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a  b  s  t  r  a  c  t

In order  to  deal  with  plant-model  mismatch,  iterative  process  optimization  schemes  use some  adaptation
strategy  based  on measurements.  The  modifier-adaptation  approach  consists  in  performing  first-order
corrections  of the cost  and  constraint  functions  in the  model-based  optimization  problem.  The  approach
has  the  ability  to  converge  to  the  true  process  optimum  but  the  first-order  corrections  require  the  exper-
imental  estimation  of  the  process  gradients.  Dual  modifier-adaptation  algorithms  estimate  the  gradients
by  finite  difference  approximation  based  on  the  measurements  obtained  at the  current  and  past  oper-
ating  points.  In order  to guarantee  the  accuracy  of  the estimated  gradients  a constraint  is  added  to the
eal-time optimization
odifier adaptation

optimization  problem  in  order  to  position  the  next  operating  points  with  respect  to  the  previous  ones.
This  paper  presents  an  alternative  first-order  correction,  which  provides  an improved  approximation  of
the cost  and constraint  functions,  together  with  a new  gradient  error  constraint  for  use  in  dual  mod-
ifier  adaptation.  By means  of  the  Williams–Otto  reactor  case  study,  the new  dual  modifier-adaptation
approach  is  compared  in  simulation  with  a previous  approach  found  in  the literature  showing  faster

rhoo
convergence  to a neighbo

. Introduction

The optimal operation of many industrial chemical processes
ypically involves the solution of an optimization problem which
elies on first-principle models and is subject to operating con-
traints. This paper considers the case where the optimization
roblem can be formulated as a nonlinear programming (NLP)
roblem (Bazaraa, Sherali, & Shetty, 2006). In the chemical pro-
ess industries, NLP problems can be formulated for the real-time
ptimization (RTO) of the steady-state operation of continuous
rocesses (Darby, Nikolaou, Jones, & Nicholson, 2011; Marlin &
rymak, 1997), and for batch-to-batch optimization of the recipe
f batch and semi-batch chemical processes (Franç ois, Srinivasan,

 Bonvin, 2005).
In the presence of plant-model mismatch and unmeasured dis-

urbances, the operating point obtained by optimization using the
odel is not in general an optimum point for the true process,

r worse, might not be a feasible point for the true process (Gao
 Engell, 2005; Marchetti, Chachuat, & Bonvin, 2009). In order
o deal with model inaccuracies, iterative process optimization
chemes use some adaptation strategy based on measure-
ents. The modifier-adaptation approach is to make first-order

∗ Tel.: +54 341 4237 248.

098-1354/$ – see front matter ©  2013 Elsevier Ltd. All rights reserved.
ttp://dx.doi.org/10.1016/j.compchemeng.2013.03.019
d  of  the  plant  optimum.
© 2013 Elsevier Ltd. All rights reserved.

corrections of the cost and constraint functions in the optimization
problem by adapting the values of bias modifiers expressing the dif-
ference between the constraints and gradients of the plant and the
model at the current operating point (Gao & Engell, 2005; Marchetti
et al., 2009). The approach has the ability to converge to the true
process optimum, but it requires the experimental estimation of
the process gradients. In order to estimate the process gradients,
one approach is to perturb the inputs around the current operating
point, for example, one can use forward finite differencing (FFD)
at each RTO iteration. An alternative approach proposed in Brdyś
and Tatjewski (1994, 2005) in the context of the dual ISOPE (Inte-
grated System Optimization and Parameter Estimation) algorithm
is to estimate the gradients based on the output measurements
at the current and past operating points. In order to obtain accu-
rate gradient estimates, an additional constraint is added to the
modified optimization problem. This constraint takes into account
the location of the current and past operating points in order to
position the next operating point. A constraint that ensures that
the new operating point does not introduce ill-conditioning in the
estimation of the gradients was used in Brdyś and Tatjewski (1994,
2005) and Gao and Engell (2005). However, this constraint is not
directly related with the error in the gradient estimates (Marchetti,

Chachuat, & Bonvin, 2010). Recently, a gradient error constraint that
bounds the gradient error norm was introduced in Marchetti et al.
(2010). This constraint takes into account the two main sources
of gradient error, namely the truncation error introduced by

dx.doi.org/10.1016/j.compchemeng.2013.03.019
http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2013.03.019&domain=pdf
dx.doi.org/10.1016/j.compchemeng.2013.03.019
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nite-difference approximation of the derivatives and the mea-
urement noise. In general, the truncation error increases if the
oints are too separated from each other, the error due to mea-
urement noise increases if the points are too close to each other,
nd both types of errors increase if all the points are close to the
ame hyperplane (i.e., the set of points is ill-conditioned). Since
he first-order corrections are made at the current operating point,
he gradient error constraint limits the input moves generated by
he dual modifier-adaptation algorithm in order to limit the trun-
ation error of the gradient estimates. This may  result in a slow
onvergence to the plant optimum in some cases.

This paper proposes new gradient modifiers for correcting the
ost and constraint gradients predicted by the model in the opti-
ization problem, together with a new gradient error constraint for

se in dual modifier-adaptation. When compared with the first-
rder corrections used in Gao and Engell (2005) and Marchetti
t al. (2009), the first-order corrections of the cost and constraint
unctions obtained with the new gradient modifiers provide more
ccurate approximations of the cost and constraint functions for
he real process. In turn, the new constraint produces larger feasible
egions for the same upper bound on the gradient error norm. This
llows for much larger input moves and therefore faster conver-
ence to the optimum. This paper significantly extends the results
resented in Marchetti and Basualdo (2012), where the proposed
ual modifier-adaptation scheme is initially described for the par-
icular case of an unconstrained optimization problem.

The paper is organized as follows. The optimization problem is
ormulated in Section 2 and the necessary conditions of optimal-
ty (NCO) are presented. The fundamentals of modifier-adaptation
re discussed in Section 3, including two novel features: (i) the
odel adequacy criterion given in Marchetti et al. (2009) is restated

ncluding conditions for model inadequacy, and (ii) a sensitivity
nalysis is conducted which analyzes the optimality loss induced
y small errors in the gradient of the Lagrangian function. Also

n Section 3, the dual modifier-adaptation approach proposed in
archetti et al. (2010) is presented, including an upper bound on

he gradient error norm of the Lagrangian function. The sensitivity
nalysis previously conducted gives support to the choice of the
agrangian function as the function for which the gradient error
hould be constrained. The new dual modifier-adaptation approach
roposed in this paper is presented in Section 4, including the alter-
ative gradient modifiers, and the new gradient error constraint
reviously mentioned. The proposed approach is illustrated for the
ase study of the Williams–Otto reactor in Section 5, and it is com-
ared with the previous approach described in Marchetti et al.
2010). Finally, Section 6 concludes the paper.

