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Abstract. Let L be either the Hermite or the Ornstein-Uhlenbeck operator on Rd. We

find optimal integrability conditions on a function f for the existence of its heat and Poisson

integrals, e−tLf(x) and e−t
√
Lf(x), solutions respectively of Ut = −LU and Utt = LU on

Rd+1
+ with initial datum f . As a consequence we identify the most general class of weights

v(x) for which such solutions converge a.e. to f for all f ∈ Lp(v), and each p ∈ [1,∞).

Moreover, if 1 < p <∞ we additionally show that for such weights the associated local

maximal operators are strongly bounded from Lp(v)→ Lp(u) for some other weight u(x).

1. Introduction

In this paper we consider the heat and Poisson semigroups, e−tL and e−t
√
L, associated

with the following differential operators in Rd

L ∈
{
−∆ , −∆ +R , −∆ + |x|2

}
(with R > 0), or with the Ornstein-Uhlenbeck operator O = −∆ + 2x ·∇. We consider the

related partial differential equations

(H)

{
ut = −Lu, (t, x) ∈ (0, T)× Rd

u(0) = f
and (P)

{
utt = Lu, (t, x) ∈ Rd+1

+

u(0) = f

where in the first case we allow 0 < T ≤ ∞.

We want to find minimal conditions on the initial datum f such that

(i) u(t, x) = e−tLf(x) exists ∀ t ∈ (0, T) and x ∈ Rd (as an absolutely convergent

integral), and satisfies (H)

(ii) lim
t→0

u(t, x) = f(x), for a.e. x ∈ Rd.

The same is asked when u(t, x) = e−t
√
Lf(x) with respect to (P).

It is well-known that these properties hold when f ∈ Lp(Rd), and more generally, when

f ∈ Lp(w) and w ∈ Ap(Rd), 1 ≤ p < ∞. Indeed, these are classically obtained from the
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Lp(w)-boundedness of the corresponding maximal operators

(1.1) h∗f(x) = sup
t>0

∣∣e−tLf(x)
∣∣ , P ∗f(x) = sup

t>0

∣∣e−t√Lf(x)
∣∣

(see e.g. [19]). However, one expects that (i) should hold for more general functions

(growing at infinity below a certain critical order), while (ii) should only be related with

the boundedness of the local maximal operators

(1.2) h∗af(x) = sup
0<t<a

∣∣e−tLf(x)
∣∣ , P ∗a f(x) = sup

0<t<a

∣∣e−t√Lf(x)
∣∣ ,

for a sufficiently small a > 0.

The goals of this paper are the following:

(I) Find the most general conditions in a function f such that properties (i)+(ii) hold.

(II) Find the most general conditions in a weight v such that (i)+(ii) hold for all f ∈ Lp(v).

(III) Show that, for all weights v as in (II), the local maximal operators h∗a and P ∗a map

Lp(v)→ Lp(u) for some other weight u.

When L = −∆ these questions have recently been investigated by three of the authors

in [7], although parts of it can be traced back to the classical literature [20, 21, 22]. For

example, for the heat equation (i)+(ii) hold for a function f if and only if∫
Rd
|f(y)|e−

|y|2
4t dy <∞, ∀ t ∈ (0, T).

In the Poisson equation the necessary and sufficient condition becomes

(1.3)

∫
Rd

|f(y)|
(1 + |y|)d+1

dy <∞,

and in this case (P) holds in the whole range of t ∈ (0,∞). These properties are elementary,

and can actually be proved by direct methods, without resorting to maximal operators.

Then, by a duality argument, the weights v in question (II) are characterized by

(1.4)
∥∥v(y)

− 1
p e−

|y|2
4t

∥∥
p′
<∞, ∀ t ∈ (0, T), or

∥∥∥ v(y)
− 1
p

(1 + |y|)d+1

∥∥∥
p′
<∞.

Question (III), however, is more elaborate. It is known that, from abstract Nikishin theory,

the a.e. -existence of pointwise limits implies the weak boundedness of h∗a and P ∗a from Lp(v)

into Lp,∞(u) for some weight u = u(a) (see [11], or [6, Ch. VI]). The strong boundedness

requires deeper arguments, and is related with a version of the two weight problem studied

by Carleson-Jones [5] and Rubio de Francia [13] in the 80s. Thus, a main contribution of

[7] was precisely to show that (III) holds for the class of weights in (1.4), making use of the

vector-valued approach developed by Rubio de Francia [13].

In this paper we shall investigate similar questions for the differential operators L ∈
{−∆ + R , −∆ + |x|2 , −∆ + 2x · ∇ }. All of them have explicit heat kernels, from which
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we derive the necessary integrability conditions one must require on f . The results are

summarized in the following table, with a precise statement in the theorem below.

L heat Poisson

−∆ +R

∫
Rd
|f(y)| e−

|y|2
4s dy <∞

∀ s ∈ (0, T)

∫
Rd
|f(y)|e

−
√
R
√

1+|y|2

(1 + |y|)
d
2

+1
dy <∞

−∆ + |x|2
∫
Rd
|f(y)| e−

|y|2
4s dy <∞

∀ s ∈ (0, th (2T)/2)

∫
Rd
|f(y)| e−|y|

2/2

(1 + |y|)
d
2 [ln(e+ |y|)]3/2

dy <∞

−∆ + 2x · ∇
∫
Rd
|f(y)| e−( 1

s
+2)

|y|2
4 dy <∞

∀ s ∈ (0, th (2T)/2)

∫
Rd
|f(y)| e−|y|

2

[ln(e+ |y|)]1/2
dy <∞

Table 1. Necessary and sufficient conditions on f for the existence of e−tLf

and e−t
√
Lf .

Theorem 1.1. Let 0 < T ≤ ∞ (and T =∞ in the Poisson case). Let f : Rd → C be a mea-

surable function such that one of the conditions in Table 1 holds. Then, the corresponding

heat or Poisson integral, denoted u(t, x), defines an absolutely convergent integral such that

(i) u ∈ C∞((0, T)× Rd) and satisfies the corresponding pde (H) or (P)

(ii) limt→0+ u(t, x) = f(x), for a.e. x ∈ Rd.

Conversely, if a function f ≥ 0 is such that one of the following holds

• e−tLf(xt) <∞, for each t ∈ (0, T) and some xt ∈ Rd, or

• e−t
√
Lf(x) <∞ for some (t, x) ∈ (0,∞)× Rd

then f must necessarily satisfy the corresponding condition in Table 1.

For completeness we have stated the results for both the heat and Poisson equations,

although in the heat setting some of the results are already known; see [1]. Our main

contribution concerns then the Poisson equation. The main issue here is that the Poisson

kernel is not so explicit, but defined via a subordination formula

(1.5) e−t
√
L =

t√
4π

∫ ∞
0

e−
t2

4u e−uL
du

u3/2
, t > 0

(see eg [15, p. 46]). The characterization will be obtained from very precise estimates on

this kernel, which seem new in the literature and we think are of independent interest (see

§4.1 below). We refer to recent work of Liu and Sjögren [10] for different and more general

bounds of the Poisson kernel related with the Ornstein-Uhlenbeck operator O.
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We include a few comments about Theorem 1.1. First, the conditions required on f for

the existence of Poisson integrals are always stronger than for heat integrals, in fact strong

enough to guarantee the existence of the latter in the whole upper-half plane (0,∞)×Rd (as

it is perhaps expected from the subordination formula (1.5)). Also, unlike the classical case

in (1.3), exponential growth of f is allowed in Poisson integrals, as it is already apparent

when L = −∆ +R, with∗ R > 0.

As illustrative examples, in the Hermite case, L = −∆ + |x|2, a gaussian initial data

f(y) = e|y|
2/2 is admissible for the existence of e−tLf for all t > 0, while the existence of

e−t
√
Lf requires a slightly slower growth, such as f(y) = e|y|

2/2/(1 + |y|)d/2. Similarly, in

the Ornstein-Uhlenbeck setting, etOf is well defined for all t > 0 when f(y) = (1+ |y|)Ne|y|2

and N ∈ N, even if these functions are not in† L1(dγ). Thus we can cover more functions

than the classes considered in [8, §3]. The same applies to the Poisson integrals, since et
√
Of

exists when f(y) = e|y|
2
/[(1 + |y|)d ln(e+ |y|)], which is not in L1(dγ).

We now turn to the questions involving weighted spaces Lp(v). We wish to describe the

classes

Dheat
p (L) and DPois

p (L)

of all weights v : Rd → (0,∞) such that the corresponding properties (i)+(ii) hold for all

functions f ∈ Lp(v). These are easily characterized from Theorem 1.1. Indeed, suppose we

want to meet a condition in Table 1 written in the form∫
Rd
|f(y)|ϕ(y) dy <∞

for a suitable ϕ, and all f ∈ Lp(v). Then, a sufficient condition on the weight v is

v
− 1
p ϕ ∈ Lp′(Rd).

That this condition is also necessary follows by a simple duality argument (see [4, p. 10]).

To write this in a unified way, we give precise definitions of ϕ in Table 2.

