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Abstract

We prove that for axially symmetric linear gravitational perturba-
tions of the extreme Kerr black hole there exists a positive definite
and conserved energy. This provides a basic criteria for linear stabil-
ity in axial symmetry. In the particular case of Minkowski, using this
energy we also prove pointwise boundedness of the perturbation in a
remarkable simple way.

1 Introduction

Recently there has been considerable progress on the long standing and cen-
tral open problem of black hole stability in General Relativity (see the review
articles [15] [14] and reference therein). The following three aspects of this
problem motivated the present work.

(i) Non-modal stability of linear gravitational perturbations: the
non-modal stability of linear gravitational perturbations for the Kerr black
hole still remains unsolved. The works of Regge, Wheeler [39], Zerilli [47] [46]
and Moncrief [36] determined the modal linear stability of gravitational per-
turbations for the Schwarzschild black hole by ruling out exponential growth
in time for every individual mode. The modal stability for the Kerr black hole
was proved by Whiting [45] using the Teukolsky equation. However, modal

1

ar
X

iv
:1

40
2.

28
48

v2
  [

gr
-q

c]
  1

9 
Se

p 
20

14



stability is not enough to exclude that general linear perturbations grow un-
bounded in time (see, for example, the discussion in [43] and [15]). The study
of black hole non-modal stability was initiated by Kay and Wald in [43] [32].
They prove that solutions of the linear wave equation on a Schwarzschild
black hole background remain bounded by a constant for all time. An im-
portant ingredient in this proof is the use of conserved energies to control the
norm of the solution. The analog of the Kay-Wald theorem on a large class
of backgrounds which includes the slow rotating Kerr black hole was first
proved by Dafermos and Rodniaski [16] and then, independently, in the spe-
cial case of slow rotating Kerr by Andersson and Blue [1]. In [15] Dafermos
and Rodniaski provide the essential elements of the proof of this theorem for
the general subextremal Kerr black hole. Recently, this problem was finally
solved in [17]. For a complete list of references with important related works
on this subject see the review articles [15] [14] [28]. All these results concern
the wave equation. For gravitational perturbations the only non-modal sta-
bility result was given very recently by Dotti [26] for the Schwarzschild black
hole. There are, so far, no results regarding the non-modal stability of the
Kerr black hole under linear gravitational perturbations.

(ii) Stability and instability of extreme black holes: extreme black
holes are relevant because they lie on the boundary between black holes and
naked singularities and hence it is expected that their study shed light on the
cosmic censorship conjecture. Recently, Aretakis discovered certain instabil-
ities for extreme black holes [3] [4]. These instabilities concern transverse
derivatives of the field at the horizon: a conservation law ensures that the
first transverse derivative of the field on the event horizon generically does not
decay, this implies that the second transverse derivative of the field generi-
cally grows with time on the horizon. These instabilities were discovered first
for the scalar wave equation on the extreme Reissner-Nordström black hole,
a similar result also holds for the extreme Kerr black hole [6] [5]. These works
were extended in several directions: for generic extreme black holes and linear
gravitational perturbations [35], for certain higher dimensional extreme vac-
uum black holes [37]; for massive scalar field and for coupled linearized grav-
itational and electromagnetic perturbations [34], for a test scalar field with
a nonlinear self-interaction in the extreme Kerr geometry [7]. An interesting
relation between these instabilities and the Newman-Penrose constants was
pointed out by Bizon and Friedrich [9]. This relation was also independently
observed by Lucietti, Murata, Reall and Tanahashi [34]. Finally, a numeri-
cal study of nonlinear evolution of this instability for spherically symmetric
perturbations of an extreme Reissner-Nordström black hole was performed
by Murata, H. S. Reall, and N. Tanahashi in [38].

An important question regarding the dynamical behaviour of extremal
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black holes is whether a non-extremal black hole can evolve to an extremal
one at late times. In [40] Reiris proved that there exists arbitrary small
perturbations of the extreme black hole initial data that can not decay in
time into any extreme black hole. On the other hand, in [38] fine tuned
initial data are numerically constructed which settle to an extreme Reissner-
Nordström black hole. There is no contradiction between these two results
since they apply to different kind of data. It is interesting to note that
the construction in [40] relies on geometrical inequalities between area and
charges on trapped surfaces (see [21] and reference therein), in contrast in
the spacetime considered in [38] there are no trapped surfaces.

