(s).

.1.1. Considering the control policy
Some insights about the ways to perform the optimal selec-
ion of Gs(s) can be obtained if the control policy is considered.
n this case, the Internal Model Control (IMC) theory is used,
tructured as shown in Fig. 1. This methodology is based on the sub-

rocess model G̃s(s) and the controller design Gc(s) = G̃
−1
s (s)F(s),

here F(s) is a diagonal low-pass filter matrix which guarantees
he feasibility of the controller (note that F(0) = I, where I is the
hemical Engineering 56 (2013) 80– 88

identity matrix). Fig. 1 clearly displays the CVs and UVs subgroups,
where ysp

s (s) are the reference trajectories (set points) for the
selected CVs.

In the following, the mentioned control structure will be ana-
lyzed at steady state (s = 0). In the rest of the work the Laplace
variable is avoided indicating this fact. If perfect control is assumed
ys = ysp

s and there is no plant-model mismatch G̃s = Gs, then the
relationships in Eq. (3) hold,

u = G−1
s ysp

s − G−1
s Dsd

yr = GrG−1
s ysp

s + (Dr − GrG−1
s Ds)d =

[
Ssp Sd

] [
ysp

s d
]′ (3)

where Ssp = GrG−1
s and Sd = Dr − GrG−1

s Ds represent the multivari-
able effects in the UVs given by the set point and disturbance
changes, respectively. The severity of these effects depends on
the selected control policy parameterized by Gs. Hence, if the
process variables are scaled by using the methodology sug-
gested in Skogestad and Postlethwaite (2005) a normalized
process model can be obtained. Moreover, a scalar index called
sum of square deviations (SSD) can be calculated for quantify-
ing the UVs differences from their normal operating working
zone,

SSD(yr) =
n+p∑
i=1

∣∣∣∣[Ssp Sd

]
e(i)

∣∣∣∣2

2
=

∣∣∣∣Ssp

∣∣∣∣2

F
+

∣∣∣∣Sd

∣∣∣∣2

F

=
∣∣∣∣GrG−1

s

∣∣∣∣2

F
+

∣∣∣∣Dr − GrG−1
s Ds

∣∣∣∣2

F
(4)

where e(i) is a vector of length (n + p) with an unitary entry in the
ith location and zero elsewhere. Note that,

[
Ssp Sd

]
e(i) are the UVs

deviations, from their normal operating point, due to the ith pertur-
bation. On the other hand, ||a||22 = a2

1 + · · · + a2
n and ||A||2F = tr

(
A′A

)
represent the squared Euclidean and Frobenius norms for any vec-
tor a = [a1, . . .,  an] and (m × n) matrix A, respectively.

Hence, the optimal CVs selection problem can be solved by
minimizing the SSD index according to a proper subprocess
parametrization for Gs,

min
Gs

SSD(yr), subject to det (Gs) /= 0 (5)

note that condition det (Gs) /= 0 guarantees the feasibility of the
IMC  policy. The combinatorial problem stated in Eq. (5) can be
efficiently solved via exhaustive search or some mixed-integer
optimization routine depending on the process dimension. In
Zumoffen and Basualdo (2010) and Molina et al. (2011) this kind of
binary optimization problem was solved via genetic algorithms.

It is worth mentioning that Eq. (4) can be analyzed based on
some typical norm and singular value relationships (Bhatia, 1996;
Golub & Loan, 1996; Horn & Johnson, 1990; Zhan, 2002). In fact,
remembering that for any matrices A, B, and C with dimension
(m × n), (n × m),  and (m × n), respectively, we  have

||A||2F =
min(m,n)∑

i=1

�2
i (A), �(A)�(B) ≤ �(AB) ≤ ||AB||F ,

|�(A) − �(C)| ≤ �(A + C) (6)

where �i(A), �(A), and �(A) are the ith, maximum and minimum
singular values of the matrix A, respectively. These expressions
allow to obtain the following inequality from Eq. (4),

