
ON s-SETS IN SPACES OF HOMOGENEOUS TYPE

MARILINA CARENA AND MARISA TOSCHI

Abstract. Let (X, d, µ) be a space of homogeneous type. In this note
we study the relationship between two types of s-sets: relative to a dis-
tance and relative to a measure. We find a condition on a closed subset
F of X under which we have that F is s-set relative to the measure µ
if and only if F is s-set relative to δ. Here δ denotes the quasi-distance
defined by Maćıas and Segovia such that (X, δ, µ) is a normal space. In
order to prove this result, we show a covering type lemma and a type of
Hausdorff measure based criteria for the s-set condition relative to µ of
a given set.

1. Introduction, notation and definitions

A quasi-metric on a set X is a non-negative function d defined on

X ×X satisfying the following properties:

(1) d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x) for every x, y ∈ X;

(3) there exists a constant K ≥ 1 such that d(x, y) ≤ K(d(x, z) +

d(z, y)), for every x, y, z ∈ X.

We will refer to K as the triangle constant for d. A quasi-distance d on X

induces a topology through the neighborhood system given by the family

of all subsets of X containing a d-ball B(x, r) = {y ∈ X : d(x, y) < r},
r > 0 (see [3]). In a quasi-metric space (X, d) the diameter of a subset E

is defined as

diam(E) = sup{d(x, y) : x, y ∈ E}.
Throughout this paper (X, d) shall be a quasi-metric space such that the

d-balls are open sets. Also we shall assume that (X, d) has finite metric

dimension. This means that there exists a constant N ∈ N such that any

d-ball B(x, 2r) contains at most N points of any r-disperse subset of X. A

set U is said to be r-disperse if d(x, y) ≥ r for every x, y ∈ U , x 6= y.

If a quasi-metric space (X, d) has finite metric dimension, every r-disperse

subset of X has at most Nm points in each d-ball of radius 2mr, for all

m ∈ N and every r > 0 (see [3] and [2]). Also it is well known that every

bounded subset F of X is totally bounded, so that for every r > 0 there
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exists a finite maximal r-disperse on F , whose cardinal depends on diam(F )

and on r.

We shall say that a closed subset F of X is s-set in (X, d) with asso-

ciated measure ν, if ν is a Borel measure supported on F such that

(1.1) c−1rs ≤ ν(B(x, r)) ≤ crs,

for every x ∈ F and every 0 < r < diam(F ), for some constant c ≥ 1. When

the above conditions hold for every 0 < r < r0, where r0 is a positive number

less than diam(F ), we say that F is locally s-set in (X, d). In some

references related to problems of harmonic analysis and partial differential

equations, see for example [1], this sets are called (locally) s-Ahlfors. In

the bibliography belonging to geometric measure theory, such as [6], an s-set

F is one for which 0 < H s(F ) <∞ where H s is the Hausdorff measure of

dimension s. Nevertheless, following [10] we shall adopt the expression s-set

to name a set that supports a measure ν for which ν(B(x, r)) behaves as rs

for r small.

In [1] is proved that the concepts of s-set and locally s-set coincide when

the set F is bounded and (X, d) has finite metric dimension.

We shall now recall the definitions of Hausdorff measure and Hausdorff

dimension of a set in a quasi-metric space (X, d). The basic aspects related

to this concepts can be found in [6]. For ρ > 0, we say that a sequence

{Bi = B(xi, ri)} of subsets of X is a ρ-cover by d-balls of a set F if

F ⊆
⋃
Bi and ri ≤ ρ for every i. Let F ⊆ X and s ≥ 0 fixed. We define

H s
ρ (F ) = inf

{
∞∑
i=1

rsi : {Bi} is a ρ-cover by d-balls of F

}
.

Clearly H s
ρ (F ) increases when ρ decreces, so that the limit when ρ tends

to 0 exists (although it may be infinite). Then we define

H s(F ) = lim
ρ→0

H s
ρ (F ) = sup

ρ>0
H s

ρ (F ).

We shall refer to H s(F ) as the Hausdorff measure of F . The corre-

sponding Hausdorff dimension of F is defined as dimH (F ) = inf{s >
0 : H s(F ) = 0}. It is easy to see that any s-set F in (X, d) satisfies that

dimH (F ) = s (see [10]).