. Optimization problem

.1. Problem formulation

The optimization problem for the plant (real process) can be
ormulated as follows:

u�
p = argmin

u
�p(u):=�(u, yp(u))

s.t. Gp(u):=g(u, yp(u)) ≤ 0,
(1)

here u ∈ IRnu denotes the decision (or input) variables and
p ∈ IRny the measured (or output) variables; � : IRnu × IRny → IR is
he cost function to be minimized; gi : IRnu × IRny → IR, i = 1, . . .,  ng,
s the set of inequality constraint functions, which includes the
nput bounds. The notation (·)p is used throughout for the variables

ssociated with the plant.

This formulation assumes that �(u, yp) and g(u, yp) are known
unctions of u and yp, i.e., they can be evaluated from the knowledge
f u and measurement of yp. On the other hand, the steady-state
al Engineering 59 (2013) 89– 100

input–output mapping of the plant, yp(u), is typically unknown,
and only an approximate model is available. The steady-state
input–output mapping predicted by the model is denoted y(u, �),
where � ∈ IRn� is the set of model parameters. Using the model, the
solution of the original problem (1) can be approached by solving
the following NLP problem:

u� = argmin
u

�(u, �):=�(u, y(u, �))

s.t. G(u, �):=g(u, y(u, �)) ≤ 0.
(2)

In the presence of plant-model mismatch, a model-based solution
u� does not generally match the plant optimum u�

p, so some adap-
tation is needed.

2.2. Necessary conditions of optimality

Provided that a constraint qualification holds at the solution
point u� and the functions � and G are differentiable at u�, there
exist unique Lagrange multipliers �� ∈ IRng such that the so-called
first-order Karush–Kuhn–Tucker (KKT) conditions hold at u�, and
u� is called a KKT point (Bazaraa et al., 2006):

G ≤ 0, �TG = 0, � ≥ 0,

∂L
∂u

= ∂�

∂u
+ �T ∂G

∂u
= 0,

(3)

with L(u, �):=�(u) + �TG(u) being the Lagrangian function.
The set of active constraints at u� is denoted by A:={i : Gi(u�) =

0, i = 1, . . . , ng}. The Hessian of the Lagrangian function at u� is
given by:

∂2L
∂u2

(u�, ��) = ∂2
�

∂u2
(u�) +

∑
i∈A

��
i

∂2
Gi

∂u2
(u�).

The active constraints at u� are denoted as Ga(u�) ∈ IRna
g , where na

g
is the number of elements of A. Assuming that the Jacobian of the
active constraints at u� has full row rank, we can write the relation:

∂Ga

∂u
(u�)Z = 0,

where the columns of Z ∈ IRnu×(nu−na
g ) are a set of basis vectors for

the null space of the active constraint Jacobian. The reduced Hessian
of the Lagrangian, ∇2

r L(u�) ∈ IR(nu−na
g )×(nu−na

g ), is given by (Gill et al.,
2003):

∇2
r L(u�):=ZT

[
∂2L
∂u2

(u�, ��)

]
Z.

A second-order necessary condition for a local minimum is the
requirement that ∇2

r L(u�) ≥ 0 (positive semidefinite) at the solu-
tion point u�. On the other hand, the condition ∇2

r L(u�) > 0
(positive definite) is a second-order sufficient condition for a strict
local minimum (Gill et al., 2003).

3. Dual modifier adaptation

3.1. The modifier-adaptation approach

The modifier-adaptation approach uses measurements to cor-

rect the predicted cost and constraints at each RTO iteration, in such
a way  that a KKT point for the plant is reached upon convergence
(Marchetti et al., 2009). At the kth iteration, the next optimal input
values are computed by solving a modified optimization problem
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hat includes first-order corrections of the plant and constraint
unctions:

uk+1 = argmin
u

�m(u, �):=�(u, �) + ε�
k

+ (��
k )T(u − uk)

s.t. Gm(u, �):=G(u, �) + εG
k

+ (�G
k )T(u − uk) ≤ GU,

(4)

here ε�
k

∈ IR is the cost value modifier; εG
k

∈ IRng are the con-

traint value modifiers; ��
k ∈ IRnu is the cost gradient modifier; and

G
k ∈ IRnu×ng are the constraint gradient modifiers. These modifiers
epresent the differences between the plant and predicted values
f certain KKT-related elements at the current operating point uk:

�
k = �p(uk) − �(uk, �), (5)

G
k = Gp(uk) − G(uk, �), (6)

��
k )T = ∂�p

∂u
(uk) − ∂�

∂u
(uk, �), (7)

�G
k )T = ∂Gp

∂u
(uk) − ∂G

∂u
(uk, �). (8)

he modifiers and KKT-related elements in (5)–(8) can be denoted
ollectively as nK-dimensional vectors,

�T:=
(

ε�, εG1 , . . . , εGng , ��T
, �G1

T
, . . . , �Gng

T
)

CT:=
(

�, G1, . . . , Gng ,
∂�

∂u
,

∂G1

∂u
, . . . ,

∂Gng

∂u

)
,

ith nK = (nu + 1)(ng + 1). This way, (5)–(8) can be rewritten as:

k = �(uk) = Cp(uk) − C(uk, �). (9)

owever, due to plant-model mismatch, this adaptation strategy
ay  lead to excessive correction in some cases, thereby compro-
ising the convergence of the algorithm (see the local convergence

nalysis and example 3 in (Marchetti et al., 2009)). For this reason, it
s convenient to filter the modifiers using for example a first-order
xponential filter as in Marchetti et al. (2009):

k+1 = (I − K)�k + K
[
Cp(uk+1) − C(uk+1, �)

]
(10)

here K ∈ IRnK×nK is a gain matrix. A possible choice for K is the
lock-diagonal matrix

K:= diag
(

1, d1, . . . , dng , qInu , p1Inu , . . . , png Inu

)
,

here the gain entries d1, . . . , dng , q, p1, . . . , png are taken in (0, 1].
otice that the modifier ε�

k
does not require filtering. Indeed, since

�
k

is a constant term added to the cost function, its value does not
ffect the solution to Problem (4).

Modifier adaptation has the appealing property that, upon con-
ergence and in the absence of noise, the operating point u∞ is

 KKT point for Problem (1) (Marchetti et al., 2009). Its downside
ies in the need to estimate the experimental gradients ∂Gp/∂u and
�p/∂u.

.2. Model adequacy criterion

The problem of model adequacy for real-time model-based opti-
ization is discussed in Forbes and Marlin (1996). A process model

s said to be adequate for use in an RTO scheme if it is capable of pro-
ucing a fixed point for that RTO scheme at the plant optimum u�

p.
ased on this definition, model adequacy for modifier-adaptation

chemes was analyzed in Marchetti et al. (2009). The plant opti-
um  u�

p satisfies the first- and second-order NCO for the original
ptimization problem (1). In order for u�

p to be a fixed point of the
odifier-adaptation algorithm, u�

p must also satisfy the first- and
al Engineering 59 (2013) 89– 100 91

second-order NCO for the modified optimization problem (4), with
the modifiers (6)–(7) evaluated at u�

p. Interestingly, by choosing
� = �(u�

p), the first-order NCO of problem (4) are automatically
satisfied (since modifier adaptation matches the first-order KKT
elements of the plant). Only the second-order NCO remain to be
satisfied, that is, the reduced Hessian of the Lagrangian must be pos-
itive semidefinite at u�

p: ∇2
r L(u�

p, �) ≥ 0. This is a requirement that
the model must satisfy. The model adequacy criterion is restated
below, including additional precisions concerning model inade-
quacy.