Corollary 1.2. Let 1 ≤ p <∞. Then, with the notation in Table 2,

(1.6) v ∈ Dheat
p (L) ⇔

∥∥v− 1
p ϕs

∥∥
Lp′ (Rd)

<∞, ∀ s ∈ (0, T∗),

and

(1.7) v ∈ DPois
p (L) ⇔

∥∥v− 1
p ϕ
∥∥
Lp′ (Rd)

<∞.

Our next result concerns the strong boundedness from Lp(v) to some Lp(u) of the local

maximal operators defined in (1.2).

∗Observe that the condition for L = −∆ + R in Table 1 can equivalently be written as∫
Rd |f(y)|(1 +

√
R|y|)

d
2 (1 + |y|)−(d+1) e−

√
R
√

1+|y|2 dy <∞, which for R = 0 recovers (1.3).
†Here dγ(y) = e−|y|

2

dy is the gaussian measure.
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L heat Poisson

−∆ +R ϕs(y) = e−
|y|2
4s , 0<s<T∗ = T ϕ(y) =

e−
√
R
√

1+|y|2

(1 + |y|)
d
2

+1

−∆ + |x|2 ϕs(y) = e−
|y|2
4s , 0<s<T∗ = th 2T

2
ϕ(y) =

e−|y|
2/2

(1 + |y|)
d
2 [ln(e+ |y|)]3/2

−∆ + 2x · ∇ ϕs(y) = e−
|y|2
4

( 1
s

+2), 0<s<T∗ = th 2T
2

ϕ(y) =
e−|y|

2

[ln(e+ |y|)]1/2

Table 2. Integrability factors ϕs and ϕ, for each operator L.

Theorem 1.3. Let 0 < T ≤ ∞ (or T =∞ in the Poisson case), and 1 < p <∞.

• If v ∈ Dheat
p (L), then, for every a ∈ (0, T) there exists a weight u = u(a) such that

(1.8) h∗a : Lp(v)→ Lp(u) boundedly.

Moreover, there exists σ0 = σ0(a, T∗) ∈ (0, 1) such that, for any σ ≤ σ0 the weight u can be

chosen such that, in addition, uσ ∈ Dheat
p (L).

Conversely, if (1.8) holds for some weight u(a) and each a ∈ (0, T), then v ∈ Dheat
p (L).

• If v ∈ DPois
p (L), then, for every a > 0 there exists a weight u = u(a) such that

(1.9) P ∗a : Lp(v)→ Lp(u) boundedly.

If σ < 1 we can find u such that, in addition, uσ ∈ DPois
p (L).

Conversely, if (1.9) holds for some a > 0 and some weight u, then v ∈ DPois
p (L).

As in the classical case, proving say (1.9), is much harder than proving the weak bound-

edness of P ∗a : Lp → Lp,∞(U) for some weight U (although both turn out to be equivalent).

For the latter, if v ∈ DPois
p (L), then the existence of pointwise limits in (ii) for all f ∈ Lp(v)

implies that

P ∗a f(x) <∞, a.e. x ∈ Rd, ∀ f ∈ Lp(v).

Then, the assertion follows from Nikishin’s theorem as stated in [6, Corollary VI.2.7]. The

existence of a weight u guaranteing strong convergence is more difficult, and requires the

use of the vector-valued machinery of Rubio de Francia [13]. In fact, we need to prove

new local versions of his results, which are stated separately in §2. We finally remark that,

although this method gives no explicit expression for the weight u, we are able to show that

it is “almost” in the same Dp class as v; namely, for every ε > 0 we can choose a weight

u such that u1−ε ∈ Dp (this is always the case in the Poisson setting, and also in the heat

setting if a is sufficient small, or T∗ =∞; see Remark 3.6). This result is new, even in the

special cases already considered in the literature [7, 1].
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The paper is structured as follows. In §2 we extend the two-weight theorem of Rubio de

Francia to local maximal functions. In §3 we prove in detail Theorems 1.1 and 1.3 for the

heat equation associated with L = −∆+|x|2. In §4 we do the same for the Poisson equation.

In §§5 and 6, respectively, we prove Theorems 1.1 and 1.3 for the operators −∆ + R and

O. Finally, in §7 we state some further remarks. Throughout the paper A . B means that

A ≤ cB for some constant c, which may depend on fixed parameters (such as d, p, a or R),

but not on the variables t, x, y. Dependence on the variables is stressed by the notations

Cx, Ct,x, etc... Finally, A ≈ B will denote both A . B and B . A.

2. A two-weight problem for the local Hardy-Littlewood operator

Let R > 1, which we assume fixed throughout this section. We consider the following

local Hardy-Littlewood maximal function

(2.1) Mloc
R f(x) := sup

r>0

1

|Br|

∫
Br(x)

f(y)χ{|y|≤Rmax(|x|,1)}(y) dy.

We shall adapt the arguments given by Rubio de Francia in [13] (see also [6, Ch. VI.6]) to

prove the following.

Theorem 2.1. If 1 < p <∞ and v
− 1
p ∈ Lp

′

loc(R
d) then there exists a weight u such that

(2.2) Mloc
R : Lp(v)→ Lp(u) boundedly.

Moreover, if we assume that ‖v−
1
p e−A|y|

2‖p′ <∞, for all A > A0 (and some fixed A0 ≥ 0),

then for every σ < 1 we can choose the weight u such that, in addition,

(2.3)
∥∥u−σp e−A|y|2‖p′ <∞, ∀ A > A0σR

2.

In particular, if A0 = 0 or σ ≤ 1/R2, then (2.3) holds for all A > A0.

PROOF: Following the strategy in [13], one first proves, for every s < 1, a vector-valued

estimate

(2.4)
∥∥∥(∑

j

|Mloc
R fj |p)

1
p

∥∥∥
Ls(Ek)

≤ Ck

(∑
j

∥∥fj∥∥pLp(v)

) 1
p
,

for a suitable partition of Rd = ∪∞k=0Ek, and some constants Ck (which may depend on v,

and of course on p, s and R). This inequality implies, by the factorization theorem of Rubio

de Francia (see [6, Thm VI.4.2]), the existence of some weight Uk, supported in Ek, such

that ‖U−1
k ‖L s

p−s ≤ 1 and ∫
Ek

∣∣Mloc
R f

∣∣p Uk(x) dx ≤ Cpk ‖f‖
p
Lp(v).

In such case, to obtain (2.2) it suffices to consider the weight u defined by

(2.5) u(x) =

∞∑
k=0

1

(2γkCk)p
Uk(x)χEk(x),
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for some γ > 0. We now prove (2.4), with a precise expression for Ck which later will lead

to the bound in (2.3). Consider

E0 = {|x| < 1} and Ek = {bk−1 ≤ |x| < bk}, k = 1, 2, . . . ,

where b > 1 will be chosen later. For fixed k ∈ N ∪ {0}, we split

f = fχ{|y|≤Rbk} + fχ{|y|>Rbk} = f ′ + f ′′.

It is clear that

Mloc
R f ′′(x) = 0, ∀ x ∈ Ek.

Next, a use of Kolmogorov’s inequality [6, p. 485], followed by the Fefferman-Stein estimate

for the standard Hardy-Littlewood maximal operator M [17, p. 56] gives∥∥∥(∑
j

|Mloc
R fj |p)

1
p

∥∥∥
Ls(Ek)

≤ cs|Ek|
1
s
−1
∥∥∥(∑

j

|Mf ′j |p)
1
p

∥∥∥
L1,∞

≤ cs,p |Ek|
1
s
−1
∥∥∥(∑

j

|f ′j |p)
1
p

∥∥∥
L1

≤ cs,p |Ek|
1
s
−1
(∑

j

‖fj‖pLp(v)

) 1
p
Vk,

the last step following by Hölder’s inequality if we set

Vk =
(∫
|y|<Rbk

v
− p
′
p

) 1
p′
.

(we also used that f ′j are supported in {|y| < Rbk}). Thus we have shown (2.4) with

Ck = cs,p|Ek|
1
s
−1Vk, which are finite numbers since v

− 1
p ∈ Lp

′

loc.

We now turn to prove (2.3) under the assumption

‖v‖Dp,A :=
∥∥v− 1

p e−A|y|
2∥∥
p′
<∞ ,

for all A > A0. For any such A, we can bound the constants Vk by

Vk =
∥∥v− 1

p e−A|y|
2
eA|y|

2
χ{|y|<Rbk}

∥∥
p′
≤ ‖v‖Dp,A e

A|Rbk|2 .

This is relevant when we construct the weight u as in (2.5), for which we have freedom to

choose s < 1 and b > 1. Given σ < 1, we first select s < 1 such that σp′

p = s
p−s . Then,

‖uσ‖p
′

Dp,B
=

∫
Rd
u(y)

−σp
′
p e−p

′B|y|2 dy =

∞∑
k=0

(
2γkCk

)σp′ ∫
Ek

Uk(y)
− s
p−s e−p

′B|y|2 dy

≤ c
∞∑
k=0

(
2γk|Ek|

1
s
−1 eA|Rb

k|2
)σp′

e−p
′B|bk−1|2 ,(2.6)

where in the last line we have used that ‖U−1
k ‖L s

p−s ≤ 1. Now, this series is convergent

provided that

B > b2AR2σ,

and this is always the case if B > A0R
2σ and we select A and b close enough (but larger)

than A0 and 1, respectively.
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2

Remark 2.2. The theorem continues to hold if we replace the condition in the weight by

‖v−
1
p e−A|y|‖p′ < ∞, for all A > A0. Indeed, in such case the same proof as above would

give, for every σ < 1, a weight u such that ‖u−
σ
p e−A|y|‖p′ <∞, ∀A > A0Rσ. This version

of theorem (with A0 = 0) will be used in §5 below.