The discussion above concern instability of extreme black holes. However,
there are also stability results for this class of black holes. The most relevant
of them is that the solutions of the wave equations remain pointwise bounded
in the black hole exterior region [3] (see also [22]).

(iii) Non-linear stability: the problem of the black hole non-linear sta-
bility remains largely open (see the discussion in [15] and reference therein).
The linear studies previously discussed are expected to provide insight into
the non-linear problem. However, this will be possible only if they rely on
techniques that can be suitable extended to the non-linear regime. One of
the most important of these techniques are the energy estimates.

The main result of this article is the following:

For axially symmetric linear gravitational perturbation of the ex-
treme Kerr black hole there exists an energy which is positive
definite and conserved.

A precise version of this statement is given in Theorem 4.1. In the fol-
lowing we discuss the relation of this result with the points (i), (ii) and (iii)
discussed above.

(i) The conserved energy for the linear perturbation has a similar struc-
ture as the energy of the wave equation: it is an integral over an spacelike
surface of terms that involves squares of first derivatives of the perturbations.
This energy is related with the second order expansion of the ADM mass.
However it is important to stress that the positiveness of this energy can not
be easily deduced from the positiveness of the ADM mass. In fact, as we
will see, this result is proved as a consequence of highly non-trivial identities.
It is also important to emphasize that this energy is positive also inside the
ergosphere.

The energy expression and its conservation do not require any mode ex-
pansion of the fields. The existence of this conserved quantity provides a
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basic non-modal stability criteria for axially symmetric linear perturbation
of the extreme Kerr black hole. Since the equation are linear and the coeffi-
cients of them do not depend on time, it is possible to construct an infinitely
number of higher order conserved energies. We expect that these higher or-
der energies can be used to prove pointwise boundedness of the solution, in
a similar fashion as in [22]. In that reference the pointwise boundedness of
solutions of the wave equation on the extreme Reissner-Nordström black hole
was proved using only higher order energies estimates. But, up to now, we
were not able to extend this result to the present context. However, in the
particular case of the Minkowski background we prove a pointwise bound
for the linear perturbations in a remarkable simple way. Comparing with
the Minkowski case, the main difficulties to obtain pointwise estimates from
the energy in the Kerr case are two: first, the equations for the norm and
the twist are coupled and hence it is not possible to separate them as in the
Minkowski case. Second, the coefficient of the equations are singular at the
horizon and hence we can not use standard Sobolev estimates.

This conserved energy is closely related with the energy studied by Hol-
lands and Wald [31] (see also [33]). We expect that the techniques used
here to prove positiveness should also be useful in that context. Also, the
boundary conditions at the horizon proposed in [31] are likely to be useful
to generalize our results to the non-extreme case.

(ii) The existence of this conserved energy and its related stability criteria
are not in contradiction with Aretakis instabilities. The situation is very
similar as the one discussed in [22] for the case of the wave equation: the
energy is only defined in the black hole exterior region and it does not control
any transverse derivative at the horizon.

(iii) As we pointed out above, the energy used here is related with the
ADM mass which is also conserved in the non-linear regime (see the discus-
sion in [24]) . That is, the energy estimates used here are very likely to be
useful in the non-linear case.

The plan of the article is the following. The expression of the conserved
energy arises naturally in a particular gauge for the Einstein equation: the
maximal–isothermal gauge. We review this gauge in section 2. In that section
we also present the linearized equations on a class of stationary backgrounds.
In section 3 we study the particular case of the Minkowski background, where
we prove that the solutions are pointwise bounded in terms of a constant
that depends only on the conserved energy, see theorem 3.1. In section 4
we study the extreme Kerr background and we prove the main result of this
article given by theorem 4.1. Finally, in the appendices we write the Kerr
solution in the maximal–isothermal gauge and we also prove a Sobolev like
estimate needed in the proof of theorem 3.1.
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2 Axisymmetric Einstein equations in the maximal–

isothermal gauge

In axial symmetry, the maximal-isothermal gauge has the important property
that the total ADM mass can be written as a positive definite integral on
the spacelike hypersurfaces of the foliation and the integral is constant along
the evolution [19]. The conserved energy for the linear perturbations will be
obtained as an appropriate second order expansion of this integral. In this
section we first review the full Einstein equations in this gauge in subsection
2.1 and then in subsection 2.2 we perform the linearization on a class of
stationary backgrounds that include the Kerr black hole. On this class of
backgrounds the linearized equations in this gauge have a remarkably simply
form.

