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Abstract
In this paper we study the evolution of the ‘Momentarily Static and Radiation
Free’ (MSRF) initial data for the Apostolatos–Thorne cylindrical shell model.
After briefly reviewing the equations of motion, the definition of the MSRF
initial data and of its relation to the static solution that corresponds to the
given conserved intrinsic parameters of the shell, we show that for MSRF
data the initial acceleration of the shell is always directed towards the static
radius. We analyse in detail the relation between the parameters characterizing
the configuration corresponding to the initial data and those for the assumed
final static configuration, and show that, once the appropriate properties of
the solutions of the cylindrical wave equation are taken into account, there is
a priori no conflict for any choice of initial MSRF data, in contrast with some
recent results of Nakao, Ida and Kurita. To obtain a more detailed description
of the evolution we consider the case where the problem can be analysed in
the linear approximation, and show that the evolution is stable in all cases. The
possible form of the approach to the final static configuration is also analysed.
We find that this approach is very slow, with an inverse logarithmic dependence
on time at fixed radius. Given the absence of analytic solutions for the problem,
we introduce a numerical computation procedure that allows us to visualize the
explicit form of the evolution of the shell and the gravitational field up to large
times. The results are in agreement with the qualitative behaviour conjectured
by Apostolatos and Thorne, with an initial damped oscillatory stage, but we
find that these oscillations are not about the final static radius but rather about
a position that approaches slowly that of the static final state, as indicated by
our analysis. We also include one appendix, where we review some properties
of the solutions of the cylindrical wave equation, and prove the existence of
solutions with vanishing initial value for r > R0, (R0 > 0 some finite constant),
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that approach a constant value for large times. This result is crucial for the proof
of compatibility of arbitrary MSRF initial data and a final static configuration
for the system. In a second appendix we discuss in detail the reasons for the
discrepancy between our results and some aspects of the related work by both
Apostolatos and Thorne, and by Nakao, Ida and Kurita.

Keywords: general relativity, thin shells, cylindrical symmetry
PACS numbers: 04.20.Jb, 04.40.Dg

1. Introduction

The Apostolatos–Thorne model [1] describes the dynamics of a self gravitating cylindrical
shell of counter rotating particles. It was originally introduced in the context of a discussion
of the effect of rotation on halting the collapse of the system. But the system is interesting
also on other grounds, because it provides a model of a mechanical system, with a simple
Newtonian limit, in interaction with a dynamical gravitational field, interchanging energy
with the gravitational radiation contents of the field. As shown in [1], it is not difficult to
obtain a set of coupled ordinary and partial derivative equations for the dynamical variables
whose solutions describe the possible evolutions of the system. Although the original paper
[1] did not give a detailed computation of the evolution of the system, it included an extensive
discussion of the main qualitative features that would result from the interaction of the shell
with the gravitational field. There has recently been a renewed interest in finding solutions
and analysing this detailed evolution in several cases and for different types of initial data. In
[2], Hamity, Cécere and Barraco considered the evolution of the outer shell in a system that
contains also an inner shell to allow for the imposition of a particular boundary condition. They
also make use of some simplifying assumptions that reduce the full set of evolution equations
to a particular ordinary differential equation for the motion of the shell. A different approach,
where the evolution of the system is analysed in the linear approximation was considered
by Gleiser and Ramirez in [3]. The stability of the static configurations of the system under
arbitrary perturbations was proved in an extended analysis given in [6], where the existence of
quasi-normal modes was also considered. A related analysis, but with a different interpretation
was also given in [4].

A particular case considered in [1] was that resulting from initial data with a structure
similar to that corresponding to a static solution, but differing from that one, so that the shell
starts its motion with a non vanishing acceleration. This type of initial data was designated
‘Momentarily Static and Radiation Free’ (MSRF), and the authors of [1] considered it as both
an example of consistent initial data for the system and as an example of the possible evolution
resulting from the dynamic equations. No explicit solution is given in [1], but the authors
analyse explicitly the initial acceleration of the shell and provide qualitative arguments for
the resulting evolution, concluding that the shell would execute damped oscillations about
a final static radius, as the mechanical energy of the shell is transferred to the gravitational
field, and radiated away. This conclusion, however, has been challenged in a recent paper
by Nakao and Kurita [5]. In this paper the authors analyse some constraints that the Einstein
equations for the system would impose on the possible final state of the evolution, starting with
MSRF, and conclude that a static solution could not be reached from a certain set of MSRF
data. This result would imply, for instance, that if the system started with that type of MSRF
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data then it could not reach a static configuration, and would expand forever, something that
could not happen in the Newtonian limit, and therefore, we would be confronted with a new
type of instability, resulting from the interaction of the shell with the dynamical part of the
gravitational field. This, if correct, would indeed be a very surprising and unexpected feature
of the dynamics of this system, since it has a simple, well defined Newtonian limit, where all
motions are bounded, as a result of the corresponding Newtonian potential being unbounded
as one moves further and further away from the symmetry axis, and it is not easy to understand
in what way the radiative modes could modify this feature so drastically. It is for that reason
that we considered important to provide a different analysis of the evolution of MSRF data,
in order to either confirm the results of [5], and try to find a possible interpretation, or on the
contrary, provide arguments, and possible proofs, in favour of the original qualitative view of
that evolution, as discussed in [1]. However, as we show in appendix B, the results in [5], are
in part a consequence of some assumptions on the behaviour of some of the metric functions
of the gravitational field at future null infinity that need to be revised.

On the other hand, through a different analysis of that behaviour, given in detail in
appendix A, we find no conflict between an arbitrary MSRF initial data and a corresponding
final static configuration, confirming qualitatively the conjecture in [1], although the details
of our treatment of the problem departs considerably from that in [1], and show that some
aspects of the derivations there need also revision. Furthermore, we consider MSRF data that
is initially close to the static configuration, and, using some results obtained in [6], prove the
stability of the evolution. We further apply a numerical integration procedure and obtain the
detailed evolution of the system up to large times, finding somewhat unexpected features in
the approach of the shell to its final static radius, that are described and discussed in the text
below.

The plan of the paper is as follows. In the next section we review the formulation of the
Apostolatos–Thorne model and of its equations of motion. In section 3, we recall the definition
of MSRF initial data, and its relation to the conserved intrinsic parameters of the shell. Next
we find the static solution that corresponds to the same set of intrinsic parameters, and find
the relation between the initial state free parameters and those of the final state. This leads to a
relation between the initial and final forms of one of the metric functions that was claimed in
[5] to lead in some cases to a contradiction with the equations of motion. However, as we show
in the appendixes, this result is a consequence of an inadequate use of a general expression
for the solution of the wave equation with cylindrical symmetry, and we prove the existence
of solutions of the field equations that satisfy the relations that make all initial MSRF data
compatible with a static final state. In section 4 we consider small departures from the static
configuration, in the sense that the initial radius is close to the corresponding static radius,
analyse the resulting linearized equations of motion, and, making use of a result obtained in
[6], prove the absolute stability of the evolution of MSRF data close to the static solution. We
also show that, contrary to a simple expectation, the final approach to the static configuration,
for fix radial coordinate, is very slow, with the appropriate quantities approaching zero only
as 1/ ln(τ ), where τ is the proper time on the shell. Since the previous derivations give
no information on the detailed evolution of the shell and the fields, in section 5 we use a
numerical integration procedure, developed in [6], to visualize, for some particular examples,
the evolution from the initial state, up to large times. We find for the shell, as expected, an
initial exponentially damped oscillatory stage, but, in agreement it our analysis in section 4,
not about the final static radius, but rather about a position that approaches the static radius
as 1/ ln(τ ). We end the paper with some comments and conclusions, as well as comments on
related work by other authors, in particular to that of [5].