Remark 2.3. Theorem 2.1 cannot be true for p = 1, at least if one expects “reasonable”

weights u and v, say such that L1(u) ⊂ L1
loc(Rd), and v is essentially constant near some

point x0. Indeed, in such case the function f(x) = |x−x0|−d[ln(e/|x−x0|)]−2χBε(x0) ∈ L1(v)

for some ε > 0, but Mloc
R f(x) & |x − x0|−d[ln(e/|x − x0|)]−1 near x0, which is not locally

integrable.

3. The heat equation for the Hermite operator L = −∆ + |x|2

This case was studied earlier in [1], although from a slightly different perspective. Namely,

in that paper the authors seek minimal conditions on a function f so that there exists some

ε > 0 for which e−tLf(x) is well-defined up to time ε and e−tLf(x)→ f(x) for a.e. x. This

is satisfactory if one only cares about pointwise convergence to the initial data, but does

not guarantee that the candidate solution e−tLf actually exists in a fixed band of time

t ∈ (0, T). In our approach, we first fix T > 0 and the corresponding pde{
ut = −Lu, t ∈ (0, T)

u(0) = f

and search for minimal assumptions in f so that u(t, x) = e−tLf(x) solves the equation in

the full band t ∈ (0, T), and secondly, it satisfies e−tLf(x) → f(x) a.e. This more precise

approach is also slightly more general than [1], since their class of admissible initial data f

will coincide with the union of our classes as T > 0 varies.

3.1. Kernel estimates. The kernel ht(x, y) of e−tL (usually called Mehler kernel) has a

well-known explicit expression which we shall write in the form

(3.1) ht(x, y) =
(1− s2

4πs

) d
2
e−

1
4

(
|x−y|2
s

+s|x+y|2) with s = th t.

We shall use the following estimates.

Lemma 3.1. Given M > 1, t > 0 and x ∈ Rd, there exists some C = Cx,t,M > 0 such that

(3.2) 1
C e
− |x−y|

2

4
[ 1
s

+s(M+1
M−1

)2] ≤ ht(x, y) ≤ C e−
|x−y|2

4
[ 1
s

+s(M−1
M+1

)2], ∀ y ∈ Rd

where we have set s = th t.

PROOF: Assume first that |y| ≥ M |x|. Then, an elementary use of triangle inequalities

gives M−1
M |y| ≤ |x± y| ≤ M+1

M |y|, and therefore

M−1
M+1 |x− y| ≤ |x+ y| ≤ M+1

M−1 |x− y|.
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Inserting these inequalities into the Mehler kernel (3.1) one easily obtains (3.2). If we

assume |y| ≤M |x|, then the function y 7→ ht(x, y)e
|x−y|2

4
[ 1
s

+s(M+1
M−1

)2] is continuous and non-

vanishing, and hence bounded from below in the compact set |y| ≤ M |x| by a constant

c(x, t,M) > 0. One argues similarly for the upper bound.
2

Remark 3.2. Observe that every f ≥ 0 which has e−tLf(x) < ∞, for some x and t > 0,

is necessarily locally integrable. Indeed, if y belongs to compact set K, then ht(x, y) is

bounded below by some c = c(t, x,K) > 0, and hence
∫
K |f | ≤

1
c

∫
ht(x, y)|f(y)|dy <∞.

3.2. Proof of Theorem 1.1 for the Hermite-heat equation. Theorem 1.1, in the

setting considered in this section, is a direct consequence of the next three propositions.

Our argument is more direct than that in [1], and also valid in greater generality.

Proposition 3.3. Let T > 0 fixed (possibly T =∞). Then, the following are equivalent

(i)

∫
Rd
ht(x, y)|f(y)|dy <∞, for all t ∈ (0, T) and x ∈ Rd

(ii)

∫
Rd
ht(xt, y)|f(y)|dy <∞, for all t ∈ (0, T) and some xt ∈ Rd

(iii)

∫
Rd
|f(y)| e−

|y|2
4s dy <∞, for all s ∈ (0, th (2T )/2).

PROOF: Clearly (i) implies (ii). We show that (ii) implies (iii). Pick any t0 < T and x

such that ∫
Rd
ht0(x, y)|f(y)|dy <∞.

Call s0 = th t0, and take any s < th (2t0)/2 = (th t0 + 1
th t0

)−1, that is 1
s > s0 + 1

s0
. Then

there must exist some large M > 1 so that 1
s >

1
s0

+ s0(M+1
M−1)2. The lower bound in (3.2)

then gives

e−
|x−y|2

4s ≤ e−
|x−y|2

4
[ 1
s0

+s0(M+1
M−1

)2] ≤ Cx,t0,M ht0(x, y).

Hence

(3.3)

∫
Rd
e−
|x−y|2

4s |f(y)|dy <∞, ∀ s < th (2t0)/2.

Using the similar but more elementary estimate

(3.4) 1
c e
− |y|

2

4s
(M+1
M

)2 ≤ e−
|x−y|2

4s ≤ c e−
|y|2
4s

(M−1
M

)2 , y ∈ Rd

with some c = c(x, s,M) > 0, one can place x = 0 in (3.3). Since t0 < T is arbitrary, one

obtains the assertion in (iii).

Next we show that (iii) implies (i). Pick t0 < T and x ∈ Rd. Setting s0 = th (2t0)/2, we

see that (iii) (suitably combined with (3.4)) implies that

(3.5)

∫
Rd
|f(y)| e−

|x−y|2
4s0 dy <∞.
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Take any t < t0 and let s = th t < th t0. Then 1
s + s > 1

th t0
+ th t0 = 1

s0
. Thus, there is

some large M such that 1
s + s(M−1

M+1)2 > 1
s0

, so the upper bound in (3.2) gives

ht(x, y) ≤ C e−
|x−y|2

4
[ 1
s

+s(M−1
M+1

)2] ≤ C e−
|x−y|2
4s0 .

Then (i) follows from (3.5). 2

Proposition 3.4. If f satisfies the conditions in Proposition 3.3, then

u(t, x) =

∫
Rd
ht(x, y)f(y) dy ∈ C∞((0, T)× Rd).

PROOF: It suffices to prove that, for each x and t,

(3.6)

∫
Rd

∣∣∂Lt ∆M
x [ht(x, y)]

∣∣ |f(y)| dy <∞, ∀ L,M ≥ 0.

Since ht(x, y) satisfies the Hermite equation, we can assume that M = 0. Since s = th t

is a diffeomorphism, we may just prove (4.15) replacing ∂t by ∂s. Now, from the explicit

formula (3.1), this would be a consequence of

(3.7)

∫
Rd
|x± y|2L ht(x, y) |f(y)| dy <∞, ∀ L ≥ 0.

But if f satisfies (i) of Proposition 3.3, so does |x± y|2Lf(y), so (3.7) is indeed true. 2

Proposition 3.5. If f satisfies the conditions in Proposition 3.3, then

(3.8) lim
t→0+

e−tLf(x) = f(x), a.e. x ∈ Rd.

PROOF: It suffices to show (3.8) for a.e. |x| ≤ n, and every fixed n ∈ N. Split

f = fχ{|y|≤2n} + fχ{|y|>2n} = f1 + f2.

We first show that limt→0 e
−tLf2(x) = 0 for all |x| ≤ n. Indeed, if |y| > 2n we must have

|x− y| ≥ |y|/2, and therefore, from the explicit formula (3.1),

(3.9) ht(x, y) ≤ e−
|x−y|2

4s

(4πs)d/2
≤ e−

|y|2
16s

(4πs)d/2
≤ e

− |y|
2

32s
− |y|

2

4s0

(4πs)d/2
≤ cd s

−d/2 e−
n2

8s e
− |y|

2

4s0

if we assume s = th t ≤ s0/8, and say s0 = th (2T)/4. Now, since e
− |y|

2

4s0 f(y) ∈ L1(Rd) and

lims→0 s
−d/2 e−

n2

8s = 0, we obtain

(3.10) |e−tLf2(x)| ≤ cd s−d/2 e−
n2

8s

∫
Rd
|f(y)| e−

|y|2
4s0 dy → 0, as t→ 0.

On the other hand, every f verifying the conditions in Proposition 3.3 is locally integrable

(by Remark 3.2), so by the standard pointwise convergence for L1 functions we have

(3.11) lim
t→0

e−tLf1(x) = f(x), a.e. |x| ≤ n.
2
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3.3. Proof of Theorem 1.3 for the Hermite-heat equation. This requires a more

detailed proof, as the estimate in the weight u is new. Let 1 < p <∞ and a < T be fixed.