2.1 Einstein equations

Einstein equations in the maximal-isothermal gauge were studied, with slight
variations, in several works [11], [41], [29], [24]. In this section we review these
equations, we closely follow [24].

In axial symmetry, it possible to perform a symmetry reduction of Ein-
stein equations to obtain a set of geometrical equations in the 3-dimensional
quotient manifold in terms a Lorenzian 3-dimensional metric. See [24] for
the details. In appendix A we explicitly perform this reduction for the Kerr
metric.

On the 3-dimensional quotient manifold we take a foliation of spacelike
surfaces. The intrinsic metric on the slices of the foliation is denoted by
qAB and the extrinsic curvature by χAB. Here the indices A,B · · · are 2-
dimensional.

The maximal-isothermal gauge and its associated cylindrical coordinates
(t, ρ, z) are defined by the following two conditions. For the the lapse, denoted
by α, we impose the maximal condition on the 2-surfaces t = constant. That
is, the trace χ of the extrinsic curvature vanishes

χ = qABχAB = 0. (1)

The shift, denoted by βA, is fixed by the requirement that the intrinsic metric
qAB has the following form

qAB = e2uδAB, (2)

where δAB is the fixed flat metric

δ = dρ2 + dz2. (3)
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For our purposes, the relevant geometries for the 2-dimensional spacelike
surfaces are the half plane R2

+ (defined by −∞ < z <∞, 0 ≤ ρ <∞) for the
Minkowski case or R2

+ \ {0} for the black hole case. In that case the origin
will represent an extra asymptotic end. For both cases the axis of symmetry
is defined by ρ = 0.

The dynamical degree of freedom of the gravitational field are encoded in
two geometrical scalars η and ω, the square of the norm and the twist of the
axial Killing vector respectively. Due to the behaviour at the axis, instead
of η, α and u it is often convenient to work with the auxiliary function σ, ᾱ
and q defined by

η = ρ2eσ, α = ρᾱ, u = ln ρ+ σ + q. (4)

To write the equations we will make use of the following differential op-
erators. The 2-dimensional Laplacian ∆ defined by

∆q = ∂2
ρq + ∂2

zq, (5)

and the operator (3)∆ defined as

(3)∆σ = ∆σ +
∂ρσ

ρ
. (6)

This operator, which appears frequently in the rest of the article, is the
flat Laplace operator in 3-dimensions written in cylindrical coordinates and
acting on axially symmetric functions. The conformal Killing operator L
acting on a vector βA is defined by

(Lβ)AB = ∂AβB + ∂BβA − δAB∂CβC . (7)

In these equations ∂ denotes partial derivatives with respect to the space
coordinates (ρ, z) and all the indices are moved with the flat metric δAB. We
denote by a dot the partial derivative with respect to t and we define the
prime operator as

η′ =
1

α

(
η̇ − βA∂Aη

)
. (8)

Einstein equations in the maximal-isothermal gauge are divided into three
groups: evolution equations, constraint equations and gauge equations. The
evolution equations are further divided into two groups, evolution equations
for the dynamical degree of freedom (σ, ω) and evolution equations for the
metric qAB and second fundamental form χAB. Due to the axial symmetry,
these equations are not independent (see the discussion in [41]). For example,
the constraint equations are essentially equivalent to the evolution equations
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for the metric and second fundamental form. In particular, in this article we
will not make use of the evolution equations for the metric and second fun-
damental form, we will always use instead a time derivative of the constraint
equations.

Bellow we write the equations, for the deduction of them see [24]. We
divide them in the three groups discussed above. In the next sections the
linearization of these equations on different background is performed, for the
sake of clarity we will always group them in the same way.

Evolution equations:
The evolution equations for σ and ω are given by1

− e2uσ′′ +(3) ∆σ + ∂Aσ
∂Aᾱ

ᾱ
− 2e2u(log ρ)′′ + 2

∂ρᾱ

ᾱρ
=

(e2uω′2 − |∂ω|2)

η2
, (9)

− e2uω′′ +(3) ∆ω + ∂Aω
∂Aᾱ

ᾱ
=

2
(
∂Aω∂

Aη − e2uω′η′
)

η
. (10)

The evolution equation for the metric qAB (by equation (2) this is only one
equation for the conformal factor u) and the second fundamental form χAB
are given by

2u̇ = ∂Aβ
A + 2βA∂Au, (11)