3



Class. Quantum Grav. 31 (2014) 065003 R J Gleiser and D E Barraco

2. The Apostolatos–Thorne model

The Apostolatos–Thorne model [1] describes the dynamics of a self gravitating cylindrical
shell of counter rotating particles. Both the inner (M−) and outer (M+) regions of the shell are
vacuum space times with a common boundary �. The corresponding metrics may be written
in the form,

ds2
± = e2γ±−2ψ± (dr2 − dt2

±) + e2ψ±dz2 + e−2ψ±r2dφ2 (1)

where the (+) sign corresponds to the outer, and (−) to the inner regions. The functions ψ ,
and γ depend only on r, t and satisfy the equations:

ψ,rr + 1

r
ψ,r − ψ,tt = 0 (2)

γ,t = 2rψ,rψ,t, γ,r = r[(ψ,r)
2 + (ψ,t )

2]. (3)

The shell is located on the hypersurface � given by r = R(τ ), where τ is the proper time of an
observer at rest on the shell. We may interpret ψ(r, t) as playing the role of a gravitational field
whose static part is the analogue of the Newtonian potential. The time dependent solutions
of (2) represent gravitational waves (Einstein–Rosen waves). Equation (2) is the integrability
condition for equation (3). The coordinates (z, φ, r) and the metric function ψ are continuous
across the shell �, while t and the metric function γ are discontinuous. Smoothness of
the spacetime geometry on the axis r = 0 requires that γ = 0, ψ finite at r = 0, and
∂ψ/∂r|r=0 = 0. The junction conditions of M− and M+ through � require the continuity
of the metric and specify the jump of the extrinsic curvature K± compatible with the stress
energy tensor on the shell. The induced metric on � is given by

ds2
� = −dτ 2 + e2ψ� dz2 + e−2ψ� R2 dφ2 (4)

where ψ�(τ ) = ψ+(t + (τ ), R(τ )) = ψ−(t−(τ ), R(τ )).
The evolution of the shell is characterized by R(τ ). If we assume that the shell is made

up of equal mass counter rotating particles, the Einstein field equations on the shell may be
put in the form,

ψ+
,n − ψ−

,n = − 2λ√
R2 + e2ψ� J2

(5)

X+ − X− = −4λ
√

R2 + e2ψ� J2

R
(6)

where the constants λ and J are, respectively, the proper mass per unit Killing length of the
cylinder and the angular momentum per unit mass of the particles. The other quantities in (5),
(6) are defined by,

X± ≡ ∂t±
∂τ

= +
√

e−2(γ±−ψ� ) + Ṙ2 (7)

and

ψ±
,n ≡ ψ±

,r X± + ψ±
,t Ṙ (8)

where a dot indicates a τ derivative, and we also have,
d2R

dτ 2
= Ṙψ̇� − R[(ψ̇� )2 + (ψ−

,n )2] + R2ψ−
,nX−

R2 + e2ψ� J2
− λR2X−

(R2 + e2ψ� J2)3/2
+ J2e2ψ� X−X+

R(R2 + e2ψ� J2)

(9)

These equations together with (2), (3) determine the evolution of the shell and of the
gravitational field to which it is coupled.
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3. The momentarily static radiation free (MSRF) initial data.

The set of equations of the previous section may, at least in principle, be solved as an initial
plus boundary (plus matching conditions) problem. Namely, we expect that given appropriate
initial data, there should be a well defined evolution to the future of that data. An inspection
of the equations indicate that such initial data could be specified on a space like hypersurface
formed by taking a constant time t+ = t0+ slice on M+ and a constant time t− = t0− slice on
M−, matched through a constant τ section of �. The independent data on M+ would then be the
functions ψ+(t0+, r) and ∂ψ+(t0+, r)/∂t, since these specify γ+(t0+, r) and ∂γ+(t0+, r)/∂t
up to a constant. Similarly, on M−, we may give arbitrary expressions for ψ−(t0−, r) and
∂ψ−(t0−, r)/∂t, and γ−(t0−, r) and ∂γ−(t0−, r)/∂t are then defined up to a constant. We need
also to specify some initial data for the shell, which could the (independent) values of R and
dR/dτ , and fix some of the constant parameters such as J and λ. All these data is constrained
in part by the matching conditions on �. Notice also that if we require regularity on the axis
r = 0 we need to impose γ−(t−, 0) = 0, and ∂ψ−(t−, 0)/∂r = 0. In the rest of this paper we
shall only consider data and evolutions satisfying these requirements.

A particular family of initial data for the model, recently considered in [5], was introduced
by Apostolatos–Thorne in [1], and identified as the MSRF initial data. It is defined as follows.
We notice that t−, t+, and τ are defined up to arbitrary additive constants. We may therefore
consider the points on � corresponding to a given value of τ , say τ = 0, and the corresponding
hypersurfaces of constant t− and t+ that are matched to � at τ = 0, and assign also t− = 0
and t+ = 0 to those hypersurfaces. Next we impose,

ψ+(0, r) = ψi − κ ln(r/Ri); γ+(0, r) = γi + κ2 ln(r/Ri) (10)

∂ψ+(t+, r)

∂t+

∣∣∣∣
t+=0

= 0 (11)

ψ−(0, r) = ψi; γ−(0, r) = 0 (12)

∂ψ−(t−, r)

∂t−

∣∣∣∣
t−=0

= 0 (13)

R(0) = Ri; dR

dτ

∣∣∣∣
τ=0

= 0. (14)

Notice that these conditions imply,
∂γ+(t+, r)

∂t+

∣∣∣∣
t+=0

= 0; ∂γ−(t−, r)

∂t−

∣∣∣∣
t−=0

= 0. (15)

A particular shell is described by fixed values of λ and J. The matching conditions then
impose constraints on the parameters that appear in (10)–(14). These may be written as,

2λRi − κeψi−γi

√
R2

i + e2ψi J2 = 0, (16)

Rie
ψi−γi − Rie

ψi + 4λ

√
R2

i + e2ψi J2 = 0 (17)

and,
d2R

dτ 2

∣∣∣∣
τ=0

+ λR2
i eψi(

R2
i + e2ψi J2

)3/2 − e4ψi−γi

Ri
(
R2

i + e2ψJ2
) = 0. (18)

The set (16)–(17) constrains the free parameters, and to a certain extent, their ranges. For
instance, from (16) and (17) we find,
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λ =
κeψi Ri

√
R2

i + e2ψi J2

2
(
R2

i + 2κ
(
R2

i + e2ψi J2
)) (19)

and one can check that, for fixed Ri, κ , and J, λ is a monotonic function of ψi that satisfies the
constraint 0 < λ < Ri/(4J) for −∞ < ψi < +∞.

In any case, there are many ways of handling these constraints. We may, for instance,
assume that we fix λ, J, and the initial radius Ri. The value of ψi could then be chosen
freely, and we would use (16) and (17) to obtain the corresponding values of γi, and κ . Then
equation (18) determines the initial acceleration of the shell, and the initial data set is complete.
In their original work, Apostolatos and Thorne noticed that in the Newtonian limit, a similar
self gravitating shell, released from a momentarily static configuration, namely, with vanishing
radial velocity, would undergo periodic oscillations about a particular static (‘equilibrium’)
configuration, fixed by its intrinsic parameters J and λ. They therefore conjectured that in
the corresponding general relativistic problem, the shell would also execute oscillations about
some ‘equilibrium’ radius, but that now these oscillations would be damped as the system loses
its mechanical energy through the emission of gravitational waves. This conjecture appeared
to be supported by some explicit derivations, but, as we show in appendix A, there are some
aspects of the analysis in [1], based in the concept of C-energy, that may need revision.

The conclusions in [1], however, appear to be contradicted by the recent analysis by
Nakao, et al [5], based on the properties of the evolution equations for the fields, that
leads to the conclusion that for at least a subset of this type of initial data, contrary to
the assumptions in [1], the system becomes unstable when the gravitational waves are taken
into consideration, indicating, if correct, a surprising and rather drastic difference with the
corresponding Newtonian problem. We need here to emphasize that no explicit example of
the detailed evolution of the system under the MSRF initial data has been presented so far in
the literature, and that the conclusions in [5] were obtained under certain assumptions on the
behavior of the fields ψ+ and γ+ that, as we show in appendix B, need not hold in the actual
evolution of the system.