�(Gr) + |�(Dr) − �(GrG−1
s Ds)| ≤ SSD(yr) (7)
�(Gs)

which highlights some matrix properties of Gs when the SSD index
evolves. If the SSD(yr) is minimized, then the multivariate effect
of references and disturbances on the UVs is reduced at closed
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oop. Considering Eq. (7), if the upper bound (right-hand) is mini-
ized, then the left-hand needs to follow this evolution. The main

ource of singularity in this expression is the minimum singular
alue �(Gs) or equivalently G−1

s from Eq. (4). Hence, a SSD(yr) mini-
ization additionally tends to increase �(Gs) in a trade-off solution

etween �(Gr)/�(Gs) → 0 and [�(Dr) − �(GrG−1
s Ds)] → 0 (Molina

t al., 2011; Zumoffen & Basualdo, 2013).
The parameter �(Gs) is an important characteristic of the sub-

rocess to be controlled. In fact, this value is directly related with
he well/ill-conditioning of the matrix Gs and eventually with the
losed-loop properties of the control policy. Subprocesses with
(Gs) ≈ 0 indicates an ill-conditioned and very difficult to control
lant. Furthermore, any model-based control policy developed on
hese kind of processes will have a very low robustness degree
Garcia & Morari, 1985; Grosdidier et al., 1985; Skogetad & Morari,
987).

.2. Weighted graphs energy

Let G = (V, E) be a finite undirected weighted graph without loops
r multiple edges, and suppose that its vertices are labeled 1, 2, . . .,
. If vertices i and j are joined by an edge, we say that i and j are
djacent and write i ∼ j. Since the graph is weighted and undirected,
e assume that each edge carries a non-zero symmetric weight

wij = wji). The elements of the weighted adjacency matrix Aw of the
eighted graph G are defined as

ij =
{

wij if i∼j

0 otherwise
(8)

Under this definition, Aw is a real symmetric matrix with zero
iagonal. Let �1, . . .,  �n be the eigen values of Aw . Then the energy
f G is defined as (Gutman, Li, & Zhang, 2009; Gutman & Shao, 2011)

(G) =
n∑

i=1

|�i| (9)

This quantity is well known in chemical applications; since in

ome cases the energy defined in this way corresponds to the
nergy of a molecule (Cvetković et al., 2010; Gutman, 2005). How-
ver, the graph invariant E(G) can be considered for any graph

Acl
w =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0 0 . . . 0 

...
. . .

...
...

. . .
...

0  . . . 0 0 . . . 0 

0 . . . 0 0 . . . 0 

...
. . .

...
...

. . .
...

0  . . . 0 0 . . . 0 

Y11 . . . Y1n X11 . . . X1p

...
. . .

...
...

. . .
...

Yn1 . . . Ynn Xn1 . . . Xnp

0 . . . 0 D11
r . . . D1p

r

...
. . .

...
...

. . .
...

0  . . . 0 D(m−n)1
r . . . D(m−n)p

r
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independently of the chemical context, recently much work on
graph energy appeared also in the “pure” mathematical literature
(Gutman & Shao, 2011; Nikiforov, 2007). This new perspective pro-
vided new generally valid mathematical properties for E(G). In this
paper is of particular importance the result obtained by Nikiforov
(2007), who  first recognized that if Aw is a real symmetric matrix,
then the energy of Aw is the same as the singular energy of Aw ,
given by

Es(G) =
n∑

i=1

�i(Aw) (10)

where �i(Aw) is the ith singular value of Aw , and represents the
non-negative square root of the ith eigen value of AwA′

w .

3. Controlled variables selection based on weighted graph
energy

The graph theory is used here for deriving an alternative repre-
sentation of this particular PWC  problem. In fact, by considering the
process representation given in Eq. (1), the steady-state gains from
Eq. (2), and the graph concepts stated in Section 2.2, the weighted
graph Gol can be developed as shown in Fig. 2 for representing
the open-loop plant. In this case, Gol has (m + 2n + p) vertices and
(m × n + m × p) edges. The n vertices representing the set point vari-
ables are unconnected because the control structure is not designed
yet. The rest of Gol represents a bipartite graph where there are
no interconnection between vertices ui − uj, ui − dj, di − dj, yi

r − yj
r ,

yi
r − yj

s, and yi
s − yj

s.
In a similar way, considering the relationships stated in Eqs. (1)