χ̇AB = £βχAB − FAB − αGAB − 2αχACχ
C
B, (12)

where £ denotes Lie derivative and we have defined

FAB = ∂A∂Bα−
1

2
δAB∆α− 2∂(Aα∂B)u+ ∂Cα∂

CuδAB, (13)

and

GAB = (3)RAB −
1

2
δAB

(3)RCDδ
CD, (14)

(3)RAB =
1

2η2
(∂Aη∂Bη + ∂Aω∂Bω). (15)

Constraint equations:
The momentum and Hamiltonian constraints are given by

∂BχAB = − e
2u

2η2
(η′∂Aη + ω′∂Aω) , (16)

(3)∆σ + ∆q = − ε

4ρ
, (17)

1There were a misprint in equation (63) in [24], a minus sign is missing on the right
hand side of this equation. We have corrected that in equation (9).
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where we have defined the energy density ε by

ε =

(
e2u

η2

(
η′2 + ω′2

)
+ |∂σ|2 +

|∂ω|2
η2

+ 2e−2uχABχAB

)
ρ. (18)

It is important to emphasize that ε is positive definite.
Gauge equations:
The gauge equations for lapse and shift are given by

∆α = α
(
e−2uχABχAB + e2uµ̄

)
, (19)

(Lβ)AB = 2αe−2uχAB, (20)

where we have defined µ̄ by

µ̄ =
1

2η2

(
η′2 + ω′2

)
. (21)

As we mentioned above, the most important property of this gauge is
that the total ADM mass of the spacetime is given by the following integral
on the half plane R2

+ of the positive definite energy density ε

m =
1

16

∫
R2
+

ε dρdz. (22)

Moreover, this quantity is conserved along the evolution in this gauge (see
[19]). We emphasize that the domain of integration in (22) is R2

+ even in the
case of a black hole (see the discussion in [20]).

We have introduced two slight changes of notation with respect to [24].
First we have suppressed the hat symbol over tensors like χ̂AB introduced
in [24] to distinguish between indices moved with the flat metric δAB and
with the metric qAB. In this article there is no danger of confusion since
all the indices are moved with the flat metric δAB. Second, we have defined
the energy density ε in (18) with an extra factor ρ. This is convenient for
the calculations presented in the next section since the integral in the mass
(22) has then the flat volume element in R2

+ (in [24] the ρ factor appears in
the volume element). The only disadvantage of this notation is that in the
right hand side of the Hamiltonian constraint (17) an extra ρ appears in the
denominator.

Boundary conditions:
At spacelike infinity we assume the following standard asymptotically flat

fall off condition in the limit r →∞

σ, βA, χAB, σ̇, β̇
A, χ̇AB = o1(r−1/2), ᾱ− 1 = o1(1), (23)
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where we write f = oj(r
k) if f satisfies ∂αf = o(rk−|α|), for |α| ≤ j, where

α is a multi-index and the spherical radius r is defined by r =
√
ρ2 + z2. In

the following we will also make use of a similar notation for f = Oj(r
k).

At the axis the functions must satisfy the following parity conditions

η, ω, ᾱ, u, q, σ, χρρ, β
z are even functions of ρ, (24)

and
α, χρz, β

ρ are odd functions of ρ. (25)

Note that odd functions vanish at the axis and ρ derivative of even functions
vanishes at the axis.

In the case of extreme Kerr black hole we have an extra asymptotic end,
which in these coordinates is located at the origin. For that case we will
assume the following behaviour in the limit r → 0

σ, βA, χAB, σ̇, β̇
A, χ̇AB = o1(r−1/2), ᾱ− 1 = o1(1). (26)

These conditions encompass the asymptotically cylindrical behaviour typical
of extreme black hole at this end (see the discussion in [20] and [23]).

The behaviour of the twist ω is more subtle because it contains the infor-
mation of the angular momentum. It will be discussed in the next sections.