Going back to the system (16)–(18), and the evolution equations, we notice that if we
further impose the condition d2R/dτ 2|τ=0 = 0, we find a solution of the evolution equations
where R(τ ) = Ri, and the fields take the form (10)–(13) for all times, i.e., we have a static
solution. (Hence the name MSRF for this type of initial data). Since, as indicated, ψ± are
defined up to an arbitrary constant, we may choose ψi = 0 for the static configuration.

Now, suppose that we have some MSRF initial data. If we assume that the evolution of
this MSRF initial data leads (asymptotically) to a static configuration, can we find a relation
between the MSRF data and the final static data? We recall that λ and J are constants of the
motion, but there is also, for this type of initial data, another constant quantity, given by the
coefficient κ . This constancy is analysed in appendix A, where we show that a given MSRF
initial data can only evolve to a static final state if κ does not change. On this grounds we
proceed here assuming that λ, J and κ are the same for the MSRF initial data and for the final
static configuration. In particular, we assume that for the final state configuration we have,

ψ+(t+, r) = −κ ln(r/R0); γ+(t+, r) = γ0 + κ2 ln(r/R0) (20)

ψ−(t−, r) = 0; γ−(t−, r) = 0 (21)

R(τ ) = R0. (22)

This form can always be achieved with some appropriate choices of additive constants in
ψ±, plus the regularity conditions for r = 0. With these choices, the matching conditions and
evolution equations imply,
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2λR0 − κe−γ0

√
R2

0 + J2 = 0, (23)

R0e−γ0 − R0 + 4λ

√
R2

0 + J2 = 0 (24)

and,

λR3
0 − e−γ0 J2

√
R2

0 + J2 = 0 (25)

which contain also some of the same parameters that appear in (16)–(18). Therefore,
these relations impose conditions and constraints on both the initial and final parameters
characterizing the corresponding data. Directly from (23)–(25) we find,

λ =
R0J2

√
R2

0 + J2(
R2

0 + 2J2
)2

κ = 2
J2

R2
0

(26)

e−γ0 = R4
0(

R2
0 + 2J2

)2

and we notice that these imply a further restriction on the range of λ, namely, for any choice
of R0 and J we have 0 � λ < 0.158 79 . . .. This, however, is not a physical restriction on the
data, but rather a consequence of our choice of the value of ψ on � for the final state. But this
choice imposes restrictions on ψi. To analyse these we introduce ξ0, such that,

ξ0 = Ri − R0 (27)

so that ξ0 gives a measure (and orientation) of the departure of the MSRF configuration from
the static configuration. We notice now that (18) may be written in the form,

d2R

dτ 2

∣∣∣∣
τ=0

= − e4ψi e−3γi J6

R6
0λ

2(R0 + ξ0)

(
1 − R2

0 e2ψi

(R0 + ξ0)2

)
. (28)

Then the sign of the initial acceleration of the shell will depend on the sign of the term in
parenthesis on the right of (28). To find the relation between this sign and that of ξ0 we may
use (27), (16) and (17) to find,

x =
√

R2
0 + J2

(
R4

0 + 4J4q2 + 4R2
0J2

)
q
(
R2

0 + 2J2
)2

√
R2

0 + q2J2
(29)

where,

x = R0 + ξ0

R0
; q = R0eψi

R0 + ξ0
. (30)

Now it is easy to check that the right side of (29) is a monotonically decreasing function
of q for q > 0, that diverges as q → 0+, is equal to one for q = 1 and decreases to,

4J3
√

R2
0 + J2(

R2
0 + 2J2

)2 < 1 (31)

for q → +∞. But this means that x < 1 (and, therefore, ξ0 < 0) for q > 1, when the
acceleration is positive, while x > 1 (and ξ0 > 0) for q < 1, when the acceleration is negative.
Thus, we conclude that the initial acceleration is always directed towards the corresponding
static radius. Notice that for q = 1 we have x = 1, implying ξ0 = 0 and, therefore, ψi = 0,
that is, the static configuration.

7
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We consider now the function γ+(t+, r). In particular, we want to compare its value at
some fixed r for the MSRF data, with that of the assumed final static configuration at the same
r, since both depend on r only through the term ln(r), and we have,

exp(γ+(0, r) − γ+(t+, r)|t+→+∞) = exp(γi + κ2 ln(r/Ri) − γ0 − κ2 ln(r/R0))

=
(

R0

Ri

)κ2

eγi

eγ0

=
(

R0

Ri

)4J2/R4
0 Riq

√
R2

0 + q2J2

R0

√
R2

0 + J2

and, finally,

exp(γ+(0, r) − γ+(t+, r)|t+→+∞) =
(

R0

Ri

)4J2/R4
0 R4

0 + 4R2
0J2 + 4q2J4(

R2
0 + 2J2

)2
(32)

where q is the same as in equation (30). But, from the previous results, for ξ0 < 0 we have
Ri < R0, and q > 1, while for ξ0 > 0 we have Ri > R0, and q < 1. Therefore, for Ri < R0 we
must have,

γ+(0, r) > γ+(t+, r)|t+→+∞ (33)

while for Ri > R0 we must have,

γ+(0, r) < γ (t+, r)|t+→+∞. (34)

This last result, that in the case Ri > R0 the function γ+ must increase for fixed r as t → ∞
to reach the final static configuration, marks the main difference between our treatment and
that in [5]. That (34) is perfectly compatible with the field equations, and that therefore there
is no a priori contradiction with the presumed existence of a static final state is shown in detail
in appendix A. We also indicate there the reasons for the discrepancy between our results and
some related derivations in [1].

We remark that the possible contradiction between the existence of a static final state and
the properties of the evolution equations for γ , that would imply that in that case the system
could not reach a static configuration, implying some sort of instability, possibly related to the
dynamic modes of the gravitational field, was obtained in [5] in part through an analysis of the
behaviour of γ+ at future null infinity. However, as we show in appendix B, a crucial integral
in the derivations in [5] that was assumed to lead to a finite change in the C-energy, actually
diverges in all cases, and, therefore, their derivations need to be revised.

In the next section we analyse the case where the shell position for the MSRF data is close
to static configuration for the same shell. In this case we may consider a linearized expansion
about the static configuration and apply some recently obtained results on the dynamics of the
Apostolatos–Thorne model [6].

4. Linearized approximation

We consider again the MSRF data, assume that we have chosen the appropriate constants so
that we have t− = t+ = 0 for τ = 0, and write it the form,

R|τ=0 = R0 + εξ0; dR

dτ

∣∣∣∣
τ=0

= 0

ψ−(0, r) = εψi; γ−(0, r) = 0

8
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∂ψ−(t−, r)

∂t−

∣∣∣∣
t−=0

= 0; ∂γ−(t−, r)

∂t−

∣∣∣∣
t−=0

= 0

ψ+(0, r) = εψi − κ ln

(
r

R0 + εξ0

)
; γ+(0, r) = γ0 + εγi + κ2 ln

(
r

R0 + εξ0

)
∂ψ+(t+, r)

∂t+

∣∣∣∣
t+=0

= 0; ∂γ+(t+, r)

∂t+

∣∣∣∣
t+=0

= 0 (35)

where ξ0, ψi, and γi are some constants, and we have included the auxiliary parameter ε to
indicate which quantities are of first order. The set (35) corresponds to an exact MSRF data
set. We are interested in the case where we have a small departure from the static configuration
of the shell, namely, in the limit ε → 0. We may therefore expand (35) to first order in ε, and
consider the resulting set as initial data for the linearized equations of motion for the shell.
These were obtained in [6]. Briefly stated, one first writes the dynamical variables R, ψ− and
ψ+ in the form,