We shall point out that, if (F, d) is (locally) s-set, then there exists

essentially only one Borel measure ν satisfying the condition required in

the definition. This fact is known in the Euclidean setting (see for instance

[11]), and was proved for general quasi-metric spaces in [1]. More precisely,

is proved that if (X, d) has finite metric dimension and F is (locally) s-set in
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(X, d) with measure ν, then F is (locally) s-set en (X, d) with the restriction

of H s to F .

A sufficient condition under which a quasi-metric space (X, d) has finite

metric dimension is when X supports a doubling measure (see [3]). A Borel

measure µ defined on the d-balls is said to be doubling if for some constant

A ≥ 1 we have the inequality

0 < µ(B(x, 2r)) ≤ Aµ(B(x, r)) <∞,

for every x ∈ X and every r > 0. When µ is a doubling measure, we say

that a point x in (X, d, µ) is an atom if µ({x}) > 0. When µ({x}) = 0 for

every x ∈ X we say that µ is a non-atomic doubling measure. Maćıas and

Segovia proved in [8] that a point is an atom if and only if it is topologically

isolated, and that the set of such points is at most countable. Throughout

this paper we shall say that (X, d, µ) is a space of homogeneous type if

µ is a non-atomic doubling measure on the quasi-metric space (X, d).

Given a space of homogeneous type (X, d, µ), the Hausdorff measure

and the Hausdorff dimension relative to µ is consider in [10]. Precisely, the

Hausdorff measure relative to µ is defined as Hs(F ) := limρ→0H
s
ρ(F ),

where

Hs
ρ(F ) = inf

{
∞∑
i=1

µs(Bi) : F ⊆
⋃
i

Bi and µ(Bi) ≤ ρ

}
,

where Bi are d-balls on X. Then the Hausdorff dimension relative to

µ is defined by

dimH(F ) = inf{s > 0 : Hs(F ) = 0}.

These concepts conduce to give a definition of s-set relative to the mea-

sure µ, compatible with Hs. Given a space of homogeneous type (X, d, µ),

we shall say that a closed subset F of X is s-set in (X, d, µ) if there exist

a constant c ≥ 1 and a Borel measure m supported on F such that

(1.2) c−1µ(B(x, r))s ≤ m(B(x, r)) ≤ cµ(B(x, r))s,

for every x ∈ F and every 0 < r < diam(F ). As before, if (1.2) holds for

every 0 < r < r0, where r0 is a positive number less than diam(F ), we say

that F is locally s-set in (X, d, µ).

It is now easy to see that each s-set F in (X, d, µ) satisfies dimH(F ) = s.

Given a space of homogeneous type (X, d, µ), in [10] are also considered

the concepts of s-sets, Hausdorff measure and Hausdorff dimension relative

to a particular quasi-metric δ related to (X, d, µ). This quasi-metric was
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constructed by Maćıas and Segovia in [8], in such a way that the new struc-

ture (X, δ, µ) becomes a normal space (in the sense that every δ-ball in X

has µ-measure equivalent to its ratio), and the topologies induced on X by

d and δ coincide. This quasi-metric is defined by

δ(x, y) = inf{µ(B) : B is a d-ball with x, y ∈ B}

if x 6= y, and δ(x, y) = 0 if x = y. It will be also useful to notice that in the

proof of the above mentioned result of Maćıas and Segovia it is proved that

Bδ(x, r) =
⋃
{B : B is a d-ball with x ∈ B and µ(B) < r},

for every x ∈ X and every r > 0, where Bδ(x, r) := {y ∈ X : δ(x, y) < r}
denotes the ball in X relative to δ. Throughout this paper δ shall denote

this quasi-metric.

Then, we can consider the concept of s-set in (X, δ), the Hausdorff mea-

sure relative to δ, and the corresponding Hausdorff dimension. More pre-

cisely, we shall denote Gs(F ) := limρ→0G
s
ρ(F ), where

Gs
ρ(F ) = inf

{
∞∑
i=1

rsi : F ⊆
⋃
i

Bδ(xi, ri) and ri ≤ ρ

}
,

and

dimG(F ) = inf{s > 0 : Gs(F ) = 0}.
In [10, Propo. 1.5] is proved that Hs(F ) and Gs(F ) are equivalent, and

then dimH(F ) = dimG(F ) for any subset F of X. In this note we explore

the relationship between the concepts of s-set in (X, d, µ) and s-set in (X, δ).

The paper is organized as follows. Section 2 contains the main results.