Criterion 1 (Model Adequacy for Modifier Adaptation). Let u�
p be

the unique plant optimum, which is assumed to be a regular point
for the constraints. Let ∇2

r L(u�
p, �) be the reduced Hessian of the

Lagrangian at u�
p,

• If  ∇2
r L(u�

p, �) > 0 (positive definite), then the process model is
said to be adequate for use in the modifier adaptation RTO
scheme.

• If ∇2
r L(u�

p, �) < 0 (negative definite), then the process model is
said to be inadequate for use in the modifier adaptation RTO
scheme.

• If ∇2
r L(u�

p, �) is singular, then the model adequacy criterion is not
conclusive.

The condition ∇2
r L(u�

p, �) > 0 represents a (local) sufficient con-
dition for model adequacy. It can be viewed as a sufficient condition
for u�

p to be a fixed point of the modifier-adaptation algorithm.
However, this condition says nothing about the convergence of
modifier adaptation to the plant optimum u�

p (a local convergence
analysis for the modifier-adaptation algorithm is given in Marchetti
(2009) and Marchetti et al. (2009)). On the other hand, the condition
∇2

r L(u�
p, �) < 0 represents a sufficient condition for model inade-

quacy (since the second-order necessary conditions of optimality
are not satisfied). Hence, if according to Criterion 1 the model is
inadequate, u�

p is not a fixed point of the modifier-adaptation algo-
rithm, and there is no chance modifier adaptation will converge to
the plant optimum u�

p. At last, if ∇2
r L(u�

p, �) is singular, then the
model can be adequate or inadequate depending on each particu-
lar case. For example, consider the problem min

u
�p(u) = 2u2, for

which u�
p = 0. The model �1(u) = 2u has d2�1/du2(u�

p) = 0 and is

inadequate, while the model �2(u) = u4 also has d2�2/du2(u�
p) = 0

and is adequate (because u�
p = 0 minimizes �2(u)).

Example 1. Consider the following optimization problem for the
plant:

min
u

�p = −(u1 + 4)2 − (u2 + 6)2

s.t. Gp = (u1 + 1)2 + (u2 + 1)2 ≤ 100,

0 ≤ u1, u2 ≤ 10,

which is comprised of two decision variables u = [u1, u2]T. The
inequality constraint on Gp is active at the optimal solution point,
u�

p = [4.1450, 7.5749]T, with the associated Lagrange multiplier
�� = 1.5831. On the other hand, the optimization problem for the
model reads:

min
u

� = −�1(u1 + 3)2 − �1(u2 + 5)2

s.t. G = �2(u1 + 2)2 + �2u2
2 ≤ 100,

0 ≤ u1, u2 ≤ 10.
The parameter values �1 and �2 for the models A and B are reported
in Table 1. The values of the reduced Hessian of the Lagrangian
(which is a scalar in this case) are also given in Table 1, showing
that Model A is adequate according to Criterion 1, while Model B is
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Table 1
Adequate and inadequate models in Example 1.

�1 �2 ∇2
r L(u�

p, �) Model adequacy
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Model A 1.1 0.9 0.6496 Adequate
Model B 1.4 0.7 -0.5837 Inadequate

nadequate. In this example the parameter values were placed so as
o modify the second-order derivatives of the model with respect
o the second-order derivatives of the plant (simulated reality) for
he purpose of illustrating the adequacy conditions. The more the
arameter values deviate from 1, the more the second-order deriva-
ives of the model deviate from those of the plant. Notice that the
eviations from 1 are larger for Model B, which is why  this model
urns out to be inadequate.

A difficulty in using this criterion as a tool for model selec-
ion in RTO technologies is that the criterion is point-wise, i.e., it
s valid only at the plant optimum, which is typically unknown. In
ddition, the plant optimum might change in the presence of chang-
ng operating conditions and process disturbances. For instance,

 model that is adequate might become inadequate if the opti-
ization problem changes (e.g., if the boundary value for some

nequality constraint is modified, or if the number of decision vari-
bles is increased), or if a perturbation takes place that modifies the
teady-state input–output mapping of the plant. In both situations,
he model adequacy conditions must be re-evaluated at the new
lant optimum.

.3. Principles of dual modifier adaptation

Dual modifier-adaptation algorithms estimate the gradients
ased on the measurements obtained at the current and past oper-
ting points uk, uk−1, . . .,  uk−nu . At the kth RTO iteration, the
ollowing matrices can be constructed:

k:=[ uk − uk−1, uk − uk−2, . . . , uk − uk−nu
] ∈ IRnu×nu , (11)

�
p,k:=[ �̃p,k − �̃p,k−1, �̃p,k − �̃p,k−2, . . . , �̃p,k − �̃p,k−nu ] ∈ IR1×nu , (12)

G
p,k

:=[ G̃p,k − G̃p,k−1, G̃p,k − G̃p,k−2, .  . . , G̃p,k − G̃p,k−nu ] ∈ IRng ×nu , (13)

here the tilde over a variable is used to denote a noisy measure-
ent. For example, the measured plant cost is:

˜
p,k = �(uk, yp(uk) + �) = �p(uk) + v, (14)

here � is the output measurement noise vector, and v repre-
ents the resulting noise in the cost. Using these matrices, the plant
radients ∂�p/∂u and ∂Gp/∂u required in (7) and (8) can be esti-
ated by finite difference approximation as ∇k�p:=Y�

p,k(Uk)−1 and

kGp:=YG
p,k(Uk)−1, respectively. Hence, the gradient modifiers at

he current operating point uk can be computed from the current
nd past operating points as follows:

��
k )T = Y�

p,k(Uk)−1 − ∂�

∂u
(uk, �), (15)

�G
k )T = YG

p,k(Uk)−1 − ∂G
∂u

(uk, �). (16)

n order to obtain accurate gradient estimates, an additional con-
traint is added to the modified optimization problem:

k(u):=D(u, uk, uk−1, . . . , uk−nu+1) ≤ 0 (17)

his constraint takes into account the location of the current and

ast operating points in order to position the next operating point.
et us introduce the matrix

k:=[ uk − uk−1, uk − uk−2, . . . , uk − uk−nu+1 ] ∈ IRnu×(nu−1).
al Engineering 59 (2013) 89– 100

Assuming that the columns in Uk are linearly independent, they
span a unique hyperplane that contains the nu most recent points.
Let nk be a vector that is normal to this hyperplane, thus we
have (Uk)Tnk = 0, and the hyperplane is Hk = {u ∈ IRnu : nT

k
u =

bk, with bk = nT
k
uk}. The nature of Dk(u) will be discussed later.