R(τ ) = R0 + ε ξ (τ )

ψ−(t−, r) = ε χ1(t−, r) (36)

ψ+(t+, r) = −κ ln(r/R0) + ε χ2(t+, r)

where the parameter ε defines the order of the terms, so that the static solution is recovered
for ε = 0. The χi satisfy the equations,

∂2χ1

∂t2−
− ∂2χ1

∂r2
− 1

r

∂χ1

∂r
= 0 (37)

∂2χ2

∂t2+
− ∂2χ2

∂r2
− 1

r

∂χ2

∂r
= 0. (38)

Then, to first order in ε one has,

γ−(t−, r) = O(ε2)

γ+(t+, r) = γ0 + κ2 ln(r/R0) − 2ε κ χ2(t+, r) (39)

where κ and γ0 satisfy (26), and, one finds that it is consistent to this order to set,

t−(τ ) = τ + O(ε)

t+(τ ) = e−γ0τ + O(ε). (40)

In fact, only the zeroth order terms in t± appear in the linearized equations, and, instead of
(37), one has,

∂2χ1

∂τ 2
− ∂2χ1

∂r2
− 1

r

∂χ1

∂r
= 0 (41)

(
2J2 + R2

0

)4

R8
0

∂2χ3(τ, r)

∂τ 2
− ∂2χ3(τ, r)

∂r2
− 1

r

∂χ3(τ, r)

∂r
= 0 (42)

where,

χ3(τ, r) = χ2(e
−γ0τ, r). (43)

These equations describe the dynamics of the radiative part of the gravitational field. The
corresponding linearized equations for the motion of the shell are, (see [6] for details),

9
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0 = 2J4
(
6 R0

2J2 + 4J4 + 3R0
4
)(

R0
2 + J2

)(
2J2 + R0

2
)2

R0
4
ξ (τ )

− 2R0J4(
R0

2 + J2
)(

2J2 + R0
2
)2 χ1(τ, R0) − ∂χ1(τ, r)

∂r

∣∣∣∣
r=R0

−2J2
(
4J2 + R0

2
)(

2J2 + R0
2
)2

R0

χ3(τ, R0) + R0
4(

2 J2 + R0
2
)2

∂χ3(τ, r)

∂r

∣∣∣∣
r=R0

, (44)

0 = 2J2

R0
3
ξ (τ ) + χ1(τ, R0) − χ3(τ, R0)

corresponding to the matching conditions, and an equation of motion for ξ (τ ),

d2

dτ 2
ξ (τ ) = −J2

(
4J6 + 6R0

2J4 + 5J2R0
4 + 2R0

6
)(

2 J2 + R0
2
)2(

R0
2 + J2

)2
R0

2
ξ (τ )

+ J2R0
3
(
3J2 + 2R0

2
)(

2J2 + R0
2
)2(

R0
2 + J2

)2 χ1(τ, R0) + R0
2

R0
2 + J2

∂χ1(τ, r)

∂r

∣∣∣∣
r=R0

+
(
4J2 + R0

2
)
R0J2(

R0
2 + J2

)(
2J2 + R0

2
)2 χ3(τ, R0). (45)

It was shown in [6] that associated with the solutions of the system of linearized equations
there exists a positive definite constant of the motion given by,

Es = 1

2

(
dξ

dτ

)2

+ J2

6 R0
2J2 + 4 J4 + R0

4 ξ 2 + R0
14

8
(
2J2 + R0

2
)2

J4
(
6R0

2J2 + 4J4 + R0
4
)

×
((

2J2 + R0
2
)2

R4
0

∂χ1

∂r
− ∂χ3

∂r

)2
∣∣∣∣∣∣
r=R0

+ R0
4

2
(
R0

2 + J2
)
J2

×
∫ R0

0

r

2

[(
∂χ1

∂τ

)2

+
(

∂χ1

∂r

)2
]

dr + R0
8

2
(
R0

2 + J2
)(

2 J2 + R0
2
)2

J2

×
∫ ∞

R0

r

2

[(
2J2 + R2

0

)4

R8
0

(
∂χ3

∂τ

)2

+
(

∂χ3

∂r

)2
]

dr. (46)

To apply these results to our problem we expand (35) to first order in ε to obtain the
corresponding initial data for ξ (τ ), χ1(τ, r), and χ3(τ, r). The results are,

ξ (0) = ξ0; dξ

dτ

∣∣∣∣
τ=0

= 0

χ1(0, r) = χi; ∂χ1

∂τ

∣∣∣∣
τ=0

= 0 (47)

χ3(0, r) = χi + 2J2

R3
0

ξ0; ∂χ3

∂τ

∣∣∣∣
τ=0

= 0

where ξ0 and χi are not independent, but we have the relation,

χi = J2
(
R4

0 − 4J4 − 4J2R2
0

)
R3

0

(
6R2

0J2 + 4J4 + R4
0

)ξ0. (48)

10
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If we apply now this data to compute Es at τ = 0 we find,

Es = J2

6 R0
2J2 + 4 J4 + R0

4
ξ 2

0 (49)

and therefore, we must have ξ (τ )2 � ξ 2
0 for all τ , and the motion of the shell is always

bounded, proving the (linear) stability of the shell under MSRF initial data. Moreover, since
for τ > 0 the region r > R0 will contain outgoing radiation, we expect a steady decrease in
the maximum amplitude for ξ , and an eventual approach to ξ = 0, corresponding to the static
solution.

The existence of Es does not provide direct information on the rate of approach to ξ = 0.
To obtain this information we may proceed as follows. We first notice that after some initial
transitory motion, possibly dominated by quasi-normal ringing oscillations, these oscillations
would damp out since all available energy for motion of the shell will eventually be radiated to
infinity, as the system approaches its final static configuration. In this situation the field outside
the shell would approach the situation described in appendix A, for the late time behaviour of
any solution that approaches asymptotically a constant, (equation (A.23)), namely, for τ � r,
in particular for τ → ∞, and for r of the order of R0, we should have,

χ2(t+, r) ∼ A ln(r)

ln(t+)
, (50)

where A is of the order of (the constant value) χ3(0, r). More generally, this implies that for
sufficiently large τ , and r � τ ,

χ3(τ, r) ∼ A ln(r/R0) + B

ln(e−γ0τ ) + Q
(51)

where A, B and Q are constants, is an asymptotic approximation to the solution of our problem
that approaches (50) for τ → ∞. Before replacing (51) in the equations of motion we may use
(44) to write χ1 and ∂χ1/∂r in terms of ξ , χ3 and ∂χ3/∂r, and rewrite (45) in the alternative
form,

d2ξ

dτ 2
=

(
2J4 + R0

2J2 − 2R0
4
)
J2(

2J2 + R0
2
)(

R0
2 + J2

)2
R0

2
ξ − J2R0

(
4R0

2J2 + 4J4 − R0
4
)(

2J2 + R0
2
)2(

R0
2 + J2

)2 χ3

+ R0
6(

R0
2 + J2

)(
2 J2 + R00

2)2

∂χ3

∂r
. (52)

Then, for large τ we have1

ξ (τ ) ∼ − R0
3
(
R0

4
(
R0

2 + J2
)
A − BJ2

(
4J2R0

2 + 4 J4 − R0
4
))

J2
(
2J2 + R0

2
)(

2J4 + J2R0
2 − 2R0

4
)
(ln(e−γ0τ ) + Q)

. (53)

We finally notice that since both χ3 and ξ vanish in the limit τ → ∞, we have the same
limit for both χ1 and ∂χ1/∂r for r = R0, and since χ1 is regular in 0 � r � R0 we must also
have χ1(t−, r) → 0, in the limit τ → ∞, and the system approaches asymptotically the static
configuration.