and (3), a weighted graph (Gcl) can be developed for the process
under perfect IMC  control as shown in Fig. 3. Note that, Gcl is rep-
resented in matrix form. Vertices are grouped in “vector vertices”
that are represented by black filled circles and connected by weight
matrices. For example, the “vector vertex” ysp

s groups together the
single vertices {ysp

s1, . . . , ysp
sn}. As a result, vector vertices u, d, and yr

have n, p, and m − n components, respectively. Note that there is
no direct connection between vertices grouped in a “vector vertex”
neither between the vectors vertices ysp

s and d.
The weighted adjacency matrix Acl

w , for vertices
[ysp

s1, . . . , ysp
sn, d1, . . . , dp, u1, . . . , un, y1

r , . . . , ym−n
r ], results:

Y11 . . . Yn1 0 . . . 0

...
. . .

...
...

. . .
...

Y1n . . . Ynn 0 . . . 0

X11 . . . Xn1 D11
r . . . D(m−n)1

r

...
. . .

...
...

. . .
...

X1n . . . Xnn D1p
r . . . D(m−n)p

r

0 . . . 0 G11
r . . . G(m−n)1

r

...
. . .

...
...

. . .
...

0 . . . 0 G1n
r . . . G(m−n)n

r

G11
r . . . G1n

r 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

(11)
...
. . .

...
...

. . .
...

G(m−n)1
r . . . G(m−n)n

r 0 . . . 0

⎥⎦
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Fig. 2. Weighted graph Gol – open-loop process.
4 D. Zumoffen, E. Musulin / Computers

here Y = G−1
s and X = −G−1

s Ds. Note that, Xij represents the ijth
omponent in the matrix X. Furthermore, Eq. (11) can be rewritten
n the block-matrix form displayed in Eq. (12),

cl
w =

⎡
⎢⎢⎢⎢⎣

0 0 Y′ 0

0 0 X′ D′
r

Y X 0 G′
r

0 Dr Gr 0

⎤
⎥⎥⎥⎥⎦ (12)

here the four columns/rows represent the vertices
[
ysp

s d u yr

]
,

espectively. This adjacency matrix parameterizes all the potential
ontrol structures for any selection of Gs, i.e. the weighted graph
opology is the same.

Since the adjacency matrix Acl
w has information about the control

olicy and the allowed (structural) interaction between vertices, it
an be used to evaluate the incidence between vertices in a SSD
ense. Indeed, if each vertex is analyzed as an independent variable
he effect of its changes among all the vertices can be stated as a
unction of the graph structure. Let us consider the set

 = {ysp
s , d, u, yr}

= {ysp
s1, . . . , ysp

sn, d1, . . . , dp, u1, . . . , un, y1
r , . . . , ym−n

r } (13)

hich groups together all the vertices of the weighted graph, then
he SSD index can be stated as

SD(V) =
m+n+p∑

i=1

||Acl
we(i)||22 = ||Acl

w(:, 1)||22 + · · ·

+||Acl
w(:, m + n + p)||22 = ||Acl

w||2F = 2[tr(YY′) + tr(XX′)

+ tr(DrD′
r) + tr(GrG′

r)] = 2(||Y||2F + ||X||2F + ||Dr ||2F

+ ||Gr ||2F ) = 2

2n+p∑
i=1

||Acl∗
w e∗(i)||22 = 2||Acl∗

w ||2F (14)

here Acl∗
w is a particular block selection (lower-left corner) of the

riginal Acl
w matrix given by,

cl∗
w =

[
Y X 0

0 Dr Gr

]
(15)

nd the vectors e(i) and e*(i) have (m + n + p) and (2n  + p) compo-
ents, respectively, an unitary entry in the ith location and zero
lsewhere.

From Eq. (14) can be observed that the SSD index applied to all
ertices in the weighted graph (Acl

w) is reduced to the effects found
n the u and yr vector vertices due to changes in the ysp

s , d, and u ones
Acl∗

w ). This result is not surprising because of the chosed closed-loop
tructure and the symmetric properties of the adjacency matrix Acl

w .
n other words, the deviations in all vertices can be quantified via
he deviations on the MVs  and UVs vertices only.