We  mention however that the proposed constraints used in dual
ISOPE (Brdyś & Tatjewski, 1994, 2005) and in dual modifier adap-
tation (Gao & Engell, 2005; Marchetti et al., 2010) produce two
disjoint feasible regions for locating the next operating point, one
region at each side of the hyperplane Hk and strongly separated
from Hk. Notice that, if the next point uk+1 is located on Hk, the
matrix Uk+1 will become singular.

In dual modifier adaptation a modified optimization problem
including the constraint (17) is solved on each side of the hyper-
plane Hk. The optimization problem corresponding to the half space
nT

k
u ≥ bk reads:

u+
k+1 = argmin

u
�m(u, �) = �(u,  �) + ε�

k
+ (��

k )T(u − uk)

s.t. Gm(u, �) = G(u, �) + εG
k

+ �G
k

T
(u − uk) ≤ 0

Dk(u) ≤ 0, nT
k
u ≥ bk

(18)

and for the other half space nT
k
u ≤ bk:

u−
k+1 = argmin

u
�m(u, �) = �(u,  �) + ε�

k
+ (��

k )T(u − uk)

s.t. Gm(u, �) = G(u, �) + εG
k

+ �G
k

T
(u − uk) ≤ 0

Dk(u) ≤ 0, nT
k
u ≤ bk

(19)

The modifiers ε�
k

, εG
k

, and ��
k , �G

k are computed according to (5),
(6), and (15), (16), respectively. These modifiers can be smoothed
using an exponential filter as in (10). The next operating point uk+1
is chosen in the set {u+

k+1, u−
k+1} as the value that minimizes �m(u,

�).

3.4. Optimality loss due to Lagrangian gradient error

Dual modifier adaptation requires estimates of the cost and con-
straint gradients, ∂�p/∂u, ∂Gp,1/∂u, . . . , ∂Gp,ng /∂u. The question
arises as to what relative importance should be given to the error
with which each of these individual gradients is estimated. For con-
strained optimization problems, Marchetti et al. (2010), proposed
to pay attention to the gradient error of the Lagrangian function,
wherein the Lagrange multipliers represent the weights given to
the individual constraint gradients with respect to the gradient of
the cost function. To limit the error in the estimated cost and con-
straint gradients is important only as a means to limit the loss in
cost with respect to the infimum of the plant. Bearing this in mind,
the choice of the Lagrangian function is given a theoretical support
in this section by conducting a sensitivity analysis of the optimality
loss (loss in optimal value or loss in cost) of the NLP problem (1)
induced by small Lagrangian gradient errors.

Theorem 1 (Optimality Loss). Let the functions �p and Gp,i, i = 1,
. . .,  ng, be three times continuously differentiable with respect to u. Let
u�(�) denote the solution of Problem 1 with Lagrangian gradient error
�, and let u�(0) = u�

p be such that:

1 The second-order sufficient conditions for a local minimum of Prob-
lem (1) hold at u�(0) with the associated Lagrange multipliers ��(0);
2 The gradients ∂Gp,i/∂u(u�
p), for i such that Gp,i(u�

p) = 0, are all lin-
early independent;

3 Strict complementary slackness holds, i.e.,  ��
i
(0) > 0, for each i ∈

A(u�
p).
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hen, for � in a neighborhood of 0, the loss in optimal value is given
y:

��
p(�):=�p(u�(�)) − �p(u�(0)) = −1

2
�T

[
∂u�

∂�
(0)

]
� + o(‖�‖2),

(20)

ith

∂u�

∂�
(0)

∂��

∂�
(0)

⎤
⎥⎦ = −M−1N, (21)

here the matrices M ∈ IR(ng+nu)×(ng+nu), and N ∈ IR(ng+nu)×ng are
efined as:

M:=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂
2Lp

∂u2

∂Gp,1

∂u

T

· · · ∂Gp,ng

∂u

T

��
1

∂Gp,1

∂u
Gp,1

.

.

.
. . .

��
ng

∂Gp,ng

∂u
Gp,ng

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(u�
p)

, N:=

(
Inu

0ng ×nu

)
.

roof. Assumption (1) implies the satisfaction of the first-order
KT conditions with the Lagrangian gradient error �,

∂L̂p

∂u
(u, �, �):=∂Lp

∂u
(u, �) + �T = 0, (22)

iGp,i(u) = 0, i = 1, . . . , ng, (23)

t (u, �, �) = (u�(0), ��(0), 0). The C3 assumption implies that the
ystem of Eqs. (22), (23) is twice continuously differentiable in u
nd �. From the Basic Sensitivity Theorem (see Theorem 3.2.2 and
orollary 3.2.5 in (Fiacco, 1983)), the assumptions imply that for �
ear 0 there exist unique twice continuously differentiable func-
ions u�(�) and ��(�) satisfying (22), (23). Moreover, for � near 0
he set of active constraints does not change, and strict comple-

entary slackness is preserved. Also, from Corollary 3.2.3 in Fiacco
1983), (21) holds with the matrices M and N as defined, where M
s the Jacobian of (22), (23) with respect to (u, �) at (u�(0), ��(0)),
nd N is the Jacobian of (22), (23) with respect to �.

From condition (23) it follows that in a neighborhood of � = 0,

p(u�(�), ��(�)) = �p(u�(�)). (24)

et us denote by Ga
p the set of active constraints at u�

p, and by �a

heir corresponding Lagrange multipliers. Since the set of active
onstraints does not change for � near 0, and since the Lagrange
ultipliers corresponding to the inactive constraints are equal to

ero, the inactive constraints can be removed from the analysis, and
hus from the Lagrangian function, i.e., we can write Lp(z�(�)) =
p(u�(�), ��(�)), where z�(�) =

[
u�(�)T, �a�(�)T]T

.
A Taylor expansion of Lp(z�(�)) in the neighborhood of � = 0

ives,

p(u�(�)) = �p(u�(0)) +
[

∂Lp

∂�
(z�(�))

]
�=0

�

+ 1
2

�T

[
∂2Lp

∂�2
(z�(�))

]
�=0

� + o(‖�‖2). (25)
sing the chain rule of differentiation,

∂Lp

∂�
(z�(�)) =

[
∂Lp

∂u
(z�(�)),

∂Lp

∂�a
(z�(�))

]
∂z�

∂�
(�) (26)
al Engineering 59 (2013) 89– 100 93

From (22) we have ∂Lp/∂u(z�(�)) = −�T, and noticing that
∂Lp/∂�a(z�(�)) = [Ga

p(u�(�))]T = 0, we get

∂Lp

∂�
(z�(�)) = −

[
�T, 0

] ∂z�

∂�
(�) = −�T ∂u�

∂�
(�). (27)

Differentiating (27) we  obtain

∂2Lp

∂�2
(z�(�)) = −∂u�

∂�
(�) − �T ∂2u�

∂�2
(�). (28)

Evaluating (27) and (28) at � = 0 we  get[
∂Lp

∂�
(z�(�))

]
�=0

= 0, and

[
∂2Lp

∂�2
(z�(�))

]
�=0

= −∂u�

∂�
(0),

and upon substitution in (25) we  obtain

	��
p(�) = −1

2
�T

[
∂u�

∂�
(0)

]
� + o(‖�‖2),

which completes the proof. �

Remark 1 (Unconstrained Problem). In the case of an unconstrained
optimization problem, the Jacobian matrices M and N in Theorem
1 reduce to

M = ∂2
�p

∂u2
(u�

p), N = Inu ,

and the optimality loss induced by the cost function gradient error
�, for � near 0, reduces to

	��
p(�) = −1

2
�T

[
∂2

�p

∂u2
(u�

p)

]−1

� + o(‖�‖2).