As we shall show in the next section, these results are supported by a numerical integration
of the equations of motion. In fact, for the purpose of comparison with the numerical results,
it will be useful to notice that, in general we should have,

χ3(τ, r) ∼ A1 ln(r) + B1 (54)

1 We disregard a possible homogeneous contribution for ξ (τ ), since, as can be checked explicitly, such a contribution
would be incompatible with the equations of motion in the limit χ3 → 0. Notice that d2ξ/dτ 2 ∼ 1/τ 2.
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where A1 and B1 are constants, for the r dependence of χ3 for fixed τ � r, and,

1

χ3(τ, r)
∼ A2 ln(τ ) + B2 (55)

where A2 and B2 are constants, for the τ dependence of χ3, for τ � r, and some fixe r, for
instance r = R0.

Similarly, we should have

1

ξ (τ )
∼ A3 ln(τ ) + B3 (56)

where A3 and B3 are constants, for the τ dependence of ξ , for sufficiently large τ . Notice that
A1, and B1, as defined, depend on τ . In any case, all the quantities Ai, and Bi are related by
equations (51) and (53), but we shall not make use of the explicit expressions here.

5. Numerical examples

The previous analysis does not give detailed information on the form in which the system,
and in particular the shell, actually evolves towards a static configuration starting from MSRF
initial data. It is then interesting to study the initial part of this process, in particular, to see
if, in accordance with the qualitative arguments of Apostolatos and Thorne [1], this approach
is dominated by an oscillatory part (quasi-normal ringing) that dampens out as the shell
approaches its final static radius. Furthermore, a simple intuition would probably dictate that
this oscillations are about the final static radius, effectively approaching this radius with the
exponential decay characteristic of the quasi-normal ringing. As we shall find in the examples
analysed below, this is partly the case, but there are some unexpected features that appear in
the evolution of the system, that are in accord with the analysis of the final approach described
in the previous section.

As indicated in [6], it is easy to set up a numerical procedure to integrate the linearized
equations as an initial plus boundary value problem, at least in a finite region of r that includes
r = 0. If the region extends to r = ro, then the integration can be extended to a time τ of the
order of ro, so that we can explore the evolution for a larger time by simply choosing a larger
value for ro. We refer to [6] for further details.

As a first example we consider the case R0 = 1, J = 0.5, and place ro = 1400. The initial
displacement is ξ0 = 0.1. This corresponds to χ3(0, r) = 0.0477 . . .. In figure 1 we display
ξ (τ ) as a function of τ . We notice that there is initially a damped oscillation, not about ξ = 0,
but, rather, about a position that decreases rapidly at the beginning, but eventually tends to
approach ξ = 0 very slowly in time, even after the oscillation has essentially damped out.
Next, in figure 2, we plot ξ (τ )−1 as a function of ln(τ ). The linear dependence on ln(τ ) given
by (56) is clearly seen for the larger values of τ . In figure 3 we display χ3(τ, r) as a function
of r, for τ = 1400. Here the effect of the initial oscillation of ξ appears as an outgoing wave
for r of the order of 600, in accordance with the fact that, from (42), these waves propagate
with a speed v = R4

0/(R
2
0 + 2J2)2 = 0.4444 . . .. After the wave essentially dampens out we

see that χ3(τ, r) decreases monotonically to a value close to zero as r approaches R0. A more
detailed view of the outgoing wave region is depicted in figure 4. In figure 5 we plot χ3(τ, r)
as a function of ln(r). This shows that in the region of r between R0 and the outgoing wave,
and for fixed τ , χ3(τ, r) depends linearly on ln(r), that is, we have χ3(τ, r) ∼ A + B ln(r) for
some constants A and B, in agreement with the discussion in the previous section, and (54).
Finally, in figure 6, we display the results of the numerical integration for 1/χ3(τ, R0). The
linear dependence on ln(τ ) given by (55) is evident in this figure.

12
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Figure 1. ξ (τ ) as a function of τ , for a shell with R0 = 1.0, J = 0.5 and an initial
displacement ξ0 = 0.1. We notice that there is initially a damped oscillation, not about
ξ = 0, but, rather, about a position with ξ 	= 0, even after the oscillation has essentially
damped out. Here τ is approximately in the range 0 � τ < 300.

Figure 2. 1/ξ (τ ) as a function of ln(τ ), for a shell with R0 = 1.0, J = 0.5 and an initial
displacement ξ0 = 0.1. Here the range of τ is approximately 200 < τ < 1500. The
linear dependence of 1/ξ (τ ) on ln(τ ), for sufficiently large τ is evident in the graph.

As a second example we consider a shell with parameters R0 = 1, and J = 1. The initial
displacement is ξ0 = −0.1. This corresponds to χ3(0, r) = −0.136 . . .. We placed again
ro = 1400. Figure 7 shows again ξ (τ ) as a function of τ . The behavior is qualitatively similar
to the previous example, but now we have a much stronger damping of the initial oscillations,
although, again, we find for ξ (τ ) a slow decrease in absolute value as τ increases after the
oscillations damp out. Notice that now we have set a negative initial value for ξ , and that in
this case ξ approaches zero from negative values. In figure 8 we see the linear dependence of
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Figure 3. χ3(τ, r) as a function of r, for τ = 1400, for the same shell and initial
conditions as in figure 1. Here the effect of the initial oscillation of the shell appears as
an outgoing wave for r of the order of 620.

Figure 4. χ3(τ, r) as a function of r, for τ = 1400, for the same shell and initial
conditions as in figure 1. This is an enlarged view of the region 500 < r < 650 of
figure 3, to show details of the outgoing wave part of χ3(τ, r).

ξ (τ )−1 on ln(τ ), just as in the case shown in figure 2, but, of course, with different parameters.
In figure 9 we show the result of the numerical integration for χ3(τ, r) as a function of r, for
τ = 1400. The qualitative features on this figure are similar to those on figure 3, although now
χ3 < 0 because of our choice of ξ0. We also find the outgoing wave at r ∼ 150, because the
speed of the waves (for χ3(τ, r)) is now only v = 0.111 . . .. Figure 10 gives a more detailed
view of the wave zone, and figures 11 and 12, display respectively the linear dependence of
χ3 on ln(r) for fixed τ � r, and for 1/χ3(R0, τ ) on ln(τ ), in complete agreement with the
discussion in the previous section, and those obtained numerically for R0 =, J = 0.5. We
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Figure 5. χ3(τ, r) as a function of ln(r), for τ = 1400, for the same shell and initial
conditions as in figure 1. The linear dependence on ln(r) in the region of r between R0

and the outgoing wave is evident.

Figure 6. 1/χ3(τ, r) as a function of ln(τ ), for r = R0, for the same shell and initial
conditions as in figure 1. The linear dependence on ln(τ ) at late times is clearly seen.

should also mention that the numerical values of the parameters obtained by simply fitting
these linear dependencies are consistent with the relations implied by (51) and (53), but we
shall not give details here.

6. Final comments

In this paper we have studied the evolution of MSRF initial data for the Apostolatos–Thorne
model. First we analysed in detail the relation between the configuration corresponding to the
initial data and that of the assumed final static configuration, and we showed that the initial
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Figure 7. ξ (τ ) as a function of τ , for a shell with R0 = 1.0, J = 1.0 and an initial
displacement ξ0 = −0.1. We notice that initially we have a strongly damped oscillation,
followed by a slow decrease in the absolute value of ξ (τ ) . Here τ is approximately in
the range 0 � τ < 250.