Theorem 2.1 states that under certain typical conditions, being s-set in

(X, δ) is stronger than being s-set in (X, d, µ). A sufficient condition under

which every s-set in (X, d, µ) is an s-set in (X, δ) is contained in Theo-

rem 2.5. We show that every bounded set satisfies this condition, and we

give examples of unbounded set satisfying it. In Proposition 2.6 we obtain

a criteria to check the s-set condition related to µ of a given set based the

Hausdorff measure. Section 3 is devoted to the proof of Proposition 2.6, for

which we state and proof a covering type lemma of a bounded set by balls

with small measure and controlled overlap (see Lemma 3.1).

2. Main results

Let (X, d, µ) be a given space of homogeneous type, and set δ the quasi-

metric defined in previous section. We shall first prove that, under certain

condition, being s-set in (X, δ) is stronger than being s-set in (X, d, µ).



ON s-SETS IN SPACES OF HOMOGENEOUS TYPE 5

Theorem 2.1.

(1) If F is an unbounded s-set in (X, δ) with associated measure ν, then

F is s-set in (X, d, µ) with the same measure ν.

(2) If F is locally s-set in (X, δ) with associated measure ν and µ(F ) =

0, then F is locally s-set in (X, d, µ) with the same measure ν.

Proof. By hypothesis, there exist c ≥ 1 and r0 > 0 such that the inequalities

c−1rs ≤ ν(Bδ(x, r)) ≤ crs,

hold for every x ∈ F and every 0 < r < r0, where ν is a Borel measure

supported in F , and r0 =∞ in case (1).

Fix x ∈ F and r > 0. By definition of δ, we have that B(x, r) ⊆
Bδ(x, 2µ(B(x, r))). Then,

ν (B(x, r)) ≤ ν (Bδ(x, 2µ(B(x, r)))) ≤ c2sµs (B(x, r))

provided that µ(B(x, r)) < r0
2

. On the other hand, fix ` such 3K2 ≤ 2` where

K denotes the triangular constant for d. Then Bδ

(
x,A−`µ(B(x, r))

)
⊆

B(x, r) (see [8, pag. 262]), where A is the constant for the doubling condition

for µ. Hence

ν (B(x, r)) ≥ ν
(
Bδ

(
A−`µ(B(x, r))

))
≥ c−1A−`sµs(B(x, r)),

provided that µ(B(x, r)) < A`r0.

Since every d-ball has finite µ-measure, (1) is proved. On the other hand,

we obtain (2) if we can choice r1 in such a way that 0 < r < r1 implies

µ(B(x, r)) < min{ r0
2
, A`r0} = r0

2
, for every x ∈ F . But this is possible from

the hypothesis µ(F ) = 0. �

We shall point out that the assumption µ(F ) = 0 is natural in many

problems related with partial differential equations, in which F plays the

role of the boundary of a domain in a metric measure space (X, d, µ) (see

for example [4] or [5]).

In order to obtain a sufficient condition under which every locally s-set

in (X, d, µ) becomes a locally s-set in (X, δ), we shall give the following

definition.

Definition 2.2. Let F be a closed subset of X. We shall say that F is

consistent with µ if there exists a positive number R such that

inf
x∈F

µ(B(x,R)) > 0.
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Let us remark that if F is a set consistent with µ, then we have that

infx∈F µ(B(x, r)) > 0 for every r > 0. In fact, the claim is trivial for every

r ≥ R. On the other hand, for a fixed 0 < r < R, for every x ∈ F we have

that

µ(B(x, r)) = µ
(
x,
r

R
R
)
≥ 1

Am
µ(B(x,R)),

where m is a positive integer such that 2m ≥ R/r and A denotes the dou-

bling constant for µ.

We want also to point out that every bounded subset of X is consistent

with µ. In fact, set R = 2Kdiam(F ), with K the triangular constant for

d, and fix x0 ∈ F . Then B(x0, diam(F )) ⊆ B(x,R) for every x ∈ F . Then

infx∈F µ(B(x,R)) ≥ µ(B(x0, diam(F ))) > 0, since µ is doubling.

However, there exist also unbounded sets satisfying this condition.

Example 2.3. Consider X = R2 equipped with the usual distance d and

the Lebesgue measure λ. Fix a > 0 and set F = {(t, 0) : t ≥ a}. Then

λ(B(x, r)) is equivalent to r2 for every x ∈ F , thus F is consistent with λ.