This last statement indicates the strong resemblances between
he SSD(yr) approach shown in Eq. (4) and the current SSD(V)

ethodology based on the weighted graph. In fact, if the relation-
hip in Eq. (14) is analyzed by using the norm and singular value
xpressions displayed in Eq. (6), the following inequality can be
btained,

1 + �(Ds) + �(Gs) [�(Dr) + �(Gr)]
�(Gs)

≤
∣∣∣∣Acl

w

∣∣∣∣
F

=
√

2
∣∣∣∣Acl∗

w

∣∣∣∣
F

(16)

∣∣ ∣∣

From a control perspective, minimizing ∣∣Acl

w
∣∣

F
implies that

Vs  and UVs deviations are explicitly minimized under the multi-
ariate effects introduced by ysp

s , d and u deviations. Note that in
he SSD(yr) case the MVs  deviations are quantified implicitly. On
Fig. 3. Weighted graph Gcl – closed-loop process.

the other hand, Eq. (16) shows that the main source of singular-
ity in this expression is the minimum singular value �(Gs). Hence,
the minimization of

∣∣∣∣Acl
w

∣∣∣∣
F

additionally tends to increase �(Gs) in a
trade-off solution. This is an important characteristic, as mentioned
in Section 2.1, because it gives some insights about the system to
be controlled.

Furthermore, remembering the singular energy definition for
weighted graphs given in Eq. (10), the Schatten p-norms definition
given in Bhatia (1996) and Zhan (2002), and the adjacency matrix
in Eq. (12), we have

∣∣∣∣Acl
w

∣∣∣∣
p

=
[

r∑
i=1

�p
i

(Acl
w)

]1/p

, p ≥ 1 (17)

it is clear that Es(Gcl) = ||Acl
w||1 is the well-known “nuclear norm” or

“trace norm”. Some classical norms can be derived from the Schat-
ten p-norms, i.e. the Frobenius norm ||A||2 = ||A||F and the spectral
norm ||A||∞, for any matrix A.

In this context, from the symmetric norms theory in Bhatia
(1996), the following inequality can be stated

||Acl
w||∞ ≤ ||Acl

w||∗ ≤ ||Acl
w||1 (18)

for all unitarily invariant norms ||Acl
w||∗. The Frobenius norm fulfills

the last condition, hence the relationship between the SSD-based
deviations in Eq. (16) and the singular energy of the weighted graph
can be stated as shown in Eq. (19),

1 + �(Ds) + �(Gs) [�(Dr) + �(Gr)]
�(G )

≤ ||Acl
w||F ≤ Es(Gcl) (19)
s

The inequality in Eq. (19) shows that the singular energy, Es(Gcl),
of the weighted graph structure displayed in Fig. 3 is the upper
bound of the SSD index based on its weighted adjacency matrix
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Fig. 4. Shell oil fractionator process.

Table 1
Shell oil fractionator model.

G(s) D(s)

u1 u2 u3 d1 d2

y1
4.05e−27s

50s+1
1.77e−28s

60s+1
5.88e−27s

50s+1
1.20e−27s

45s+1
1.44e−27s

40s+1

y2
5.39e−18s

50s+1
5.72e−14s

60s+1
6.90e−15s

40s+1
1.52e−15s

25s+1
1.83e−15s

20s+1

y3
3.66e−2s

9s+1
1.65e−20s

30s+1
5.53e−2s

40s+1
1.16

11s+1
1.27
6s+1

y4
5.92e−11s

12s+1
2.54e−12s

27s+1
8.10e−2s

20s+1
1.73
5s+1

1.79
19s+1

y5
4.13e−5s

8s+1
2.38e−7s

19s+1
6.23e−2s

10s+1
1.31
2s+1

1.26
22s+1

y 4.06e−8s 4.18e−4s 6.53e−s 1.19 1.17
D. Zumoffen, E. Musulin / Computers

cl
w . In other words, the singular energy of the closed-loop weighted
raph, Es(Gcl), is also a quantification of the MVs  and UVs deviations
ith the properties discussed previously. Indeed, the minimization

f Es(Gcl) produces the minimization of ||Acl
w||F , therefore the PWC

roblem addressed here can be stated as a singular-energy-based
pproach with similar characteristics to the sum SSD one.