Figure 8. 1/ξ (τ ) as a function of ln(τ ), for a shell with R0 = 1.0, J = 1.0 and an initial
displacement ξ0 = −0.1. Here the range of τ is approximately 200 < τ < 1500. The
linear dependence of 1/ξ (τ ) on ln(τ ), for sufficiently large τ is evident in the graph.

acceleration of the shell is always directed towards the static radius that corresponds to the
given intrinsic conserved parameters of the shell. Then we showed that, once the appropriate
properties of the solutions of the cylindrical wave equation are taken into account, there is
a priori no conflict for any choice of initial MSRF data. Thus our results do not agree with
those of [5]. Next we considered the case where the problem can be analysed in the linear
approximation, and showed that the evolution is stable in all cases. The possible form of the
approach to the final static configuration was also analysed and we found that this approach is
very slow, with an inverse logarithmic dependence on time at fixed radius. We also introduced a
numerical computation procedure that allows us to visualize the explicit form of the evolution
of the shell and of the gravitational field up to large times. The result are roughly in agreement
with the qualitative behaviour conjectured in [1], with an initial damped oscillatory stage, but

16



Class. Quantum Grav. 31 (2014) 065003 R J Gleiser and D E Barraco

Figure 9. χ3(τ, r) as a function of r, for τ = 1400, for the same shell and initial
conditions as in figure 7. Here the effect of the initial oscillation of the shell appears as
an outgoing wave for r of the order of 150.

Figure 10. χ3(τ, r) as a function of r, for τ = 1400, for the same shell and initial
conditions as in figure 7. This is an enlarged view of the region 130 < r < 160 of
figure 9, to show details of the outgoing wave part of χ3(τ, r).

followed by a slow approach to the static final state, as indicated by our analysis. We also
include two appendixes. In appendix A we review some properties of the solutions of the
cylindrical wave equation, and prove the existence of solutions with vanishing initial value for
r > R0, (R0 > 0 some finite constant), that approach a constant value for large times. This
proof is crucial for the proof of compatibility of arbitrary MSRF initial data and a final static
configuration for the system, but it also shows that the results about the time dependence of
the C-energy for large r given in [1] may need revision. In appendix B we analyse the relation
between the limits we are considering, i.e., t → ∞, but finite r, that is future time like infinity,
and those at future null infinity, considered in [5], and show that ∂wγ+ � 0, and any sign
of ∂tγ+0 (at fixed r) are perfectly compatible. This has the important consequence that one
cannot draw conclusions about the behaviour of the system solely from considerations of the
sign of ∂wγ+. As a related result we find that a proof given in [5] regarding the total change in
C-energy at future null infinity needs to be revised. In any case, we emphasize that no use of
the C-energy concept, in any of its forms, was made in our present treatment, and although we
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Figure 11. χ3(τ, r) as a function of ln(r), for τ = 1400, for the same shell and initial
conditions as in figure 7. The linear dependence on ln(r) in the region of r between R0

and the outgoing wave is again evident.

Figure 12. 1/χ3(τ, r) as a function of ln(τ ), for r = R0, for the same shell and initial
conditions as in figure 7. The linear dependence on ln(τ ) at late times is also clearly
seen.

consider that a discussion of its relevance for the problem could be of interest, we found that
it was not necessary for the analysis given here, where we restricted entirely to the properties
of the solutions of the wave equation and its consequences.

As a final comment, we remark that for arbitrary MSRF initial data we have only shown
their general compatibility with a corresponding final static configuration. Since we do not
have analytic solutions, a full numerical procedure would be required to obtain a more detailed
information on the actual evolution, but that is outside the scope of our paper, where a numerical
procedure was used only in the linearized approximation.
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Appendix A. Some properties of the solutions of the cylindrical wave equation

In this appendix we analyse the properties of the solutions of the cylindrical wave equation,

− ∂2ψ

∂t2
+ ∂2ψ

∂r2
+ 1

r

∂ψ

∂r
= 0 (A.1)

that are compatible with initial data such that for t = 0, and for r � Ri, where Ri is some
constant, we have ψ = ψi − κ ln(r/Ri), and ∂ψ/∂t = 0. By causality, the solution for r � Ri,
and for t � 0, may be written in general in the form,

ψ(r, t) = ψi − κ ln(r/Ri) + 
(t, r) (A.2)

where 
(t, r) is a solution of (A.1) that is non vanishing only for t > r − Ri � 0. It may be
expressed in the form,


(t, r) = P(t + Ri, r) (A.3)

where P(t, r) is also a solution of (A.1), given by,

P(t, r) =
∫ t−r

0

p(ξ )√
(t − ξ )2 − r2

dξ (A.4)

and p(ξ ) is a function that vanishes for ξ � 0, and therefore, P(t, r) vanishes for r � t.
We are interested in the behavior of the solutions of (A.1) given by (A.4), in the limit

t → +∞. In particular we are interested on the existence of solutions such that, for large t,
and finite r, we have,

P(t, r) ∼ F(r) + G(t, r) (A.5)

with G(t, r) → 0 as t → ∞. Replacing (A.5) in (A.1), in the limit t → ∞ we should have,

d2F

dr2
+ 1

r

dF

dr
= 0 (A.6)

and, therefore, we must have,

F(r) = A + B ln(r). (A.7)

We notice that we have,

|P(t, r)| �
∫ t−r

0

|p(ξ )|√
(t + r − ξ )

√
(t − r − ξ )

dξ

� 1√
2r

∫ t−r

0

|p(ξ )|√
(t − r − ξ )

dξ . (A.8)

Let us assume first that there exist two constants, a and b, such that , for 0 � ξ � ∞ we
have |p(ξ )| � a/(ξ + b), that is, that p(ξ ) is bounded and goes to zero at least as 1/ξ for
ξ → ∞. Then we have,∫ t−r

0

|p(ξ )|√
(t − r − ξ )

dξ �
∫ t−r

0

a

(ξ + b)
√

(t − r − ξ )
dξ

= 2√
t − r + b

arctanh

( √
t − r√

t − r + b

)
(A.9)

and, since the limit t → ∞ of the last expression is zero, we find that P(t, r) must also
vanish in that limit. Similarly, if we consider the case where p(ξ ) is bounded and we have
|p(ξ )| � a/

√
ξ for some finite a, we are lead to the bound,∫ t−r

0

|p(ξ )|√
(t − r − ξ )

dξ �
∫ t−r

0

a√
(ξ )

√
(t − r − ξ )

dξ

= aπ. (A.10)
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But, again, this implies that for t → ∞, we have that P(t, r) is bounded by an expression of
the form A/

√
r, and on account of (A.7), we must also have P(t, r) → 0 in this limit. The

first example includes a large family of integrable functions that are bounded and vanish for
large ξ , while the second includes a large family of square integrable functions that are also
bounded and vanish for large ξ . In all these cases we have a trivial F(r) as a limit.

We consider next the case where for ξ � 0 we have p(ξ ) = A, where A is constant. In
this case,

P(t, r) = A�(t − r)(ln(r) − ln(t −
√

t2 − r2)) (A.11)

where �(x) is the Heaviside (step) function. For t � r we have,

P(t, r) ∼ −A ln(r) + A ln(2) + A ln(t) − A
r2

4t2
(A.12)

and therefore, at any fixed r, P is finite but diverges as t → ∞. Notice that (A.12) implies
that there are solutions of (A.1) that approach the form P ∼ A ln(r) + B for fixed t, with A
an arbitrary constant, but where the term B is time dependent and diverges for t → +∞. This
result has a simple geometric interpretation. Suppose we have a solution of (A.1) that, for
fixed r, approaches the form A ln(r) + B, with a given fixed value of A, but is zero for r > t.
Then, there will be a transition region, for t ∼ r, where the solution changes from one regime
to the other. This transition region propagates outwards with t and, therefore, represents an
outgoing wave, whose amplitude, because of its cylindrical nature, must decrease along with
its propagation. Then, for sufficiently large t we have a good approximation to the functional
form of the solution by simply matching the form A ln(r) + B to zero, for r � t. But this is
only possible if B is of the form B = −A ln(t), which is, precisely, the form given in (A.12).