Example 2.4. Also we can consider another measure µ defined on (R2, d)

in such a way that (X, d, µ) is not an Ahlfors space. For example, let us

consider the measure µ define by

µ(E) =

∫
E

|y|βdy,

for a fixed β > −2. Then (X, d, µ) is a space of homogeneous type since

|x|β is a Muckenhoupt weight (see [9] or [7]). For the set F considered in

the above example, it is easy to see that µ(B(x, r)) is equivalent to r2|x|β

for x ∈ F and 0 < r ≤ a/2. So that F is consistent with µ provided that

β > 0.

With this terminology, we have the following result.

Theorem 2.5.

(1) If F is an unbounded s-set in (X, d, µ), then F is s-set in (X, δ).

(2) If F is a locally s-set in (X, d, µ) which is consistent with µ, then F

is locally s-set in (X, δ).

Let us observe that every bounded s-set in (X, d, µ) satisfies the hypoth-

esis of the above theorem. In order to prove this theorem, we shall need the

following three auxiliary results.
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The first one states that, as in the case of s-sets relative to a distance,

when F is s-set relative to the measure µ, there exists essentially only one

Borel measure ν satisfying the required condition. More precisely, we state

the following result that we shall prove in Section 3.

Proposition 2.6. If F is (locally) s-set in (X, d, µ) with measure m, then

F is (locally) s-set en (X, d, µ) with the restriction of Hs to F , where Hs

denotes the s-dimensional Hausdorff measure relative to µ.

The following statement is about a characterization of consistent sets,

and says that the radii of all the d-balls centering in a set consistent with

µ are as small as we want, provided that the ball has sufficiently small

measure.

Lemma 2.7. F is consistent with µ if and only if given r0 > 0, there exists

C such that if x ∈ F and µ(B(x, t)) ≤ C, then t < r0.

Proof. Suppose first that F is consistent with µ but the property is false.

Then there exists r0 > 0 such that for every natural number n we can find

xn ∈ F and tn ≥ r0 with µ(B(xn, tn)) ≤ 1
n
. So that µ(B(xn, r0)) ≤ 1

n
for ev-

ery natural n, which implies that infx∈F µ(B(x, r0)) = 0. But this is a contra-

diction, since F is consistent with µ. Reciprocally, assume that F is not con-

sistent with µ. Then, for every r0 > 0 we have that infx∈F µ(B(x, r0)) = 0.

So that for every natural n there exists xn ∈ F such that µ(B(xn, r0)) <
1
n
.

Hence, given C > 0 we can choose n such that 1/n ≤ C and obtain

µ(B(xn, r0)) < C but r0 ≮ r0. �

The last result that we shall need is a technical lemma, which is showed

in [10], so that we shall omit its proof.

Lemma 2.8. Given x ∈ X and 0 < r < 2µ(X), there exist numbers 0 <

a ≤ b <∞ such that

B(x, a) ⊆ Bδ(x, r) ⊆ B(x, b)

and

C1r ≤ µ(B(x, a)) ≤ µ(B(x, b)) ≤ C2r,

where C1 and C2 only depend on X.

Proof of Theorem 2.5. From Proposition 2.6, there exist c ≥ 1 and r0 > 0

such that

c−1µ(B(x, r))s ≤ Hs(B(x, r) ∩ F ) ≤ cµ(B(x, r))s,

for every x ∈ F and every 0 < r < r0, where r0 =∞ in case (1).
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Fix x ∈ F and 0 < r < 2µ(X), and let a and b be as in Lemma 2.8.

Then

Hs (Bδ(x, r) ∩ F ) ≤ Hs (B(x, b) ∩ F ) ≤ cµs (B(x, b)) ≤ cCs
2r
s,

and

Hs (Bδ(x, r) ∩ F ) ≥ Hs (B(x, a) ∩ F ) ≥ c−1µs (B(x, a)) ≥ c−1Cs
1r
s,

provided that a, b < r0. Then (1) is proved. On the other hand, (2) is

showed if we can choice r1 ≤ 2µ(X) such that r < r1 implies a, b < r0.