For a weight v such that ‖v−
1
p e−

|y|2
4s ‖p′ <∞ for all s < th (2T)/2, we need to show that the

maximal operator

h∗af(x) = sup
0<t<a

∫
Rd
ht(x, y)|f(y)| dy

maps boundedly Lp(v) → Lp(u) for some weight u. Moreover, if σ ≤ σ0 (for a suitable σ0

to be chosen) we must find a weight u such that ‖u−
σ
p e−

|y|2
4s ‖p′ <∞ for all s < th (2T)/2.

To do so, we fix M > 1 (to be chosen later), and split the operator h∗a into two parts

h∗af(x) ≤ sup
0<t<a

∫
|y|≤M max{|x|,1}

ht(x, y)|f(y)| dy + sup
0<t<a

∫
|y|>M max{|x|,1}

ht(x, y)|f(y)| dy

= Af(x) + Bf(x).

For the operator B we estimate the kernel as in (3.9), but with a slightly more precise

computation. Now we assume |y| > M max{|x|, 1}, so we have |x − y| ≥ M−1
M |y|. Thus, if

s = th t,

ht(x, y) ≤ e−
|x−y|2

4s

(4πs)d/2
≤ e−(M−1

M
)2
|y|2
4s

(4πs)d/2
≤ cM
|y|d

e−(M−1
M

)3
|y|2
4s ≤

c′M
max{1, |x|d}

e−(M−1
M

)3
|y|2
4s .

We pick M large enough so that s0 := ( M
M−1)3th a < T∗ = th (2T)/2. Then, Hölder’s

inequality gives

Bf(x) ≤
c′M

max{1, |x|d}
‖f‖Lp(v)

∥∥v− 1
p e
− |y|

2

4s0

∥∥
p′
<∞.

So, we will have ‖Bf‖Lp(u) . ‖f‖Lp(v) if we choose any u(x) ≤ 1. We now pass to the

operator Af(x). Since |y| ≤M max{|x|, 1}, an elementary computation slicing into dyadic

shells (of radii 2j
√
s, j ∈ N) gives

Af(x) ≤ sup
0<t<a

∫
|y|≤M max{|x|,1}

|f(y)| e
− |x−y|

2

4s

(4πs)d/2
dy . Mloc

M f(x),

where Mloc
M f is the local Hardy-Littlewood maximal function defined in (2.1). Thus by

Theorem 2.1, if we set σ0 = σ0(a, T∗) = 1/M2 ∈ (0, 1), then for every σ ≤ σ0 there exists

a weight U such that ‖Af‖Lp(U) . ‖f‖Lp(v) and ‖U−
σ
p e−

|y|2
4s ‖p′ < ∞ for all s < th (2T)/2.

Finally, to combine the estimates for Af and Bf we can just take

u(x) = min
{
U(x), 1

}
,

which satisfies the required properties.

Remark 3.6. In the previous proof we chose σ0(a, T∗) = 1/M2, withM so that ( M
M−1)3th a <

T∗. In general, we cannot let M ↘ 1 (and hence σ0 ↗ 1), but we could always do so if we

start with a parameter a sufficiently small (depending on T ∗).
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4. The Poisson equation for the Hermite operator

4.1. Kernel estimates. We denote by pt(x, y) the kernel of the operator e−t
√
L. By the

subordination formula (1.5), and using the explicit expression for ht(x, y) in (3.1), the kernel

can be written as

pt(x, y) =
t√
4π

∫ ∞
0

e−
t2

4u hu(x, y)
du

u3/2

=
t

(4π)
d+1
2

∫ 1

0

e
− t2

2 ln 1+s
1−s (1− s2)

d
2
−1 e−

1
4

(
|x−y|2
s

+s|x+y|2)

s
d
2

(
1
2 ln 1+s

1−s
)3/2 ds,(4.1)

after the change of variables s = thu (or equivalently u = 1
2 ln 1+s

1−s). These long expressions

are difficult to handle, but we obtain here very precise decay estimates which will be enough

for our purposes. The next two lemmas are key results in this section.

Lemma 4.1. Given t > 0 and x ∈ Rd, there exists some Ct,x > 0 such that

(4.2)
C−1
t,x e−

|y|2
2

(1 + |y|)
d
2 [ln(e+ |y|)]

3
2

≤ pt(x, y) ≤ Ct,x e−
|y|2
2

(1 + |y|)
d
2 [ln(e+ |y|)]

3
2

, ∀ y ∈ Rd.

PROOF: ‡ We may assume that |y| ≥M max{|x|, 1}, for a fixed sufficiently large M , since

otherwise y would belong to a compact set, and upper and lower bounds with a constant

Ct,x would be obvious.

We start with the upper bound. In the integral expression for pt(x, y) in (4.1), we first

look at the range 0 < s < 1/2, namely

(4.3) I0 = t

∫ 1/2

0

e
− t2

2 ln 1+s
1−s (1− s2)

d
2
−1 e−

1
4

(a2s+ b2

s
)

s
d
2

(
ln 1+s

1−s
)3/2 ds . t

∫ 1/2

0

e−c t
2/s e−

1
4

(a2s+ b2

s
)

s
d+3
2

ds,

where we have used the elementary estimate

ln
(1 + s

1− s

)
= ln

(
1 +

2s

1− s

)
≈ s, s ∈ [0, 1/2].

and the notation

(4.4) a = |x+ y| and b = |x− y|.

We turn to estimate the crucial exponential factor

(4.5) exp
(
−1

4
(sa2 + b2

s )
)
.

If 0 < s < 1/2, by monotonocity we have s + 1
s ≥

5
2 , while the assumption |y| ≥ M |x|

implies that a2, b2 ≥ (M−1
M )2|y|2. Thus, the exponential term in (4.5) is controlled by

exp
(
− 1

4(sa2 + b2

s )
)
≤ exp(−5

8(M−1
M )2|y|2) ≤ exp(− 6

10 |y|
2),

‡ This proof has been partly rewritten following the referee’s suggestion.
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if M is chosen large enough. Inserting this bound into (4.3), and changing variables v = t2/s

in the remaining integral we obtain

(4.6) I0 . e−
6
10 |y|

2

t−d
∫ ∞

2t2
e−cv v

d+1
2
dv

v
≤ c′ t−d e−

6
10 |y|

2

.

Thus, this part has a better decay than the right hand side of (4.2).

We now pass to the range 1/2 ≤ s < 1, which disregarding irrelevant terms is given by

the integral

(4.7) I1 = t

∫ 1

1
2

(1− s)
d
2
−1

(ln 1
1−s)

3
2

e−
1
4

(sa2+ b2

s
) ds.

Here we need a finer estimate on the exponential (4.5). Completing squares, we can write

the exponent as

sa2 +
b2

s
=
(√
sa− b√

s

)2
+ 2ab = a2

s

(
s− b

a

)2
+ 2ab.

Since ab = |x+ y| |x− y| ≥ (y + x) · (y − x) = |y|2 − |x|2, we have

(4.8) e−
1
4

(sa2+ b2

s
) ≤ e

|x|2−|y|2
2 e−

a2

4s
(s− b

a
)2 .

We shall estimate the last exponential as follows. First note that, by the triangle inequality,

|b− a| =
∣∣|x− y| − |x+ y|

∣∣ ≤ 2|x|. Therefore∣∣s− b

a

∣∣ ≥ ∣∣1− s∣∣− ∣∣ ba − 1
∣∣ ≥ 1− s− 2|x|

a .

So when we consider the range 1/2 ≤ s < 1− 4|x|
a , we have |s− b

a | ≥ (1− s)/2, and hence

I10 =

∫ 1− 4|x|
a

1
2

· · · ≤ t e
|x|2−|y|2

2

∫ 1− 4|x|
a

1/2

(1− s)
d
2
−1

(ln 1
1−s)

3
2

e−
a2(1−s)2

16 ds

≤ t e
|x|2−|y|2

2 a−d/2
∫ a/2

0

v
d
2
−1

(ln a
v )

3
2

e−
v2

16 dv,

where in the last line we have changed variables v = a(1− s) and have slightly enlarged the

set of integration. Now, it is easy to see that, in the last integral, the main contribution

happens when v ≈ 1, and hence the integral is controlled by c(ln a)−3/2. Since a = |x+y| ≥
M−1
M |y|, this part meets the required bound on the right hand side of (4.2).