Going back to (A.11), this suggests that we consider p(ξ ) = A/ ln(ξ + b), with b > 1.
We then have,

P(t, r) =
∫ t−r

0

A

ln(ξ + b)
√

t − r − ξ
√

t + r − ξ
dξ

=
∫ 1

0

A

ln(ηx + b)
√

1 − x
√

1 + 2y − x
dx (A.13)

where η = t − r, and y = r/(t − r). Next, we may split the integral at x = ε, with 0 < ε � 1,

P(t, r) =
∫ ε

0

A

ln(ηx + b)
√

1 − x
√

1 + 2y − x
dx

+
∫ 1

ε

A

ln(ηx + b)
√

1 − x
√

1 + 2y − x
dx. (A.14)

For the first integral on the right-hand side of (A.14), taking into account that b > 1, we have,∣∣∣∣∫ ε

0

A

ln(ηx + b)
√

1 − x
√

1 + 2y − x
dx

∣∣∣∣ � A√
1 − ε

√
1 + 2y − ε

∫ ε

0

1

ln(ηx + b)
dx. (A.15)

To analyse the integral on the right-hand side of (A.15) we define the function,

L(η) =
∫ ε

0

1

ln(ηx + b)
dx (A.16)

and we can check that we have,
d(ηL)

dη
= ε

ln(ηε + b)
. (A.17)

But, this implies that for η → ∞ we must have,

L(η) = ε

ln(ηε + b)
+ o

(
1

ln(η)

)
(A.18)

20



Class. Quantum Grav. 31 (2014) 065003 R J Gleiser and D E Barraco

and, therefore, the integral in (A.15) gives a vanishing contribution in the limit η → ∞.
Similarly,

A

ln(η + b)

∫ 1

ε

1√
1 − x

√
1 + 2y − x

dx �
∫ 1

ε

A

ln(ηx + b)
√

1 − x
√

1 + 2y − x
dx

� A

ln(ηε + b)

∫ 1

ε

1√
1 − x

√
1 + 2y − x

dx. (A.19)

Evaluating the integral in the first and last terms, and replacing y = r/η,∫ 1

ε

1√
1 − x

√
1 + 2r/η − x

dx = ln(r/η) − ln(1 + r/η − ε −
√

1 + 2r/η − ε
√

1 − ε)

= ln(η) − ln(r) + ln(2(1 − ε)) + O(η−1). (A.20)

Finally, collecting results from (A.15), (A.18), and (A.20), replacing in (A.19), and taking the
limit η → ∞,

A � lim
η→∞

∫ 1

0

A

ln(ηx + b)
√

1 − x
√

1 + 2y − x
dx � A (A.21)

and, therefore,

lim
t→∞

∫ t−r

0

A

ln(ξ + b)
√

t − r − ξ
√

t + r − ξ
dξ = A. (A.22)

Thus we have shown that there are solutions of the wave equation (A.1) of the form (A.4)
that approach a given constant for any r and t → ∞. Notice that this will also be true for any
bounded p(ξ ) that approaches the form A/ ln(ξ ) for large ξ . An inspection of (A.4) shows
that the behaviour of p(ξ ) for small ξ contains the information on the wave form emitted at
small t.

But there is also a very important result contained in the previous derivations. Notice
that to go from an initial state where ψ+ = ψi − κi ln(r/Ri) to a final static solution with
ψ+ = ψ f − κ f ln(r/R f ), the integral defining P(t, r) should lead asymptotically to a term
(κi − κ f ) ln(r), but in that case we get also a (divergent) term in ln(t). One can check
that this term cannot be eliminated by a coordinate transformation by computing, e.g., the
corresponding asymptotic form of the Kretschmann invariant, that is found to either diverge
or go to zero, depending on the sign of κi − κ f , rather that to the appropriate finite r dependent
form that corresponds to a static solution. This means that any MSRF initial data, with a given
κi, can only evolve to a corresponding static solution if κ f = κi is satisfied, as was used in our
work.

A further relevant result from (A.21) is that for t � r, and fixed r > Ri we have the
approximation,∫ t−r

0

A

ln(ξ + b)
√

t − r − ξ
√

t + r − ξ
dξ ∼ A

(
1 − 1

ln(t)
ln(r)

)
. (A.23)

This result is important because it applies to any bounded p(ξ ) that approaches the form
A/ ln(ξ ) for large ξ , in the region t � r. Notice that, at least formally, the approximation
(A.23) is consistent with the vanishing of P(t, r) for t ∼ r. It indicates also that the approach
of P(t, r) to the constant value A is rather slow, as the coefficient of the ln(r) correction term
vanishes only logarithmically with t.

We turn now to the question of the behaviour of the function γ (t, r) for large t. In
accordance with the previous results we assume for ψ the form,

ψ(t, r) = ψi − κ ln(r/Ri) + F(t, r) (A.24)
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where F(t, r) is an arbitrary solution of (A.1) that vanishes for t � r − Ri, and approaches the
constant value A for t → ∞. We then have,

∂γ

∂t
= 2r

∂ψ

∂r

∂ψ

∂t

= − 2κ
∂F

∂t
+ 2r

∂F

∂r

∂F

∂t
(A.25)

and also,

∂γ

∂r
= r

[(
∂ψ

∂r

)2

+
(

∂ψ

∂t

)2
]

= κ2

r
− 2κ

∂F

∂r
+ r

[(
∂F

∂r

)2

+
(

∂F

∂t

)2
]

. (A.26)

Then, in the region r � Ri we may write γ in the form,

γ (t, r) = γi + κ2 ln(r/Ri) − 2κF(t, r) + 2r
∫ t

0

∂F

∂r

∂F

∂t ′
dt ′ (A.27)

where we have used,

∂

∂r

(
2r

∫ t

0

∂F

∂r

∂F

∂t ′
dt ′

)
= 2

∫ t

0

∂F

∂r

∂F

∂t ′
dt ′ + 2r

∫ t

0

∂2F

∂r2

∂F

∂t ′
dt ′ + 2r

∫ t

0

∂F

∂r

∂2F

∂r∂t ′
dt ′

= 2r
∫ t

0

∂2F

∂t ′2
∂F

∂t ′
dt ′ + r

∂F

∂r

∂F

∂r

∣∣∣∣t

0

(A.28)

= r

[(
∂F

∂r

)2

+
(

∂F

∂t

)2
]

.

The general form (A.27) for γ implies that,

γ (0, r) = γi + κ2 ln(r/Ri) (A.29)

while in the limit t → ∞ we have,

lim
t→∞ γ (t, r) = γi + κ2 ln(r/Ri) − 2κA + 2r

∫ ∞

0

∂F

∂r

∂F

∂t
dt (A.30)

where the last term, as can be seen taking the limit t → ∞ in (A.28), is actually a constant,
independent of r, and, therefore, we only need to consider the limit for large r to evaluate it.
Clearly, the relative contributions of the last two terms in (A.30) define the change in γ . As
we shall see, (and is well known), the last term gives always a negative contribution, but, since
A can be negative, if the values of these terms are independent, their total contribution can be
positive, or negative, or even null. In any case, we must stress that in a related analysis in [1]
the term linear in κ that appears in (A.25), and leads to (A.27), was not included, leading to
their result that C, t � 0. In view of (A.25), this result clearly needs revision.

To reach a definite conclusion about the behaviour of γ for large t and fixed finite r here
need to study the general properties of the function F(t, r) in more detail. Our assumption
(A.24) implies that we may write,

F(t, r) =
∫ t ′−r

0

F (ξ )√
(t ′ − ξ − r)(t ′ − ξ + r)

dξ (A.31)

where F (ξ ) vanishes for ξ � 0, and F (ξ ) → A/ ln(ξ ) for large ξ , and t ′ = t + Ri.
We have,

∂F

∂t
=

∫ t ′−r

0

dF (ξ )

dξ

1√
(t ′ − ξ − r)(t ′ − ξ + r)

dξ (A.32)
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while,

∂F

∂r
= −

∫ t ′−r

0

dF (ξ )

dξ

1√
(t ′ − ξ − r)(t ′ − ξ + r)

dξ −
∫ t ′−r

0

F (ξ )√
(t ′ − ξ − r)(t ′ − ξ + r)3

dξ .