In order to do this, let C be such that if x ∈ F and µ(B(x, t)) ≤ C, then

t < r0 (see Lemma 2.7). Let us define r1 = min{2µ(X), C/C2}, with C2 the

constant that appears in Lemma 2.8. Then µ(B(x, a)) and µ(B(x, b)) are

both bounded above by C, so that a, b < r0. �

Remark 2.9. We want to point out that the condition “F consistent with

µ” in Theorem 2.5 is sufficient for a locally s-set in (X, d, µ) to be a locally

s-set in (X, δ), but is not necessary. In fact, let us consider (X, d, µ) and F

as in Example 2.4. Taking

ν(E) =

∫
E∩F
|s|β/2ds

as the Borel measure supported on F we can show that F is locally 1
2
-set in

(X, δ), and from Theorem 2.1 we have that F is locally 1
2
-set in (X, d, µ).

Nevertheless, it is easy to see that F = {(t, 0) : t ≥ a} is not consistent with

µ if β < 0.

3. Proof of Proposition 2.6

In order to prove Proposition 2.6, we shall use the following covering

type lemma that we shall prove at the end of this section.

Lemma 3.1. Let G be a bounded subset of X. For a given ρ > 0, there

exists a finite covering {B(xi, ri), i = 1, . . . , Iρ} of G by d-balls with xi ∈ G
and µ(B(xi, ri)) < ρ. Also, each y ∈ X belongs to at most Λ of such balls,

where Λ is a geometric constant which depends only on X.

Remark 3.2. Notice that if ρ ≤ µ(G), then ri ≤ diam(G) for every i. In

fact, let us assume that ri > diam(G) for some i. Then G ⊆ B(xi, ri), so

that µ(G) ≤ µ(B(xi, ri)) < ρ ≤ µ(G), which is an absurd.

Proof of Proposition 2.6. By hypothesis there exist r0 > 0, a constant c ≥ 1

and a Borel measure m supported on F such that

c−1µ(B(x, r))s ≤ m(B(x, r)) ≤ cµ(B(x, r))s,
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for every x ∈ F and every 0 < r < r0. Here r0 is infinite if F is an unbounded

s-set in (X, d, µ), and is finite otherwise.

Fix x ∈ F , 0 < r < r0 and ε > 0. For each ρ > 0, there exists a covering

{Bi = B(xi, ri)} of B(x, r) ∩ F by balls such that µ(Bi) < ρ and∑
i≥1

µs(Bi) < Hρ
s(B(x, r) ∩ F ) + ε ≤ Hs(B(x, r) ∩ F ) + ε.

Choosing an appropriated value of ρ, we can also obtain ri < r0 for every i.

In fact, take ρ = µ(B(x, r))/A` with ` an integer such that 2` ≥ 3K2. Then,

since we can assume that each B(xi, ri) intersects B(x, r), if some ri ≥ r0

then we have that B(x, r) ⊆ B(xi, 3K
2ri). Hence µ(B(x, r)) ≤ A`µ(Bi) <

µ(B(x, r)), which is absurd. Then we can assume ri < r0 for every i, and

hence

c−1µ(B(x, r))s ≤ m(B(x, r)) ≤
∑
i

m(Bi) ≤ c
∑
i

µ(Bi)
s.

Hence, c−1µ(B(x, r))s < cHs(B(x, r)∩F )+cε for every ε > 0, which proves

that

Hs(B(x, r) ∩ F ) ≥ c−2µ(B(x, r))s.

In order to obtain an upper bound for Hs(B(x, r)∩F ), let us first assume

that r < r0
4K2 and we fix 0 < ρ < µ(B(x, r) ∩ F ). From Lemma 3.1, there

exists a finite covering {B(xi, ri), i = 1, . . . , Iρ} of B(x, r) ∩ F by d-balls

satisfying µ(B(xi, ri)) < ρ, xi ∈ F and ri ≤ 2Kr. Also, each y ∈ X belongs

to at most Λ of such balls, where Λ is a geometric constant which does not

depend on ρ, r or x. So, we have that

Hs
ρ(B(x, r) ∩ F ) ≤

Iρ∑
i=1

µ(B(xi, ri))
s

≤ c

Iρ∑
i=1

m (B(xi, ri))

≤ cΛm

(
Iρ⋃
i=1

B(xi, ri)

)
≤ cΛm

(
B(x, 4K2r)