It remains to consider the range 1− 4|x|/a ≤ s < 1, in which we shall disregard the last

exponential in (4.8). That is,

I11 =

∫ 1

1− 4|x|
a

· · · ≤ t e
|x|2−|y|2

2

∫ 1

1− 4|x|
a

(1− s)
d
2
−1

(ln 1
1−s)

3
2

ds ≤ t e
|x|2−|y|2

2

∫ c
|x|
|y|

0

u
d
2
−1

(ln 1
u)

3
2

du,

where in the last step we changed varibles u = 1− s, and used a = |x+ y| ≥ M−1
M |y| (so one

can choose c = 4M/(M − 1)). Now, in this range of integration we have log(1/u) ≥ log |y|c|x| ,

so the right hand side can be estimated by

(4.9) I11 . t e
|x|2−|y|2

2

( |x|
|y|

)d/2 [
log |y|c|x|

]− 3
2 .
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If say |x| ≤
√
M/c, using |y| ≥ M we have log |y|c|x| ≥

1
2 log |y|. If |x| ≥

√
M/c (and M is

sufficiently large) we can use the elementary inequality

log |y| = log |y|c|x| + log
(
c|x|
)
≤ log |y|c|x| · log

(
c|x|
)
,

which implies log |y|c|x| ≥ log |y|/ log(c|x|). Inserting these estimates of the logarithmic term

into (4.9) we finally obtain

I11 . t cx e
− |y|

2

2 |y|−d/2
[

log |y|
]− 3

2 ,

with constant cx = e
|x|2
2 (1 + |x|)d/2

[
log
(
e + |x|

)]3/2
. Combining the bounds for I10 and

I11 we conclude that

(4.10) I1 ≤ t cx e
−|y|2

2 (1 + |y|)−d/2
[

log
(
e+ |y|

)]−3/2
,

when |y| ≥M(|x| ∨ 1), with the same value of cx
§.

We finally prove the lower bound. The main contribution for the integral defining pt(x, y)

will appear when 1 − s ≈ 1/|y|. To show this, notice that, since 1+s
1−s is increasing when

1/2 ≤ s < 1, we can bound

exp
(
− t2

2 ln 1+s
1−s

)
≥ exp

(
− t2

2 ln 3

)
.

Thus

pt(x, y) ≥ ct

∫ 1

1− 1
|y|

(1− s)
d
2
−1

(ln 2
1−s)

3
2

e−
1
4

(sa2+ b2

s
) ds,

where as before a = |x + y| and b = |x − y|. Changing variables 1 − s = u, we are lead to

consider

I =

∫ 1/|y|

0

u
d
2
−1

(ln 2
u)

3
2

e−
1
4

((1−u)a2+ b2

1−u ) du.

This time we write the terms in the exponential expression as

(1− u)a2 +
b2

1− u
= a2 + b2 − (a2 − b2)u

1− u
+
a2u2

1− u
.

Thus, since a2 + b2 = 2(|x|2 + |y|2) and a2 − b2 = 4x · y, we see that

exp(−1
4((1−u)a2+

b2

1−u)) = exp(− |x|
2+|y|2

2 ) exp( u
1−u x · y) exp(− a2u2

4(1−u))

≥ exp(− |x|
2+|y|2

2 ) exp(− |x||y|u1−u ) exp(−2|y|2u2),

where in the last line we used that 1− u ≥ 1/2 and a = |x+ y| ≤ 2|y|. Thus,

I ≥ e−
|x|2+|y|2

2

∫ 1/|y|

0

u
d
2
−1

(ln 2
u)

3
2

e−2|x||y|u e−2|y|2u2 du.

Finally, since u|y| ≤ 1, we can bound from below

(4.11) I ≥ e−
|x|2+|y|2

2 e−2|x| e−2

∫ 1/|y|

0

u
d
2

(ln 2
u)

3
2

du

u
& e−

|x|2
2
−2|x| e−

|y|2
2

(1 + |y|)
d
2 [ln(e+ |y|)]

3
2

,

§ This value of cx will play a role later.
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as we wished to prove. 2

The previous lemma essentially suffices for the proof of Theorem 1.1. For Theorem 1.3,

however, a more precise bound is needed. Below we write p∆
t (x− y) for the usual Poisson

kernel

p∆
t (x− y) =

cd t

(t2 + |x− y|2)
d+1
2

.

Lemma 4.2. There exists a constant γ ≥ 2 such that

(4.12) pt(x, y) ≤ Cx

p∆
t (x− y) e−

|y|2
2 χ{

|y|≤γmax{|x|,1}
} +

t e−
|y|2
2

(1 + |y|)
d
2 [ln(e+ |y|)]

3
2

 ,
where Cx = C (1 + |x|)de|x|2/2, for some constant C > 0.

PROOF: As before, we split the integral in (4.1), which defines pt(x, y), as

pt(x, y) =

∫ 1
2

0
. . . +

∫ 1

1
2

. . . ≤ I0 + I1

with I0 and I1 given in (4.3) and (4.7), respectively. We have already shown in (4.10) that

I1 . cx
t e−

|y|2
2

(1 + |y|)
d
2 [ln(e+ |y|)]

3
2

, if |y| ≥M(|x| ∨ 1),

with cx ≤ Cx (see footnote §). For |y| ≤ M(|x| ∨ 1) we shall use a cruder bound: keeping

the notation in (4.4), and disregarding the last exponential factor in (4.8) we see that

exp(−1
4(sa2 + b2

s )) ≤ e
|x|2
2 e−

|y|2
2 . Inserting this into (4.7) we obtain

I1 ≤ t e
|x|2
2 e−

|y|2
2

∫ 1

1
2

(1− s)
d
2
−1

(ln 1
1−s)

3
2

ds ≤ Cx
t e−

|y|2
2

(1 + |y|)
d
2 [ln(e+ |y|)]

3
2

.

We now turn to estimate I0, for which we need a slightly different argument to introduce

p∆
t . Starting from (4.6), we can write, for a small η > 0 (to be determined)

I0 ≤ t

∫ ∞
2

e−(ct2+ η
4
b2)v e−

1
4

(a
2

v
+b2(1−η)v)v

d+1
2
dv

v
.

Now, if |y| ≥M max{|x|, 1}, we use as before that a2, b2 ≥ (M−1
M )2|y|2 and the monotonicity

of 1
v + v to obtain

e−
1
4

(a
2

v
+b2(1−η)v) ≤ e−

1
4

(1−η)(M−1
M

)2( 1
v

+v)|y|2 ≤ e−
5
8

(1−η)(M−1
M

)2|y|2 .

So, setting η = 1/M and fixing M large enough such that 5
8(M−1

M )3 ≥ 6
10 , we conclude that

I0 ≤ cM t e−
6
10
|y|2

∫ ∞
2

e−(ct2+ η
4
b2)v v

d+1
2
dv

v

≤ c′M
t e−

6
10
|y|2

(t2 + |x− y|2)
d+1
2

≤ c′′M
t e−

6
10
|y|2

|y|d+1
,

using in the last step the assumption |y| ≥ M max{|x|, 1}. This can clearly be absorbed

into the right hand side of (4.12).
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So we are left with I0 in the region |y| ≤M max{|x|, 1}. We now write

I0 ≤ t

∫ ∞
2

e−
1
4

(ct2+b2)v e−
a2

4v v
d+1
2
dv

v
.

.
t

(ct2 + b2)
d+1
2

∫ ∞
ct2+b2

2

e−u e−
a2(ct2+b2)

16u u
d+1
2
du

u
,(4.13)

where we have changed variables u = (ct2 + b2)v/4. In the last integral we can disregard t,

and estimate it crudely by

J =

∫ ∞
0

e−u e−
a2b2

16u u
d+1
2
du

u
.

This integral is not difficult to estimate by hand, but we can also quote the literature, since

it resembles a Bessel potential kernel

(4.14) Gα(x) = cα,d

∫ ∞
0

e−u e−
|x|2
4u u

α−d
2 du

u

[16, p.132]. Indeed, modulo a multiplicative constant J = cdG2d+1(ab/2), and from well-

known estimates of the Bessel potential kernel (see e.g. [3, p. 417]) we obtain

J . (1 + ab)
d
2 e−

ab
2 .

Now, ab ≥ |〈x+ y, x− y〉| ≥ −|x|2 + |y|2, so using the assumption |y| ≤M |x| we obtain

J . e
|x|2
2 e−

|y|2
2 (1 + |x+ y| |x− y|)

d
2 ≤ cM (1 + |x|)d e

|x|2
2 e−

|y|2
2 .

Inserting this into (4.13) we obtain the bound asserted in the statement of the lemma. 2

4.2. Proof of Theorem 1.1 for the Hermite-Poisson equation. As we did before,

the result will follow directly from the next three propositions. The first one is a direct

consequence of the kernel estimates in Lemma 4.1.

Proposition 4.3. The following properties are equivalent:

(i)

∫
Rd
pt(x, y)|f(y)|dy <∞, for all t > 0 and x ∈ Rd

(ii)

∫
Rd
pt0(x0, y)|f(y)|dy <∞, for some t0 > 0 and some x0 ∈ Rd

(iii)

∫
Rd
|f(y)| e−

|y|2
2 (1 + |y|)−

d
2 [ln(e+ |y|)]−

3
2 dy <∞.

For the smoothness of the solution one argues similarly to Proposition 3.4.

Proposition 4.4. If f satisfies the conditions in Proposition 4.3, then

u(t, x) =

∫
Rd
pt(x, y)f(y) dy ∈ C∞((0,∞)× Rd).