emark 1: Es(Gcl) is defined as the sum of the singular values
computed from the weighted adjacency matrix (see the
nuclear norm in Eq. (10)). Considering Eqs. (14), (15)
and (18), and the multivariable gain concepts (�(A) ≤
multivariable gain of A ≤ �(A)) it is clear that this singu-
lar energy has information of the multivariable gain from
{ysp

s , d, u} to {yr, u}. In other words, if the singular energy
is low, then, the deviation in {yr, u} will also be low for
most disturbance directions in {ysp

s , d, u} (i.e. low multi-
variable gain). So, for the proposed graph, the singular
energy is directly related to deviations on {yr, u}, i.e.
uncontrolled variables and manipulated variables. This
concept is very helpful from the point of view of process
and control engineers. Also helpful is the graphical repre-
sentation of the weighted graph which allows to quickly
identify and evaluate process variables (vertices) interac-
tions.

If a suitable parametrization is selected for the process parti-
ioning in Eq. (1) and the IMC  control structure is considered for
he weighted graph construction in Fig. 3, the optimal CVs selection
an be performed by

in
Gs

Es(Gcl), subject to det(Gs) /= 0 (20)

here the condition det(Gs) /= 0 guarantees the feasibility of the
uture IMC  structure. Again here, the combinatorial problem stated
n Eq. (20) can be efficiently solved via exhaustive search or
ome mixed-integer optimization routine depending on the pro-
ess dimension.

emark 2: Although SSD(yr)-based and Es(Gcl)-based methodolo-
gies have similar global properties and similar physical
interpretations, the deep analysis shown in this paper
displays clear differences regarding the evaluated devia-
tions. The SSD(yr) methodology minimizes the deviations
in yr based on the law stated in Eq. (3) by accounting Ssp

and Sd. In this context, the deviations in the manipulated
variables, u, are minimized implicitly (Eq. (7)). On the
other hand, the Es(Gcl)-based approach quantifies directly
the SSD(V) from Eq. (16), and if we consider Eq. (15), it is
clear that this singular energy measures the deviations in
yr and u explicitly. These differences can also be observed
and commented in the next section.

. Case study: Shell oil fractionator

The Shell heavy oil fractionator process (Maciejowski, 2002;
umoffen & Basualdo, 2013) is considered here for testing the opti-
al  CVs selection procedures commented in previous sections. The

lant is a distillation column with a gaseous feed entering at the
ractionator bottom.

The overall process layout can be observed in Fig. 4 and its
pproximated model is shown in Table 1. The involved variables
ave the following description: y1 – the top end point composi-

ion, y2 – the side end point composition, y3 – the top temperature,
4 – the upper reflux temperature, y5 – the side draw temperature,
6 – the intermediate reflux temperature, y7 – the bottoms reflux
emperature, u1 – the top draw flow, u2 – the side draw flow, u3
6 13s+1 33s+1 9s+1 19s+1 24s+1

y7
4.38e−20s

33s+1
4.42e−22s

44s+1
7.20

19s+1
1.14

27s+1
1.26

32s+1

– the bottoms reflux duty, d1 – the intermediate reflux duty, and
d2 – the upper reflux duty. The main objective of the plant is pro-
ducing top and side draw products with specific qualities. In this
context, the Shell oil fractionator represents a PWC  problem with
m = 7 potential CVs, n = 3 available MVs, and p = 2 DVs.

In this context, the optimal CVs selection approaches based
on SSD(yr) and Es(Gcl) are applied here for sake of comparison.
This problem present m !/n ! (m − n) ! =7 !/(3 ! (7 − 3) !) =35 poten-
tial solutions, so it can be easily solved via exhaustive search.