)
≤ c2Λµ(B(x, 4K2r))s

= C̃µ(B(x, r))s,

with C̃ = c2ΛAj, where j is a positive integer such that 2j−2 ≥ K2. Taking

ρ→ 0 we obtain the desired result for this case.
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Finally, if r0 is finite, we shall consider the case r0
4K2 ≤ r < r0. In this

case, since B(x, r) is bounded, there exists a finite r0(8K
2)−1-disperse max-

imal set in B(x, r), let us say U = {x1, . . . , xI}, with I ≤ N2+log2K . Then

B(x, r) ∩ F ⊆
⋃I
i=1B

(
xi,

r0
8K2

)
, and applying the previous case we obtain

Hs(B(x, r) ∩ F ) ≤
I∑
i=1

Hs
(
B
(
xi,

r0
8K2

)
∩ F

)
≤ C̃Iµ (B (x, 2Kr))s ,

and the result follows from the doubling property of µ. �

For the proof of Lemma 3.1, we shall use the next result about the

behavior of δ-diameter diamδ(E) := sup{δ(y, w) : y, w ∈ E} of a bounded

set E.

Lemma 3.3. Let E be a bounded subset of X. For B = B(x, diam(E)) and

x ∈ E we have

A−`µ(B) ≤ diamδ(E) ≤ Aµ(B),

where A is the doubling constant for µ and ` is a positive integer satisfying

` ≥ log2(8K
3), with K the triangular constant for d.

Proof. Let us fix x ∈ E, and let y and w any two points in E. Since

y, w ∈ B(x, 2diam(E)), from the definition of δ follows that δ(y, w) ≤
µ(Bd(x, 2diam(E))) ≤ Aµ(B). Taking supreme the upper bound for diamδ(E)

is obtained.

For the lower bound, let y0, w0 ∈ E such that diam(E) < 2d(y0, w0).

For a given ε > 0, let B(x0, r0) be a ball containing y0 and w0 such that

µ(B(x0, r0)) < δ(y0, w0) + ε. We claim that B ⊆ B(x0, 8K
3r0). Assuming

this fact true we have that

diamδ(F ) ≥ δ(y0, w0) > µ(B(x0, r0))− ε ≥ A−`µ(B)− ε.

By letting ε tends to zero we obtain the result. Only remains to prove the

claim, for which fix z ∈ B. Then

d(z, x0) ≤ K2[d(x, x) + d(x,w0) + d(w0, x0)]

< K2[2diam(E) + r0]

< K2[4d(y0, w0) + r0]

< K2[4K(d(y0, x0) + d(x0, w0)) + r0]

< 8K3r0,

and the lemma is proved. �

Proof of Lemma 3.1. Let us denote K̃ the triangular constant for δ and Ñ

the constant for the finite metric dimension of (X, δ, µ). Given ρ > 0, let
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t = ρ

4K̃A`+1 , with ` as in Lemma 3.3. Set U = {x1, . . . , xIt} a finite t-disperse

maximal set in G with respect to the quasi-metric δ. So that {Bδ(xi, t)} is a

covering of G. Let us define Bi = B(xi, ri), with ri = 2diam(Bδ(xi, t)). Let

us first check that {Bi} is covering of G. In fact, if y ∈ G then there exists

i such that y ∈ Bδ(xi, t). Then

d(xi, y) ≤ diam (Bδ(xi, t)) < 2diam (Bδ(xi, t)) ,

so that y ∈ Bi. In order to estimate the measure of each Bi, using Lemma 3.3

with E = Bδ(xi, t) we obtain

µ(Bi) ≤ Aµ (B(xi, diam(Bδ(xi, t)))) ≤ A`+1diamδ(Bδ(xi, t)) ≤ A`+12K̃t.

From the choice of t, we have µ(Bi) < ρ. So that it only remains to prove

that we can control the overlapping of this balls by a geometric constant Λ.

In fact, for a fixed y ∈ X we have that if y ∈ B(xi, ri), then B(y, ri) ⊆
B(xi, 2Kri). So that µ(B(y, ri)) ≤ Apρ, with p and integer such that 2p−1 ≥
K, and then

xi ∈ B(y, ri) ⊆ Bδ(y, 2µ(B(y, ri))) ⊆ Bδ(y, 2A
pρ) = Bδ(y, 8K̃A

`+p+1t).

Hence, the number of balls B(xi, ri) to which y belongs is less than or

equal to the cardinal of U ∩ Bδ(y, 2
mt), with m a natural number such

that 2m ≥ 8K̃A`+p+1. Since U is t-disperse with respect to δ, we have that

Λ ≤ Ñm and the lemma is proved. �
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