PROOF: It suffices to prove that, for each x and t,

(4.15)

∫
Rd

∣∣∂Lt ∆M
x [pt(x, y)]

∣∣ |f(y)| dy <∞, ∀ L,M ≥ 0.
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Since the Poisson kernel satisfies ∆xpt(x, y) = |x|2pt(x, y) − ∂tt[pt(x, y)], we can assume

M = 0. Now, taking derivatives with respect to t in the explicit formula (4.1), matters are

reduced to check that, for each ` ≥ 0,

∫ 1

0

e
− t2

2 ln 1+s
1−s (1− s2)

d
2
−1 e−

1
4

(
|x−y|2
s

+s|x+y|2)

s
d
2

(
1
2 ln 1+s

1−s
)3/2+`

ds <∞.

But the same proof we gave in Lemma 4.1 shows that this is equivalent to∫
Rd
|f(y)| e−

|y|2
2 (1 + |y|)−

d
2 [ln(e+ |y|)]−( 3

2
+`) dy <∞

which holds under the assumptions of the proposition. 2

For the pointwise limits we shall also need the estimates in Lemma 4.2.

Proposition 4.5. If f satisfies the conditions in Proposition 4.3, then

(4.16) lim
t→0+

e−t
√
Lf(x) = f(x), a.e. x ∈ Rd.

PROOF: We argue as in the proof of Proposition 3.5. We shall show (4.16) for a.e. |x| ≤ n,

and every fixed n ∈ N. Split

f = fχ{|y|≤γn} + fχ{|y|>γn} = f1 + f2

(γ is the constant in Lemma 4.2). Using Lemma 4.2 we see that, for every |x| ≤ n

(4.17)
∣∣e−t√Lf2(x)

∣∣ ≤ ∫
|y|>γn

pt(x, y) |f(y)| dy ≤ Cn0 t

∫
Rd

|f(y)| e−
|y|2
2 dy

(1 + |y|)
d
2 [ln(e+ |y|)]

3
2

.

Since the last integral is finite we obtain limt→0 e
−t
√
Lf2(x) = 0 for all |x| ≤ n.

On the other hand, f1 ∈ L1(Rd), so the standard pointwise convergence of Hermite-

Poisson integrals of L1 functions gives

(4.18) lim
t→0

e−t
√
Lf1(x) = f(x), a.e. |x| ≤ n.

2

4.3. Proof of Theorem 1.3. Let v ∈ DPois
p (L), that is

(4.19) ‖v‖Dp := ‖v−
1
pϕ‖Lp′ (Rd) <∞,

where we denote ϕ(y) = e−
|y|2
2 (1 + |y|)−

d
2 [ln(e+ |y|)]−

3
2 . For every a > 0 and σ < 1, we

must show the boundedness of the maximal operator

P ∗a f(x) = sup
0<t<a

∫
Rd
pt(x, y) |f(y)| dy

from Lp(v)→ Lp(u) for some other weight u such that uσ ∈ Dp.

We use again Lemma 4.2, to split the maximal function as

P ∗a f(x) ≤ Cx sup
0<t<a

∫
|y|≤γmax{|x|,1}

p∆
t (x, y) |f(y)|e−

|y|2
2 dy + Cx a

∫
Rd
|f(y)|ϕ(y) dy

= P ∗,0a f(x) + P ∗,1a f(x),
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where we recall that Cx = c (1 + |x|)d exp(|x|2/2). Clearly, by Hölder’s inequality,

P ∗,1a f(x) ≤ Cx a ‖f‖Lp(v) ‖v‖Dp ,

so we will have ‖P ∗,1a f‖Lp(u) . ‖f‖Lp(v) provided we choose

u(x) ≤ u1(x) :=
1

Cpx (1 + |x|)d+1
= c′ e−

p
2
|x|2 (1 + |x|)−d(p+1)−1.

Observe that ‖u
−σ
p

1 ϕ‖p′ <∞ for every σ < 1.

On the other hand, when |y| ≤ γmax{|x|, 1}, a standard argument slicing the integral

into shells gives

P ∗,0a f(x) . Cx sup
0<t<a

∫
|y|≤γmax{|x|,1}

t |f(y)| e−
|y|2
2

(t+ |x− y|)d+1
dy . CxMloc

γ

(
fe−

|y|2
2
)
(x),

withMloc
γ defined in (2.1). Now, the new function f̃(y) = f(y)e−

|y|2
2 ∈ Lp(ṽ) for the weight

ṽ(y) = v(y)e
p
2
|y|2 . By (4.19), this weight satisfies∥∥ṽ− 1

p e−ε|y|
2∥∥
p′

=
∥∥v− 1

p e−( 1
2

+ε)|y|2∥∥
p′
<∞, ∀ ε > 0,

so we can apply Theorem 2.1 to find, for each σ < 1, a weight Ũ such that

‖Mloc
γ+1f̃‖Lp(Ũ) . ‖f̃‖Lp(ṽ) = ‖f‖Lp(v) and ‖Ũ−

σ
p e−ε|y|

2‖p′ <∞, ∀ε > 0.

Then, setting

u0(x) =
Ũ(x)

Cpx
= c′ Ũ(x) e−

p
2
|x|2 (1 + |x|)−dp,

we see that

‖P ∗,0a f‖Lp(u0) . ‖f‖Lp(v) and ‖u
−σ
p

0 ϕ‖p′ ≤ ‖Ũ−
σ
p (1 + |x|)dσ e−

1−σ
2
|x|2‖p′ <∞.

Finally, we can combine the estimates for P ∗,0a f and P ∗,1a f by taking

u(x) = min
{
u0(x), u1(x)

}
,

which satisfies the required properties.
2

5. The perturbed laplacian L = −∆ +R with R > 0

This operator can often be seen as a toy model for the study of the Hermite operator.

We think that the results obtained in this case are interesting in themselves, so we present

them here in some detail. Throughout this section, R > 0 is fixed.
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5.1. Heat equation for L = −∆+R. This case is a direct consequence of the correspond-

ing results for the classical heat equation, since

(5.1) e−tLf(x) = e−tR et∆f(x) = e−tR (Wt ∗ f)(x)

where Wt(x) = (4πt)−d/2 exp(−|x|2/(4t)) is the Gauss-Weierstrass kernel. Indeed, the factor

e−tR is irrelevant for the questions asked here, so the characterizations will be the same for

both operators L = −∆ +R and L = −∆.

We remark that for the classical heat equation, both Theorems 1.1 and 1.3 are known

or can be obtained with the same methods we carried out in §3, so we do not include the

proofs here. For example, the results stated in Theorem 1.1 can be found in [21, pp. 64-

67] or [22], or alternatively, can be proved arguing exactly as in §3.2 (with a few obvious

modifications). The same applies to Theorem 1.3, basically reading line by line the proof

given in §3.3, or checking the reference [7] (our formulation is slightly more general, but the

ideas are similar).

5.2. Poisson equation for L = −∆+R. This case requires a formal proof, since it cannot

be deduced from the classical setting. In fact, the characterizing conditions are different for

−∆ and −∆ + R; see (1.3) and Table 1. Our method will be similar to the one presented

in §4 for the Hermite case.

The Poisson kernel in this case is of convolution type pt(x, y) = pt(x − y). From the

subordination formula (1.5) and the factorization in (5.1), the kernel takes the form

pt(x) =
t

(4π)
d+1
2

∫ ∞
0

e−
t2+|x|2

4u e−uR u−
d+3
2 du(5.2)

=
t

[π(t2 + |x|2)]
d+1
2

∫ ∞
0

e−v e−
R(t2+|x|2)

4v v
d+1
2 dv,(5.3)

where in the last line we have changed variables v = (t2 + |x|2)/(4u). One recognizes in

this expression the standard Poisson kernel p∆
t (x), and the Bessel potential kernel defined

in (4.14), so that we can write

pt(x) = cd p
∆
t (x)G2d+1

(√
R(t2 + |x|2)

)
,

for a suitable constant cd. Since we only care about approximate expressions, using the

asymptotics of Gα(x) mentioned already in §4.1 we obtain

(5.4) pt(x− y) ≈
t
(
1 +
√
R(t+ |x− y|)

) d
2 e−
√
R(t2+|x−y|2)

(t+ |x− y|)d+1
.

To derive a less complicated expression for this kernel we need an elementary lemma.

Lemma 5.1. For every t > 0 and x ∈ Rd we have

(5.5) c1(t, x) e−
√
R(1+|y|2) ≤ e−

√
R(t2+|x−y|2) ≤ c2(x) e−

√
R(1+|y|2), ∀ y ∈ Rd,

for some c1(t, x) > 0 and c2(x) = cR exp(
√
R|x|).
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PROOF: For the left inequality notice that√
t2 + |x− y|2 ≤ t+ |x|+ |y| ≤ t+ |x|+

√
1 + |y|2.

Hence

e−
√
R(t2+|x−y|2) ≥ c1(t, x) e−

√
R(1+|y|2)

with c1(t, x) = exp(−
√
R(t+ |x|)).

To prove the right inequality in (5.5), assume first that |y| ≥ 1. Then

(5.6) e−
√
R
√
t2+|x−y|2 ≤ e−

√
R |x−y| ≤ e

√
R |x| e−

√
R |y|.

Now, using first the assumption |y| ≥ 1, followed by the elementary inequality 1 + a
2 ≥√

1 + a, we obtain

|y| ≥ |y|
(

1 +
1

2|y|2
)
− 1

2
≥ |y|

√
1 +

1

|y|2
− 1

2
=
√

1 + |y|2 − 1

2
.