(A.33)

We remark that F(t, r) vanishes for t ′ � r, and that we are mainly interested in the limit
for large r. We may consider now two regions for our analysis of (A.32) and (A.33). The first
is for t ′ ∼ r, but r � Ri. In this region, since in all the integrals we have t ′ + r � ξ , we have
the approximations,

∂F

∂t
∼ 1√

t ′ + r

∫ t ′−r

0

dF (ξ )

dξ

1√
(t ′ − ξ − r)

dξ (A.34)

while,

∂F

∂r
∼ − 1√

t ′ + r

∫ t ′−r

0

dF (ξ )

dξ

1√
(t ′ − ξ − r)

dξ − 1√
(t ′ + r)3

∫ t ′−r

0

F (ξ )√
(t ′ − ξ − r)

dξ .

(A.35)

Then, for large r, and in the region t ′ ∼ r we have that the second term in the right in
(A.35) is small compared with the first and we have,

∂F

∂t
∼ −∂F

∂r
∼ 1√

r
F̃(t ′ − r). (A.36)

Therefore, in the region t ′ ∼ r, (A.34) and (A.35) provide the contribution from the outgoing
waves to the last term in (A.30), which, on account of the 1/

√
r factor, is independent of r for

large r. Notice that this contribution is always negative.
To analyse the region t � r we recall the approximation (A.23), valid for any F (ξ ) that

approaches the form A/ ln(ξ ) for large ξ , and, for t � r, we obtain,
∂F

∂t
∼ A

ln(r)

t ln(t)2
; ∂F

∂r
∼ −A

1

r ln(t)
. (A.37)

The contribution from these terms to the last term in (A.30) is then of the form,

r
∫ ∞

0

∂F

∂t

∂F

∂r
dt ∼ − A2

∫ ∞

Kr

ln(r)

t ln(t)3
dt

= − A2 ln(r)

2 ln(Kr)2
(A.38)

where K � 1. This result implies that the contribution from the large ξ behaviour of F (ξ )

to the last term in (A.30) vanishes in the limit r → ∞, and, therefore, the total contribution
of this term is independent of the limiting value A, and is dominated by the outgoing waves
present in the region t ∼ r.

Appendix B. A note on momentarily static radiation free initial data and the
C-energy

We consider here first an apparent discrepancy between our result (A.27), that implies that,
for fixed r, γ (t, r) may satisfy,

lim
t→∞ γ (t, r) > γ (0, r) (B.1)

and the fact that, as shown in [5], if we introduce the null coordinates,

v = t + r; w = t − r (B.2)
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then we should have,

∂γ

∂w
� 0. (B.3)

Since w is future oriented, it might seem that this should imply ∂γ /∂t � 0, in contradiction
with (B.1). We notice, however, that if we start with (A.27), and take into account that F(t, r)
is a solution of the wave equation, and, therefore,

∂2F

∂r2
+ 1

r

∂F

∂r
− ∂2F

∂t2
= 0, (B.4)

we have,

∂γ

∂w
= 1

2

∂γ

∂t
− 1

2

∂γ

∂r

= − κ2

2r
− κ

(
∂F

∂t
− ∂F

∂r

)
+ r

∂F

∂r

∂F

∂t

− r
∫ t

0

[
∂2F

∂r2

∂F

∂t ′
+ 1

r

∂F

∂r

∂F

∂t ′
+ ∂F

∂r

∂2F

∂t ′∂r

]
dt ′ (B.5)

= −κ2

2r
− κ

(
∂F

∂t
− ∂F

∂r

)
+ r

∂F

∂r

∂F

∂t
− r

∫ t

0

[
∂2F

∂t ′2
∂F

∂t ′
+ ∂F

∂r

∂2F

∂t ′∂r

]
dt ′

= −κ2

2r
− κ

(
∂F

∂t
− ∂F

∂r

)
+ r

∂F

∂r

∂F

∂t
− r

2

[(
∂F

∂t

)2

+
(

∂F

∂r

)2
]

= − 1

2r

[
κ + r

(
∂F

∂t
− ∂F

∂r

)]2

(B.6)

and, therefore, ∂γ /∂w � 0, not only at future null infinity (v → ∞), but everywhere. We
may now ask what is the change in γ as we move along w at future null infinity. For this we
write (B.5) in the form,

∂γ

∂w
= ∂

∂w
(κ2 ln(v − w)) − 2κ

∂F

∂w
− (v − w)

(
∂F

∂w

)2

. (B.7)

Then, since we are taking wi = 0, and F(v, 0) = 0, the change in γ from wi to w is given by,

�γ = γ (v,w) − γ (v, 0)

= κ2 (ln(v − w) − ln(v)) − 2κF(v,w) −
∫ w

0
(v − w′)

(
∂F

∂w′

)2

dw′. (B.8)

Now we notice that we have [5],

∂F

∂w
=

∫ w

0

1√
w − ξ

∂

∂ξ

F (ξ )√
v − ξ

dξ . (B.9)

Then, as long as v � w, we have the approximation,

∂F

∂w
� 1√

v

∫ w

0

1√
w − ξ

∂F
∂ξ

dξ . (B.10)

For sufficiently large w, (but still v � w), we may choose w1, with 0 � w1 � w, and split
the integral in (B.10) in the form,

∂F

∂w
� 1√

v

∫ w1

0

1√
w − ξ

∂F
∂ξ

dξ + 1√
v

∫ w

w1

1√
w − ξ

∂F
∂ξ

dξ . (B.11)
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In accordance with our previous analysis, the first integral on the right in (B.11) will
give a finite, w independent, contribution, corresponding to the outgoing waves. In the second
integral we may use the large ξ approximation F (ξ ) ∼ A/ ln(ξ ), and then we have,∣∣∣∣∫ w

w1

1√
w − ξ

∂F
∂ξ

dξ

∣∣∣∣ �
∫ w

w1

1√
w − ξ

|A|
ln(ξ )2ξ

dξ

�
∫ w

w1

1√
w − ξ

|A|
ξ 3/2

dξ

= 2|A|√w − w1√
w1w

� |A|√
w

. (B.12)

We should add for completeness that we get the same result regarding the dependence on
w even if we assume a more general form for F (ξ ). For instance, for F (ξ ) ∼ A/ξ n, (n > 1),
for large ξ we would have,

∂F
∂ξ

= − nA

ξ n+1
(B.13)

and one can check that for w � w1 we have,∫ w

w1

1√
w − xi

nA

ξ n+1
dξ = A

w1
n

1√
w

+ O(w−3/2) (B.14)

and clearly the same w−1/2 leading order appears for any function F (ξ ) that admits an
expansion in inverse powers of ξ , for large ξ .

If we keep w fixed and take the limit v → ∞ in (B.8), we have,

lim
v→∞ �γ = −2κ lim

v→∞ F(v,w) − lim
v→∞ v

∫ w

0

(
∂F

∂w′

)2

dw′

= −2κA −
∫ w

0

(∫ w′

0

1√
w′ − ξ

∂F
∂ξ

dξ

)2

dw′. (B.15)

But, from (B.12), and (B.14), the integral on the right of (B.15) diverges at least as ln(w) for
large w, and, therefore, the change in γ at future null infinity would be unbounded. This result
does not contradict the fact that the change in γ for fixed r is finite as t → ∞, because in that
limit we have that both v → ∞ and w → ∞, and the estimates given for v � w may not be
valid. Notice that, for instance, for fixed r and t → ∞, the terms in κ2 in (B.8) would not tend
to cancel each other, and would have to be considered separately. Unfortunately, this implies
that the results obtained in section 3 in [5], are not correct, as the integral in their equation (50)
does not provide a bounded function of w, and therefore any conclusion obtained from the
assumed finiteness of that integral needs to be revised.
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