Fig. 5 summarizes the most important matrix properties for Gs

involved in both minimizations. Note that in all figures the poten-
tial solutions are ordered from the best (no. 1) to the worst (no. 35)
case by using its corresponding functional cost. Indeed, Fig. 5a and
b displays the minimum and maximum singular value evolutions
�(Gs) and �(Gs) (or �min(Gs) and �max(Gs)), respectively. It is clear
that the SSD-based and the Es-based methodologies have similar
results from these matrix properties point of view, i.e. the search
is always guided towards well-conditioned optimal solutions. The
latter means that the selected subprocess to be controlled, Gs, mini-
mizes both the multivariable SSD gain/singular energy and the
condition number.
Fig. 6 shows the evolution of the functional costs (in logarith-
mic  scales) for all the solutions. Fig. 6a summarizes the Es(Gcl) index
profile and its comparison with the Frobenius norm from Eq. (19),
thus depicting the upper bound conditions. Furthermore, for sake
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Fig. 5. (a and b) Singular values of Gs – SSD(yr) and Es(Gcl).
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Fig. 6. (a and 

f comparison, we compute the singular energy for the solutions
uggested by the SSD(yr) index, and call it “Es(Gcl) SSD-based”. Sim-
larly, Fig. 6b shows the profile of the SSD(yr) index in contrast with
he sum of square deviations computed on the solutions suggested
y the Es(Gcl) approach (this index is called “SSD Es(Gcl)-based”).
rom Fig. 6a and b it is evident that the minimization of the sum
f square deviations for the UVs, SSD(yr), has very similar effects
han the minimization proposed via the singular weighted graph
nergy, Es(Gcl).

The best five solutions given by each methodology are listed
n Table 2 with their corresponding SSD(yr) and Es(Gcl) indexes.
ccording to this table, the only different CV selection is the sug-
ested by solution number 4; the remainder solutions are the same
or both methodologies. It is important to note that the overall
earch performed in Eq. (5) as well as Eq. (20) were made with-
ut considering the original control requisites, i.e. a free search
as performed. These requisites can be considered once the opti-

ization problem was solved by selecting the suitable solution

rom Table 2. Indeed, if the original control requisites stated by
aciejowski (2002) are taken into account (i.e. it is important to

nsure the products quality (y1 and y2)), the best solution to this
ctional costs.

problem is the number 3, which selects y1 (top composition), y2
(side composition) and y7 (bottom temperature), marked with (*)
in the corresponding table. As a consequence, both the control req-
uisites and the SSD/Energy minimization are fulfilled.

Further developments based on Es(Gcl) could incorporate some
weighted effects on the searching procedure as suggested in
Zumoffen and Basualdo (2013) for the SSD(yr) approach. This
weighted search considers the original control requisites as well
as the relative degree of importance between variables explicitly
on the functional cost. The dynamic evaluation of solution num-
ber 3, at closed loop, is not presented here because it is extensively
analyzed in Zumoffen and Basualdo (2013).

Fig. 7 compares the inequalities presented in Eqs. (7) and (19) for
this case study. Both sides of these inequalities are analyzed, with
particular emphasis on the partial contributions involved in each
left-hand side. Fig. 7a displays the majorization given by SSD(yr) to
some minimum and maximum singular values of the process sub-

matrices along the solutions. It is clear that this inequality holds and
due to the implicitly relationship between yr and u both contrib-
utions called �(Gr)/�(Gs) and |�(Dr) − �(GrG−1

s Ds)| are intended
to be minimized. This shows that, even though SSD(yr) aims to
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Table 2
Best first five solutions – Shell process.

No. CVs selected SSD(yr) CVs selected Es(Gcl)

y1 y2 y3 y4 y5 y6 y7 y1 y2 y3 y4 y5 y6 y7

1 0 1 0 1 0 0 1 2.37 0 1 0 1 0 0 1 38.55
2  0 1 0 1 0 1 0 3.26 0 1 0 1 0 1 0 39.92

3*  1 1 0 0 0 0 1 4.83 1 1 0 0 0 0 1 42.43
4  1 1 0 0 0 1 0 5.59 0 1 0 0 1 0 1 42.62
5  0 1 1 0 0 0 1 6.68 0 1 1 0 0 0 1 43.27

Fig. 7. (a and b) Evaluating Eqs. (7) and (19).