Inserting this into (5.6) we obtain

e−
√
R
√
t2+|x−y|2 ≤ e

√
R(|x|+ 1

2
) e−
√
R(1+|y|2).

Finally, if |y| ≤ 1 one trivially has

e−
√
R
√
t2+|x−y|2 ≤ 1 = e

√
R(1+|y|2)e−

√
R(1+|y|2) ≤ e

√
2Re−

√
R(1+|y|2).

So combining the last two estimates we obtain (5.5) with c2(x) = exp(
√
R(|x|+ 2)). 2

Lemma 5.2. The following inequality holds for every t > 0 and x, y ∈ Rd

pt(x− y) ≤ Cx max{t, 1}
d
2

[
p∆
t (x− y) e−

√
R(1+|y|2) χ{

|y|≤2 max{1,|x|}
} +

t e−
√
R(1+|y|2)

(1 + |y|)
d
2

+1

]
,

where Cx = cR (1 + |x|)d/2 e
√
R|x|.

PROOF: The proof is an easy estimation combining (5.4) with Lemma 5.1. 2

Theorem 1.1 will then be a consequence of the next three propositions.

Proposition 5.3. The following properties are equivalent:

(i)

∫
Rd
pt(x, y)|f(y)|dy <∞, for all t > 0 and x ∈ Rd

(ii)

∫
Rd
pt0(x0, y)|f(y)|dy <∞, for some t0 > 0 and some x0 ∈ Rd

(iii)

∫
Rd
|f(y)| e−

√
R(1+|y|2)(1 + |y|)−( d

2
+1) dy <∞.

PROOF: It is clear that (i)⇒(ii). To see that (ii)⇒(iii), one uses the left inequality in

Lemma 5.1, which inserted into (5.4) easily leads to

pt0(x0 − y) ≥ c1(t0, x0) e−
√
R(1+|y|2)(1 + |y|)−( d

2
+1), if |y| > 2 max{|x0|, 1}.

Since (ii) also implies that f is locally integrable, the statement in (iii) follows.
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Finally, to see that (iii)⇒(i), one can again restrict to |y| > 2 max{|x|, 1}, and then the

assertion is a consequence of the right inequality in Lemma 5.1. 2

Proposition 5.4. If f satisfies the conditions in Proposition 5.3, then

(5.7) u(t, x) =

∫
Rd
pt(x− y)f(y) dy ∈ C∞((0,∞)× Rd).

PROOF: We only sketch the proof, as the argument is similar to that in Proposition

4.4. It suffices to consider derivatives with respect to t, and one sees from (5.2) that this

amounts to study the decay of the kernels

pt,`(x) =

∫ ∞
0

e−
t2+|x|2

4u e−uR u−
d+3+2`

2 du, ∀ ` ∈ N.

Changing variables as in (5.3), and using the asymptotics of the Bessel potentials (now

G2d+2`+1(x)) one sees that

pt,`(x) ≈
t
(
1 +
√
R(t+ |x|)

) d
2

+`
e−
√
R(t2+|x|2)

(t+ |x|)d+1+2`
,

which as expected have a better decay than the original kernel. The integrability conditions

assumed in f then suffice to give (5.7). 2

Proposition 5.5. If f satisfies the conditions in Proposition 5.3, then

lim
t→0+

e−t
√
Lf(x) = f(x), a.e. x ∈ Rd.

PROOF: Once Proposition 5.3 has been established, the proof is entirely analogous to

that of Proposition 4.5. We leave details to the reader. 2

5.3. Proof of Theorem 1.3 for the Poisson equation. Using Lemma 5.2, and arguing

as in §4.3, we see that

(5.8) P ∗a f(x) . Cx a
d
2

[
Mloc

2

(
fe−
√
R(1+|y|2)

)
(x) + a ‖f‖Lp(v)‖v

− 1
pϕ‖p′

]
,

with Cx = cR(1 + |x|)
d
2 e
√
R|x| and ϕ(y) = e−

√
R(1+|y|2)(1 + |y|)−( d

2
+1). The right hand term

will belong to Lp(u) provided we choose

u(x) ≤ u1(x) :=
1

Cpx (1 + |x|)d+1
= c′ e−p

√
R|x| (1 + |x|)−

pd
2
−d−1.

Observe that ‖u
−σ
p

1 ϕ‖p′ <∞ for every σ < 1.

For the left hand term in (5.8), the new function f̃(y) = f(y)e−
√
R(1+|y|2) ∈ Lp(ṽ) for

the weight ṽ(y) = v(y)ep
√
R(1+|y|2). This weight satisfies∥∥ṽ− 1

p e−ε|y|
∥∥
p′

=
∥∥v− 1

p e−ε|y| e−
√
R
√

1+|y|2∥∥
p′
<∞, ∀ ε > 0,

so we can apply Theorem 2.1 (and Remark 2.2) to find, for each σ < 1, a weight Ũ such

that

‖Mloc
2 f̃‖Lp(Ũ) . ‖f̃‖Lp(ṽ) = ‖f‖Lp(v) and ‖Ũ−

σ
p e−ε|y|‖p′ <∞, ∀ε > 0.
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Then, setting

u0(x) =
Ũ(x)

Cpx
= c′ Ũ(x) e−p

√
R|x| (1 + |x|)−dp/2,

and calling Af(x) the first summand in (5.8), we see that ‖Af‖Lp(u0) . ‖f‖Lp(v) and

‖u
−σ
p

0 ϕ‖p′ ≤ ‖Ũ−
σ
p (1 + |x|)

dσ
2 e−(1−σ)

√
R|x|‖p′ <∞.

Thus, we can finally choose

u(x) = min
{
u0(x), u1(x)

}
,

which satisfies the required properties. 2

6. The Ornstein-Uhlenbeck operator

It is well known that the Ornstein-Uhlenbeck operator O = −∆ + 2x · ∇ in Rd is closely

related with a small perturbation of the Hermite operator

(6.1) L = −∆ + |x|2 − d, in Rd.

Indeed, if we set ũ(x) = e−|x|
2/2u(x) then it is easily seen that Ou(x) = e|x|

2/2[Lũ](x).

Thus,

(6.2) e−tOf(x) = e
|x|2
2 e−tLf̃(x) and e−t

√
Of(x) = e

|x|2
2 e−t

√
Lf̃(x),

so that the convergence properties of O can be obtained from those of L via the mapping

f 7→ f̃ ; see e.g. [1, (3.1)]. We sketch below the arguments needed to deal with the operator

L in (6.1), and hence obtain Theorems 1.1 and 1.3 for the operator O.

6.1. Proof of Theorem 1.1. Consider first the heat equation associated with L = −∆ +

|x|2 − d and datum f̃ , whose solution can be written as

e−tLf̃(x) = etde−tHf̃(x), with H = −∆ + |x|2.

Clearly (i)+(ii) hold requiring in f̃ the same conditions as for the operator H in Table 1.

This in turn implies that Theorem 1.1 holds for u(t, x) = e−tOf(x) provided that∫
Rd
|f(y)| e−

|y|2
4

( 1
s

+2) dy <∞, ∀ s ∈
(
0, th (2T)/2

)
.

This is exactly the statement in Table 1 for the operator O.

We now move to the Poisson semigroup associated with L = −∆ + |x|2 − d. The subor-

dination formula in this case takes the form

e−t
√
L =

t√
4π

∫ ∞
0

e−
t2

4u e−uH eud
du

u3/2

Hence, the substitution s = thu (i.e. u = 1
2 ln 1+s

1−s) gives the integral expression

(6.3) pt(x, y) =
t

(4π)
d+1
2

∫ 1

0

e
− t2

2 ln 1+s
1−s (1− s2)

d
2
−1 e−

1
4

(
|x−y|2
s

+s|x+y|2)

s
d
2

(
1
2 ln 1+s

1−s
)3/2 (1 + s

1− s

) d
2
ds.
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This is quite similar to the Poisson-Hermite kernel in (4.1), except that the power (1−s)d/2

in the numerator now cancels out with the new term appearing from the factor eud. At this

point one can apply the same arguments as in the proof of Lemma 4.1, which produce the

estimate

(6.4) pt(x, y) ≈ e−|y|
2/2

[ln(e+ |y|)]
1
2

, ∀ y ∈ Rd

(modulo multiplicative constants C = Ct,x). We do not carry out the details of (6.4), but

these are easily traced looking at the expression for I1 in (4.7) (now without the factor

(1− s)d/2), and its estimates in (4.11) and (4.10). The loss in the logarithmic power is due

to the fact that∫ 1/|y|

0

du

(ln 2
u)

3
2 u
≈ 1

[ln(e+ |y|)]
1
2

and

∫ |y|
2

0

e−cv
2
dv

(ln |y|v )
3
2 v
≈ 1

[ln(e+ |y|)]
1
2

.

From (6.4) a version of Theorem 1.1 for L = −∆ + |x|2 − d follows exactly as in §4.2, that

is u(t, x) = e−t
√
Lf̃(x) satisfies (i)+(ii) if and only if∫

Rd
|f̃(y)| e−

|y|2
2 [ln(e+ |y|)]−

1
2 dy <∞.