The sensitivity analysis shows that when the available cost and con-
straint gradients are estimated quantities, the loss in cost induced
will be determined by the resulting error in the gradient of the
Lagrangian function. In practice, this suggests that in dual modifier-
adaptation approaches, the constraint (17), which is used to place
the next operating point, should take into account the accuracy
with which the Lagrangian gradient is estimated.

Example 2. Consider the following optimization problem, which
is adapted from Luenberger and Ye (2008):

min
u

�p = −u1u2 − u2u3 − u1u3,

s.t. Gp = u1 + u2 + u3 − 3 ≤ 0,
(29)

for which the KKT conditions (22), (23) with Lagrangian gradient
error � = [
1, 
2, 
3]T read:

−u2 − u3 + � + 
1 = 0,

−u1 − u3 + � + 
2 = 0,

−u1 − u2 + � + 
3 = 0,

�(u1 + u2 + u3 − 3) = 0,

(30)

from where the solution z�(0) = [1, 1, 1, 2]T is computed.
In this example, the loss in cost 	��

p(�) can be obtained ana-
lytically. Knowing that the constraint is active at the optimum, the
solution to (30) reads:
z�(�) = A−1
[−�

3

]
= −B� + a−1

4 3, with B = [a−1
1 a−1

2 a−1
3 ],

(31)
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here a−1
j

are the columns of A−1, with A defined below:

A =

⎛
⎜⎜⎝

0 −1 −1 1

−1 0 −1 1

−1 −1 0 1

1 1 1 0

⎞
⎟⎟⎠ ; P =

⎛
⎜⎜⎝

0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 0

⎞
⎟⎟⎠ ;

 =

⎛
⎜⎜⎝

0 −1 −1 1

−1 0 −1 1

−1 −1 0 1

2 2 2 0

⎞
⎟⎟⎠ . (32)

he cost can be written as:

p = −[u2 u3 u1 0][u1 u2 u3 �]T = −zTPz, (33)

ith matrix P defined in (32). Replacing (31) in (33), and noticing
hat (a−1

4 3)TPB = 0, the optimal cost becomes:

p(u�(�)) = −z�(�)TPz�(�) = −�TBTPB� − 3. (34)

ence, the optimality loss is given by:

��
p(�) = −�TBTPB�. (35)

t is easy to verify that in this example 	��
p(�) = −�TBTPB� =

1/2�T[∂u�/∂�(0)]�. Compute ∂u�/∂�(0) from (21) with M given in
32). Next, define Q1 = BTPB and Q2 = 1/2∂u�/∂�(0), and verify that
he corresponding symmetric matrices match, i.e., 1/2(Q1 + QT

1) =
/2(Q2 + QT

2).

.5. Upper bound on gradient error norm

For the purpose of optimization, the constraint Dk(u) should be
elected so as to obtain accurate Lagrangian gradient estimates. An
pper bound on the gradient error norm was proposed in Marchetti
t al. (2010). A measured value of the Lagrangian function can be
xpressed as:

L̃p(u) = �(u, yp(u) + �) + �Tg(u, yp(u) + �)

= �p(u) + �TGp(u) + v = Lp(u) + v,
(36)

here � is the output measurement noise vector, and v repre-
ents the resulting noise in the Lagrangian function. The values
f the Lagrange multipliers � at the plant optimum are unknown.
owever, approximate values can be obtained from the solution
f the modified optimization problem. For simplicity, we  shall
ssume that the selected values of � are kept constant, although
t is also possible to update them during the iterative process. The
agrangian gradient for the plant, ∂Lp/∂u(u), can be estimated from
he nu most recent operating points as:

Lp(u) = YL
p(u) U−1(u), (37)

ith:

(u) = [ u − uk, . . . , u − uk−nu+1 ] ∈ IRnu×nu , (38)

L
p(u) = [ L̃p(u) − L̃p(uk), . . . , L̃p(u) − L̃p(uk−nu+1) ] ∈ IR1×nu ,

(39)

he gradient estimation error is defined as

(u)T:=∇Lp(u) − ∂Lp

∂u
(u),
hich, from (37) and using L̃p(uk−j) = Lp(uk−j) + vk−j and L̃p(u) =
p(u) + v, can be split as

(u) = �t(u) + �n(u), (40)
Fig. 1. Measured quantity at steady state with indication of the noise level ı.

where �t and �n represent the errors due to finite-difference
approximation (or truncation) and measurement noise, respec-
tively,

�t(u)T = [Lp(u) − Lp(uk), . . . Lp(u) − Lp(uk−nu+1)] U−1(u)

− ∂Lp

∂u
(u) (41)

�n(u)T = [v − vk, . . . v − vk−nu+1]U−1(u). (42)

Assuming Lp(u) is twice continuously differentiable with respect
to u, then the norm of the gradient error due to truncation can be
upper bounded as follows (Marchetti et al., 2010):

‖�t(u)‖ ≤ Et(u):= �max

2
‖[ (u − uk)T(u − uk) . . .

. . . (u − uk−nu+1)T(u − uk−nu+1) ] U−1(u)‖,

(43)

where �max is an upper bound on the spectral radius of the Hessian
of Lp(·). Also, assuming that the noisy output L̃p(u) remains within
an interval ı at steady-state operation, as illustrated in Fig. 1, then
the norm of the gradient error due to measurement noise can be
upper bounded as follows (Marchetti et al., 2010):

‖�n(u)‖ ≤ En(u):= ı

lmin(u)
, (44)

where lmin(u) is the shortest distance between all possible pairs of
complement affine subspaces that can be generated from the set
of points S = {u, uk, . . . , uk−nu+1} (see Marchetti et al. (2010) for
the computation of lmin(u)). In practice, it is possible to ensure a
given accuracy of the estimated gradient, for example ‖�(u)‖ ≤ EU ,
by selecting u such that Et(u) + En(u) ≤ EU ,

‖�(u)‖ ≤ E(u):=Et(u) + En(u) ≤ EU, (45)

In dual modifier adaptation, this can be achieved by choosing
Dk(u) = E(u) − EU .