Fig. 8. (a–c) Evolution of the weighted graph with Es(Gcl). (For interpretation of color in the text, the reader is referred to the web version of the article.)
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ncrease �(Gs) this improvement has a negative influence on the
atter component with absolute value, thus presenting a trade-off.
ig. 7b summarizes the majorization profiles given by Es(Gcl) in
q. (19). Although the singular energy minimization also reduces
he UVs and MVs  deviations in a SSD sense, the situation here is

 bit different (as discussed in Section 3, Remark 2). In fact, the
1 + �(Ds))/�(Gs) component is mainly minimized by increasing
he minimum singular value �(Gs) since the multivariate gain of
�(Dr) + �(Gr)] is reduced more smoothly.

Finally, we present in Fig. 8 a graphical visualization for this
ptimal CVs selection, based on the graphs adjacency matrix Acl

w .
he weighted graph structure displayed in Fig. 3, for the pro-
ess at closed loop and perfect control, is shown here for three
ifferent graph instances. Fig. 8a, b, and c shows the weighted
raphs for solutions number 3 (optimal selected here), 17 (inter-
ediate), and 35 (worst), respectively. Note that, for improving

isualization, black-continuous-weighted lines are used for pos-
tive gains, and red-dashed-weighted lines represent negative
nes. These graphs make evident that the Es(Gcl)-based CVs selec-
ion leads to select Gs such that a balanced interaction between
ertices is achieved. Indeed, remembering that the relationships
etween the vector vertices “ysp

s − u” and “d − u”, are given by
−1
s and −G−1

s Ds, respectively, then, those solutions which mini-
ize the singular energy will produce weighted graph structures
ith minimum interaction between these vertices. This fact is

lear from Fig. 8c where the worst solution is displayed indicat-
ng heavy interactions between “set points-MVs” and “DVs-MVs”
ector vertices. It is important to highlight the importance of the
losed-loop representation given in Fig. 8 as a tool for quickly
dentifying the magnitude and direction of influences between
rocess variables at steady state. Moreover, when the process
imension tends to deteriorate the graphical visualization, due to

 large number of vertices and edges, the graph in Fig. 8 can be
hanged by the matrix-based representation suggested in Fig. 3,
ut weighting the vector edges with the absolute sum of individual
dges.

. Conclusions and future work

In this work a new perspective for solving the optimal con-
rolled variables (CVs) selection problem (a PWC  subproblem) was
uccessfully presented. The methodology is based on the graph
heory which allows to represent many real-word situations con-
eniently, whether from the graphical as well as mathematical
oint of views. Indeed, the optimal CVs selection is based on the
ingular energy of weighted graphs. It was found that if the closed-
oop process (at steady state and perfect control) is represented
y a weighted graph, its energy (based on its adjacency matrix) is
trongly (and explicitly) related to deviations in manipulated and
ncontrolled variables of the plant. Moreover, this work shows that
he singular energy is the upper bound (majorizes) of the inter-
ction effects in all the vertices of the weighted graph in a sum
f square deviation (SSD) sense (Frobenius norm). Explicitly, the
SD concept applied to the overall graph structure is reduced to
uantify the deviations in the manipulated variables and uncon-
rolled variables vertices only. This result shows clear structural
esemblances with the approach called SSD presented by Molina
t al. (2011) and Zumoffen and Basualdo (2013), but in this case
rom a spectral graph theory standpoint. Hence, the optimal CVs
election can be performed by minimizing the singular energy of
he graph. Furthermore, the analysis proposed in this work shows

hat this minimization has similar properties to those presented
y the SSD one. Particularly, both methodologies tend to improve
he matrix conditioning of the subprocess to be controlled, i.e.
end to maximize its minimum singular value. The latter is an
hemical Engineering 56 (2013) 80– 88

important quality strongly related to the final closed-loop behav-
ior. Finally, the graph closed-loop visualization was presented and
described as a very helpful tool for quickly identifying the mag-
nitude and direction of influences between process variables at
steady state. These facts help the designers to perceive the com-
plexity of the processes and their corresponding control problems.
Future work will be related to the analysis of the presented graphs
using the powerful tools made available by the spectral graph
theory.
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