Using (6.2) this implies that the solution of the Poisson-Ornstein-Uhlenbeck equation u(t, x) =

e−t
√
Of(x) satisfies the assertions in Theorem 1.1 if and only if∫

Rd
|f(y)| [ln(e+ |y|)]−

1
2 e−|y|

2
dy <∞,

as stated in Table 1.

6.2. Proof of Theorem 1.3. We first consider the maximal heat operators associated with

L = −∆ + |x|2 − d and O. Observe that they are related by

h∗,Oa f(x) = e
|x|2
2 h∗,La f̃(x) and h∗,La f̃(x) ≤ ead h∗,Ha f̃(x).

Clearly, h∗,La inherits the same boundedness properties of h∗,Ha , and we shall use these to

prove Theorem 1.3 for h∗,Oa .

Let v ∈ Dheat
p (O), which according to Corollary 1.2 means that∥∥v− 1

p e−
|y|2
4

( 1
s

+2)
∥∥
p′
<∞, ∀ s < th (2T)/2.

Then, the weight V (y) = v(y)e
p|y|2

2 belongs to Dheat
p (H). By Theorem 1.3 applied to H,

there is a σ0 = σ0(a, T∗) ∈ (0, 1) such that, for any σ ≤ σ0 there exists some weight U

such that h∗,Ha : Lp(V ) → Lp(U) and Uσ ∈ Dheat
p (H). Now consider the weight u(x) =

e−
p|x|2
2σ U(x). Clearly uσ ∈ Dheat

p (O), while∥∥h∗,Oa f
∥∥
Lp(u)

=
∥∥e |x|22 h∗,La f̃(x) e−

|x|2
2σ

∥∥
Lp(U)

≤ ead
∥∥h∗,Ha f̃

∥∥
Lp(U)

. ‖f̃‖Lp(V ) = ‖f‖Lp(v).

We now pass to the maximal Poisson operators. As before we have

P ∗,Oa f(x) = e
|x|2
2 P ∗,La f̃(x) ,
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so it suffices to work with the expression P ∗,La f̃ . To do so we need an estimate of the Poisson

kernel pLt (x, y) of L = −∆ + |x|2 − d, of the form

pLt (x, y) ≤ Cx

[
p∆
t (x− y) e−

|y|2
2 χ{

|y|≤γmax{|x|,1}
} + t ϕ(y)

]
with ϕ(y) = [ln(e + |y|)]−

1
2 e−|y|

2/2. This corresponds to formula (4.12) for the Hermite-

Poisson kernel, and can be obtained with obvious modifications in the proof; namely, the

integral I1 must now be estimated by the right hand side of (6.4).

At this point one proceeds as in §4.3, with this new expression of ϕ(y), to obtain that,

for every weight V ∈ DPois
p (L), that is

‖V −
1
pϕ‖Lp′ (Rd) <∞,

and every σ < 1, there exists a weight U such that P ∗,La : Lp(V ) → Lp(U) and Uσ ∈
DPois
p (L). Finally, let v ∈ DPois

p (O). By (6.2), the weight V (y) = v(y)e
p|y|2

2 belongs to

DPois
p (L), so we can apply the previous result to obtain a weight U . Next, consider u(x) =

e−
p|x|2
2σ U(x), which satisfies uσ ∈ DPois

p (O), and∥∥P ∗,Oa f
∥∥
Lp(u)

=
∥∥e |x|22 P ∗,La f̃(x) e−

|x|2
2σ

∥∥
Lp(U)

≤
∥∥P ∗,La f̃

∥∥
Lp(U)

. ‖f̃‖Lp(V ) = ‖f‖Lp(v).

This establishes Theorem 1.3 for the maximal Poisson-Ornstein-Uhlenbeck operator.

7. Further comments

7.1. An example. Consider the classical heat equation ut = ∆u in (0, T)×Rd, with initial

datum f(y) = e|y|
2/(4T). An explicit solution is given by

ht ∗ f(x) = (1− t
T
)−d/2 e

|x|2
4(T−t) , t ∈ (0, T), x ∈ Rd.

Clearly, f ∈ Lp(v) with v(y) = (1 + |y|)−d−1e−p|y|
2/(4T), which belongs to the class Dheat

p

associated with ∆ in (0, T) × Rd as described in (1.6). However, notice that the function

ha ∗ f(x) has a much larger exponential growth than f (if a is close to T). Hence if one

expects ha ∗ f to belong to Lp(u), the weight u must satisfy stronger conditions than v.

For example, one could choose u(x) = (1 + |x|)−d−1e−p|x|
2/[4(T−a)], but then uσ will only

belong to Dheat
p if σ ≤ (T − a)/T . This shows the necessity of a restriction in σ (depending

on a and T) for the Lp(v) → Lp(u) boundedness of maximal heat operators, as stated in

Theorem 1.3.

7.2. Non-tangential convergence. For every α > 0, the statement of Theorem 1.1 can

be improved to

lim
(t,x)→(0,x0)

|x−x0|2<αt

e−tLf(x) = f(x0) and lim
(t,x)→(0,x0)
|x−x0|<αt

e−t
√
Lf(x) = f(x0), a.e. x0 ∈ Rd.

Indeed, non-tangential convergence is known to hold for L1-functions [12], and hence, going

back to the proofs of Propositions 3.5 and 4.5, such result could be applied to the “local” part
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of f , f1 = fχ{|y|≤2n} in formulas (3.11) and (4.18). The remainder terms f2 = fχ{|y|>2n}

would not be a problem, since their estimates in (3.10) and (4.17) are uniform in x.

Similarly, Theorem 1.3 will continue to hold if we replace h∗a and P ∗a by their parabolic

and non-tangential analogues, respectively,

h∗, αa f(x0) = sup
0<t<a

|x−x0|2<αt

∣∣e−tLf(x)
∣∣ and P ∗, αa f(x0) = sup

0<t<a
|x−x0|<αt

∣∣e−t√Lf(x)
∣∣,

and every fixed α > 0. The modifications are again standard and left to the reader.

7.3. Alternative approach to the Hermite heat operator. Propositions 3.3 and 3.5

can be proved in a slightly faster way using an alternative expression for the Mehler kernel,

which relates it directly with the classical heat kernel. Setting s = th (2t)/2 one has

ht(x, y) = (1− 4s2)
d
4 e−s|x|

2 e−|
√

1−4s2x−y|2/(4s)

(4πs)
d
2

= (1− 4s2)
d
4 e−s|x|

2
Ws(

√
1− 4s2x− y)

(see [9] and also [14, 2]). For instance, Proposition 3.5 will then follow from the point-

wise non-tangential convergence of the classical heat equation. For the Poisson equation,

however, this approach does not seem to give easier formulas.

7.4. Global maximal functions. One may ask what would be the role of the “global”

maximal functions h∗f(x) and P ∗f(x) defined in (1.1). These are related with the char-

acterization of the functions f whose heat or Poisson integrals, in addition to (i) and (ii)

(with T =∞), also satisfy

lim
t→∞

u(t, x) = 0, a.e. x ∈ Rd.

This is a different problem, which for the heat equation associated with the Ornstein-

Uhlenbeck operator was investigated in [8]. In the remaining cases, it seems to be open.

7.5. Extensions to fractional laplacian operators. The results obtained in this paper

for the Poisson equation (P) actually hold in a slightly more general setting. Given σ > 0

consider the pde

(7.1) utt +
1− 2σ

t
ut = Lu in Rd+1

+ , with u(0) = f,

which for σ = 1/2 coincides with (P). A formal solution is given by

(7.2) u(t, x) = t2σ

4σΓ(σ)

∫ ∞
0

e−
t2

4u e−uLf(x)
du

u1+σ
, t > 0;

see [18, Thm 1.1]. This example is relevant in the theory of fractional operators since, under

sufficiently good conditions on f , one can recover Lσ by

lim
t→0

t1−2σut(t, x) = cσL
σf(x).

Notice that (7.2) is only a slight generalization of (1.5), so estimates for the corresponding

kernel p
(σ)
t (x, y) can be obtained exactly as in Lemma 4.1, with the outcome

ϕ(σ)(y) = (1 + |y|)−d/2 [ln(e+ |y|)]−(1+σ) e−|y|
2/2.
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We leave a more detailed study of these operators for a subsequent work.
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[6] J. Garćıa-Cuerva and J.L. Rubio de Francia, Weighted norm inequalities and related

topics. North-Holland Publishing Co., Amsterdam, 1985.

[7] S. I. Hartzstein, J. L. Torrea and B. E. Viviani, A note on the convergence to initial

data of Heat and Poisson equation. Proc. Amer. Math. Soc. 141 (2013), 1323-1333.

[8] E. Harboure, J. L. Torrea and B. Viviani, On the search for weighted inequalities for

operators related to the Ornstein-Uhlenbeck semigroup. Math. Ann. 318 (2000), 341–353.

[9] B.-H. Li, Explicit relation between the solutions of the heat and the Hermite equation. Z. angew.

Math. Phys. 58 (2007), 959–968.
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