4. A new dual modifier-adaptation strategy

4.1. Alternative gradient modifiers

In addition to the matrices (11)–(13), the following matrices
can be constructed at the kth RTO iteration, based on the model
predictions:

Y�
k :=[ �(uk, �) − �(uk−1, �), . . . , �(uk, �) − �(uk−nu , �) ] ∈ IR1×nu , (46)

YG
k

:=[ G(uk, �) − G(uk−1, �), . . . , G(uk, �) − G(uk−nu , �) ] ∈ IRng ×nu , (47)

Instead of the modifiers given in (15) and (16), we  propose the
following gradient modifiers for use in dual modifier-adaptation:

� T (
� �

) −1
(�k ) = Yp,k − Yk (Uk) , (48)

(�G
k )T =

(
YG

p,k − YG
k

)
(Uk)−1. (49)
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roposition 1. Using the gradient modifiers (48) and (49) the mod-
fied cost and constraint functions �m(u, �) and Gm,i(u, �), i = 1 . . . ng,

atch the corresponding measured values for the plant at the current
nd past operating points uk, uk−1, . . . , uk−nu .

roof. Consider the modified cost function:

m(u, �) = �(u, �) + ε�
k + (��

k )T(u − uk). (50)

rom (5), (12), (46), and (48) we have

��
k )T=

(
Y�

p,k − Y�
k

)
(Uk)−1=[ ε�

k
− ε�

k−1, . . . , ε�
k

− ε�
k−nu

](Uk)−1

(51)

rom (50) and (5) we have

m(uk, �) = �(uk, �) + ε�
k = �p(uk).

oticing that (Uk)−1(uk − uk−j) = ej for j = 1, . . .,  nu, where ej is the
th unit vector, it follows from (51) that

��
k )T(uk−j − uk) = ε�

k−j − ε�
k , j = 1, . . . , nu. (52)

sing (52) in (50), we have

m(uk−j, �) = �(uk−j, �) + ε�
k−j = �p(uk−j), j = 1, . . . , nu,

hich completes the proof for the case of the modified cost func-
ion. Since the constraints are modified in the same way as the
ost function, an equivalent demonstration can be done for each
ndividual modified constraint function. �

ith the gradient modifiers (15) and (16) the modified cost and
onstraint functions are such that their values match the corre-
ponding measured values for the plant at the current operating
oint uk, and their gradients match the corresponding estimated
radients Y�

p,k(Uk)−1 and YG
p,k(Uk)−1 at uk. In contrast, with the

radient modifiers introduced in (48) and (49) the modified
ost and constraint functions match the corresponding measured
alues for the plant at the current and past operating points
k, uk−1, . . . , uk−nu . We  argue that this gives a better approxima-

ion of the cost and constraint functions for the plant, in particular
or increased distances between the points. The following remark
mphasizes the point that, with the new gradient modifiers, the
odified cost and constraint functions should no longer be viewed

s first-order corrections taken exclusively at the current operating
oint uk.

emark 2. Notice that (52) can be rewritten as

�
k−j + (��

k )Tuk−j = ε�
k + (��

k )Tuk, j = 1, . . . , nu,

hich implies that

m(u, �) = �(u, �) + ε�
k−j + (��

k )T(u − uk−j), j = 0, 1, . . . , nu,

(53)

.e., the modified cost function �m(u, �) does not depend on which
oint in the set {uk, uk−1, . . . , uk−nu } is used as the reference point

n the first-order correction. The same applies to each modified
onstraint function.

he approximation given by both correction strategies is illustrated
n Fig. 2 for the case of zero measurement noise. The top plot of
ig. 2 uses the old gradient modifier (15). It can be seen that the
radient (slope) of the modified cost function at uk matches the
radient (slope) of the secant line determined by the points uk and

k−1. The bottom plot of Fig. 2 uses the new gradient modifier (48).
n this case, the modified cost function matches the plant cost at
he points uk and uk−1. This latter strategy clearly gives a better
pproximation of the plant cost function.
Fig. 2. Approximation of the plant cost function using modifier adaptation. Top plot:
Previous gradient modifier. Bottom plot: New gradient modifier.

4.2. An auxiliary quadratic function

In this section, an auxiliary quadratic function is introduced that
will be used to obtain conservative estimates of the gradient error
due to truncation. The auxiliary quadratic function reads:

f (u, v):=1
2

(u − v)TD(u − v) + Lp(u) + �(u)T(u − v), (54)

with D = �maxInu , and

�(u)T =
(
YL

p(u) − Yf (u)
)
U−1(u), (55)

where U(u) is given in (38), and YL
p(u) and Yf (u) are defined as

follows:

YL
p(u):=[ Lp(u) − Lp(uk), . . . , Lp(u) − Lp(uk−nu+1) ] ∈ IR1×nu ,

(56)

Yf (u):= − 1
2

[ (u − uk)TD(u − uk), . . . , (u − uk−nu+1)TD(u − uk−nu+1) ]. (57)

It is easy to show that f(u, u) = Lp(u), and f(u, uk−j) = Lp(uk−j), for
j = 0, . . .,  nu − 1. Therefore, f(u, ·) is the quadratic function with Hes-
sian matrix ∂2f/∂v2 = D that matches the function Lp(·) at the (nu + 1)
points u, uk, . . . , uk−nu+1. Notice that, since D = �maxInu , the auxil-
iary function f(u, v) has a conservative curvature with respect to
the function Lp(·).

For a given point u, the gradient error due to truncation of the
function f(u, v) evaluated at point v, is given by:

�f (u, v)T = YL

p(u) U−1(u) − ∂f

∂v
(u, v)

= YL

p(u) U−1(u) + (u − v)TD − �(u)T = Yf (u) U−1(u) + (u − v)TD,
which can be rewritten as:
�f (u, v)T = − �max

2
[ (u − uk)T(u − uk) . . .

.  . . (u − uk−nu+1)T(u − uk−nu+1) ] U−1(u) + �max(u − v)T.

(58)
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otice that, when evaluated at v = u, we obtain

�f (u, u)‖ = Et(u).

t was proved in Marchetti et al. (2010) that Et(u) is an upper
ound on the gradient error due to truncation for the true process,
hat is:

�t(u)‖ ≤ ‖�f (u, u)‖ (59)

t can also be shown that

�t(uk−j)‖ ≤ ‖�f (u, uk−j)‖, j = 0, . . . , nu − 1. (60)

s a justification, notice that for a given u the function f(u, ·) is
ot modified by any rearrangement of the points u, uk, . . . , uk−nu+1
sed in its definition. Hence, (60) follows by interchanging u and
k−j in (58).

Eqs. (59) and (60) and indicate that at the points
, uk, . . . , uk−nu+1 the truncation gradient error evaluated with

he auxiliary quadratic function is conservative with respect to the
runcation error of the function Lp(·).

.3. A new gradient error constraint

In the dual modifier-adaptation approach proposed in Marchetti
t al. (2010) the modified cost and constraint functions provide

 first-order correction of the corresponding cost and constraint
unctions for the plant at the current operating point uk. Hence, the
onstraint E(u) ≤ EU , used in Marchetti et al. (2010), pays atten-
ion to the accuracy of the gradient estimate obtained for the
agrangian function Lp(u) at uk. In contrast, the first-order cor-
ections proposed in the present work are such that the cost and
onstraint functions match their corresponding measured values
t the current and past operating points {uk, uk−1, . . . , uk−nu }.Thus,
he modified cost and constraint functions approximate the
lant in a larger region of the input space. Hence, the inter-
st in finding a constraint that pays attention to the accuracy
f the Lagrangian gradient estimate in this larger region. In this
aper, it is proposed to consider the approximation obtained in
he polyhedral set that has {uk, uk−1, . . . , uk−nu } as its extreme
oints. With this purpose, let us introduce the gradient error
onstraint

f (u):=Etf (u) + En(u) ≤ EU, (61)

here the measurement noise component En(u) is the same as that
reviously defined in (44), whereas the truncation component is
iven by

tf (u):=‖�f (u, v�
f (u))‖,

ith v�
f (u) = [u, uk, . . . , uk−nu+1]d�

f (u), where d�
f (u) ∈ IRnu is a

inimizing solution to the following quadratic program:

d�
f (u) = argmin

d
[�f (u, v)]T�f (u, v)

s.t. v = [u, uk, . . . , uk−nu+1]d,

d ≥ 0, (62)

nu+1∑
i=1

di = 1.

he constraints in problem (62) ensure that v belongs to the polyhe-
ral set with extreme points {u, uk, . . . , uk−nu+1}. Therefore, v�

f (u)
s the point in the polyhedral set that minimizes the gradient error
orm of the auxiliary function f(u, ·). Problem (62) is given using a
al Engineering 59 (2013) 89– 100

formulation that is aimed to facilitate its interpretation and can be
transformed into a more standard form of a quadratic programming
problem.

The constraint (61) can be used in the dual modifier-adaptation
problems (18) and (19) by selecting Dk(u) = Ef (u) − EU . The follow-
ing example shows that this constraint gives larger feasible regions
than the constraint E(u) ≤ EU for the same value of EU .

Example 3. In the two-input case (nu = 2), the contour lines pro-
duced by both constraints are depicted in Fig. 3 for two cases
of most recent operating points. The top plots use uk = [0 0.5]T

and uk−1 = [0 − 0.5]T, while the bottom plots use uk = [0 0.1]T and
uk−1 = [0 − 0.1]T, which are closer to each other. In both cases, the
hyperplane Hk is given by the line u1 = 0. For a given value of EU ,
say EU = 2, the constraints E(u) ≤ EU and Ef (u) ≤ EU both produce
two feasible sets, one at each side of Hk. However, the feasible
regions obtained with the latter constraint are open and much
larger than those obtained with the former constraint, which are
closed.

5. Application to the Williams–Otto reactor

In this section, the dual modifier-adaptation approach is applied
in simulation to the reactor of the Williams–Otto plant (Williams
& Otto, 1960). Structural plant-model mismatch is introduced
by considering an inaccurate two  reaction approximation in the
process model, as proposed by Forbes, Marlin, and MacGregor
(1994). This reactor example has been used in the RTO litera-
ture to illustrate the concept of model adequacy and to study
RTO performance (Forbes et al., 1994; Zhang & Forbes, 2000).
In particular, the reactor was used to illustrate the previous
dual modifier-adaptation approach in Marchetti et al. (2010), for
the case of an unconstrained optimum. Here, the proposed dual
modifier-adaptation approach will be compared with the previous
approach using two  different optimization problem formulations
for the Williams–Otto reactor, the first one concerning an uncon-
strained optimum, and the second one concerning a constrained
optimum.

5.1. Problem formulation

The reactor consists of an ideal CSTR in which the following
reactions take place:

A + B
k1−→C k1 = 1.660 × 106e−6666.7/(TR+273.15)

C + B
k2−→P + E k2 = 7.212 × 108e−8333.3/(TR+273.15)

C + P
k3−→G k3 = 2.675 × 1012e−11111/(TR+273.15).

The two  reactants, A and B, are fed separately with the mass
flowrates FA and FB, respectively. The desired products are P
and E, C is an intermediate product and G is an undesired
product. The outlet stream has the mass flowrate F = FA + FB. Oper-
ation is isothermal at the temperature TR. The reactor mass
holdup is 2105 kg, and the flowrate of reactant A is fixed at
1.8275 kg/s.

The objective function is to maximize profit, which is expressed

as the difference in price between the products and the
reactants:

J(u, y) = 1143.38XPF + 25.92XEF − 76.23FA − 114.34FB,
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easible regions of the constraint E(u) ≤ 2 on the left, and Ef (u) ≤ 2 on the right. Da

here Xi represents the concentration of species i. As mentioned
arlier, a two reaction approximation is considered in the reactor
odel (Forbes et al., 1994):

A + 2B
k∗

1−→P  + E k∗
1 = 2.189 × 108e−8077.6/(TR+273.15)

A + B + P
k∗

2−→G k∗
2 = 4.310 × 1013e−12438/(TR+273.15).

he material balance equations for the plant and the approximate
odel can be found in Zhang and Forbes (2000). The optimization

roblem reads:

min
FB,TR

�(u, y) = −J(u, y)

s.t. FB ∈ [3,  6]; TR ∈ [70, 100];

XG ≤ 0.08,

(63)

here the decision variables are the flowrate of reactant B and the

eactor temperature, i.e., u = [FB, TR]T. Two optimization problem
ormulations will be considered depending on whether or not the
pper bound on the concentration of the undesired product G is

ncluded.
t recent points (more distant on the top, and closer on the bottom). Shaded areas:
tted line: Hyperplane Hk determined by the two most recent points.

5.2. Scenario 1

In this scenario the inequality constraint XG ≤ 0.08 is removed
from the optimization problem (63). Since no input bounds are
active at the solution point, the solution is unconstrained, and the
Lagrangian function reduces to the cost function. Hence, the noisy
function to be considered in (36) reduces to:

L̃p(u) = �̃p(u) = �(u, yp(u) + �) = �p(u) + v.

The inputs are scaled using the intervals [3, 6] for FB, and [70, 100]
for TR. In this range, the largest value of the spectral radius of the
Hessian of cost function predicted by the model �(u, �), obtained
with the scaled inputs, is 1030, while that of the (unknown) plant
cost function �p(u) is 1221. The simulations are carried out assum-
ing that the noise v has a Gaussian distribution with standard
deviation �� = 0.5. In order to implement dual modifier adaptation,
the noise interval ı = 6�� = 3 is chosen, and we select �max = 1030.
The exponential filter (10) is implemented for the cost gradient
modifiers with K = diag (1, 0.6, 0.6). Simulations are run with
200 RTO iterations, starting from u0 = [3, 70]T. A realization of the
input trajectories obtained by both, the previous and the new dual

modifier-adaptation approaches, is illustrated in Fig. 4 for two  dif-
ferent values of the upper bound EU . In each case, an initial gradient
estimate is obtained by perturbing each input separately in the
neighborhood of u0.
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ig. 4. Input trajectory for Scenario 1 with 200 operating points. Dotted lines: cont
ew  dual modifier adaptation with EU = 111.2. (c) Previous dual modifier adaptatio

The input trajectories obtained with EU = 111.2, which is the
ame value used in Marchetti et al. (2010), are shown in the
op plots of Fig. 4: plot a shows the input trajectories obtained
ith the previous approach, while plot b shows the trajectories

btained with the new dual modifier-adaptation approach. The
ew approach shows a faster convergence to a neighborhood of
he plant optimum in terms of the number of RTO iterations. The
revious approach requires 13 iterations, while the new approach
equires only 5 iterations. This improvement is due to the larger fea-
ible regions produced by the gradient error constraint Ef (u) ≤ EU

sed in the new approach. The gradient error constraint E(u) ≤ EU

sed in the previous dual modifier-adaptation approach, represents
 stronger restriction on the input moves, and thus slows down
he convergence. The input trajectories obtained with EU = 200
re shown in the bottom plots of Fig. 4. Increasing the value of
U allows for larger input moves in both approaches, since the
easible regions produced by the corresponding gradient error con-
traints are greater. However, this increases the allowed error in the
stimated gradients, and thus the variability of the iterations with
espect to the plant optimum. This increased variability results in

 loss in economic profit.
.3. Scenario 2

This scenario considers the optimization problem (63), includ-
ng the inequality constraint XG ≤ 0.08. Since this constraint is active
f the plant cost function. (a) Previous dual modifier adaptation with EU = 111.2. (b)
h EU = 200. (d) New dual modifier adaptation with EU = 200.

at the solution point, the noisy function to be considered in (36)
reads:

L̃p(u) = �p(u) + �Gp(u) + v, (64)

with Gp = XG − 0.08. The Lagrange multiplier in (64) is selected as
� = 262.5, which is the value obtained at the optimum of the nom-
inal model. We  assume that the measurements of the objective
function and the concentration XG are Gaussian random variables
with standard deviations �� = 0.5, and �G = 0.0005, respectively.
Therefore, the noise v of the Lagrangian function in (64) has a

Gaussian distribution with standard deviation �L =
√

�2
�

+ �2�2
G .

The noise interval is selected as ı = 6�L ≈ 3.1. Similar to Scenario 1,
the inputs are scaled in the intervals [3, 6] for FB, and [70, 100] for TR.
In this region, the largest eigenvalue of the Hessian of Lagrangian
function predicted by the model, L(u, �) = �(u, �) + �G(u, �),
obtained with the scaled inputs, is 1085. Hence, we  select
�max = 1085.

The exponential filter (10) is implemented with K =
diag (1, 0.4 I5).  Simulations are run with 200 RTO iterations,
starting from u0 = [3.5, 72]T. Three different noise realizations
of the input trajectories obtained with EU = 116 are illustrated
in Fig. 5 for the previous approach (left plot), and for the new

approach (right plot). It can be seen that the new dual modifier-
adaptation approach uses less steady-state operating points to
reach a neighborhood of the constrained plant optimum. Similar to
Scenario 1, by increasing the value of EU it is possible to decrease
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he number of iterations required to approach the plant optimum.
owever, this will be at the expense of increased gradient errors,
hich will translate into a larger variability of the inputs with

espect to the plant optimum. In the constrained case, this larger
ariability will result not only in a loss in economic profit, but also
n larger constraint violations.

. Discussion and conclusions

The contributions of this work to the modifier-adaptation liter-
ture can be summarized as follows:

The model adequacy criterion for modifier-adaptation schemes
has been extended in order to include conditions concerning an
inadequate model. Previous model adequacy conditions in the
RTO literature only include sufficient conditions for an adequate
model (Forbes & Marlin, 1996; Marchetti et al., 2009).
A sensitivity analysis of the optimality loss of a constrained NLP
problem, induced by small Lagrangian gradient errors, was con-
ducted. The analysis shows that, in the presence of inaccurate
gradient estimates, the loss in optimality is determined by the
resulting error in the gradient of the Lagrangian function. This
result supports the idea that the gradient error constraint in
dual modifier-adaptation schemes should pay attention to the
accuracy with which the gradient of the Lagrangian function is
estimated.
New gradient modifiers were introduced for which the first-
order corrections of the cost and constraint functions provide
an improved approximation of the cost and constraint functions
for the true process. The modified cost and constraint functions
match the measured values of the cost and constraint functions
at the current and nu past operating points.
A new gradient error constraint was proposed, that pays atten-
tion to the accuracy with which the gradient of the Lagrangian
function is estimated in the polyhedral set that has the current
and nu past operating points as its extreme points. This con-
straint produces larger feasible regions than the constraint used
in Marchetti et al. (2010), which allows larger input moves and
thus, faster convergence to the optimum.
The main assumptions made in this work are listed and dis-
ussed next:
s of the plant cost function. Thick solid line: Boundary of the inequality constraint
ual modifier adaptation with EU = 116.

• The cost function and the constrained variables can be measured,
or are known functions of the measured variables. If any of these
variables is not measured, then the corresponding modifiers can-
not be evaluated. In particular, if a constrained variable cannot
be measured nor estimated from the measured variables, then
some conservatism should be introduced. For example, one could
impose fixed (conservative) constraint backoffs to the unmea-
sured constraints (Loeblein & Perkins, 1996).

• In evaluating the error in the gradient estimates, only the output
variables are assumed to be subject to measurement noise. The
input variables are assumed to be noise free. This assumption is
valid if the input variables are setpoints of feedback controllers,
or if they represent known variables applied to the plant, e.g., the
voltage applied to a pump that is used to feed a tank, instead of
the inlet flowrate to the tank.

• The frequency of the disturbances affecting the plant is suffi-
ciently low with respect to the time required by the RTO scheme
to approach the plant optimum. Notice that small disturbances
can be accommodated within the noise level ı (see Fig. 1). How-
ever, larger disturbances that have a meaningful impact on the
optimum point should occur at a very low frequency or slowly
in time, in order for the gradient estimates to be meaningful
and the dual modifier-adaptation scheme to effectively approach
the plant optimum. This clearly limits the applicability of this
approach, and in particular its scalability to large scale systems
with many input variables.

For many complex chemical and biochemical processes it is very
difficult, time consuming, and expensive to obtain accurate models
for process optimization. The use of an inaccurate model can lead to
a suboptimal or even infeasible operating point. If the frequency of
disturbances affecting the plant is sufficiently low, it is possible to
estimate the gradients from the current and past operating points
and apply the dual modifier-adaptation approach in order to con-
verge to the true process optimum. The dual modifier-adaptation
approach proposed in this paper uses new gradient modifiers and a
new gradient error constraint. The case study of the Williams–Otto
reactor has served to compare the new approach with a previous
dual modifier-adaptation approach proposed in the literature.
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