2.2 Linearization

Denote by ψ any of the unknowns of the previous equations. Consider a one-
parameter family of exact solutions ψ(λ). To linearize the equations with
respect to the family ψ(λ) means to take a derivative with respect to λ to
the equations and evaluate them at λ = 0. We will use the following notation
for the background and the first order linearization

ψ0 = ψ(λ)|λ=0 , ψ1 =
dψ(λ)

dλ

∣∣∣∣
λ=0

. (27)

We will assume that the background solution is stationary in this gauge,
that is

ψ̇0 = 0. (28)

Moreover, we will also assume that the background shift and second funda-
mental form vanished

βA0 = 0, χ0AB = 0. (29)

The condition (29) is satisfied by the Kerr solution for any choice of the
mass and angular momentum parameters, see appendix A. This condition
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simplifies considerably the equations. In particular, from (28) and (29) we
deduce

ψ′0 = 0. (30)

The first important consequence of the background assumptions (29) is
that the first order expansion of the lapse is trivial. Namely, the right hand
side of equation (19) is second order in λ, hence we obtain

∆α0 = 0, ∆α1 = 0. (31)

Since the boundary condition for for α are independent of λ, it follows that
the first order perturbation α1 satisfies homogeneous boundary condition
both at the axis and at infinity, and hence from equation (31) we obtain that

α1 = 0. (32)

In contrast, the zero order lapse α0 satisfies non-trivial boundary conditions.
The specific value of α0 will depend, of course, on the choice of background.
Remarkably, for Minkowski and extreme Kerr we have α0 = ρ, as we will see
in the next sections. But for non-extreme Kerr it has a different value (see
appendix A). In this section we keep α0 arbitrary in order to obtain general
equations that can be used in future works for non-extreme black holes.

Using (32), (29) and (28) we find the following useful formulas

ψ′1 =
1

α0

(
ψ̇1 − βA1 ∂Aψ0

)
, (33)

ψ′′1 =
1

α2
0

(
ψ̈1 − β̇A1 ∂Aψ0

)
. (34)

Also, as consequence of the definition (4) we have the following relations
between η and σ

η0 = ρ2eσ0 , η1 = η0σ1. (35)

Using these assumptions it is straightforward to obtain the linearization
of the equations presented in section 2.1. The result is the following.

Evolution equations:
The evolution equation for σ1 and ω1 are given by

−e
2u0

α2
0

ṗ+(3) ∆σ1 +
∂Aσ1∂

Aᾱ0

ᾱ0

=
2

η2
0

(
σ1|∂ω0|2 − ∂Aω1∂

Aω0

)
, (36)

−e
2u0

α2
0

ḋ+(3) ∆ω1 +
∂Aω1∂

Aᾱ0

ᾱ0

= 4
∂ρω1

ρ
+ 2∂Aω1∂

Aσ0 + 2∂Aω0∂
Aσ1, (37)
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where we have defined the following two useful auxiliary variables

p = σ̇1 − βA1 ∂Aσ0 − 2
βρ

ρ
, (38)

d = ω̇1 − βA1 ∂Aω0. (39)

The evolution equation for the metric and second fundamental form are
given by

2u̇1 = ∂Aβ
A
1 + 2βA1 ∂Au0, (40)

χ̇1AB = − (F1AB + α0G1AB) , (41)

where
F1AB = −2∂(Aα0∂B)u1 + δAB∂Cα0∂

Cu1, (42)

and

G1AB =
1

2η2
0

(∂Aη1∂Bη0 + ∂Aη0∂Bη1 + ∂Aω1∂Bω0 + ∂Aω0∂Bω1)

− σ1

η2
0

(∂Aη0∂Bη0 + ∂Aω0∂Bω0)

− δAB
2

[
1

η2
0

(
∂Cη0∂

Cη1 + ∂Cω0∂
Cω1

)
− σ1

η2
0

(
|∂η0|2 + |∂ω0|2

)]
. (43)

Constraint equations:
The momentum constraint and Hamiltonian constraints are given by

∂Bχ1AB = −e
2u0

2α0

(
p

(
∂Aσ0 + 2

∂Aρ

ρ

)
+
∂Aω0

η2
0

d

)
, (44)

(3)∆σ1 + ∆q1 = − ε1

4ρ
, (45)

where ε1 is the first order term of the energy density (18), that is

ε1 =

(
2∂Aσ0∂

Aσ1 +
2∂Aω0∂

Aω1

η2
0

− 2σ1|∂ω0|2
η2

0

)
ρ. (46)

Gauge equations:
We have seen that the first order lapse is zero. For the shift we have

(Lβ1)AB = 2e−2u0α0χ
AB
1 . (47)

We have presented above the complete set of axially symmetric linear
equations in the maximal–isothermal gauge. The conserved energy for this
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system of equation is calculated from the second variation of the energy
density (18) as follows. Assume that ψ(λ) has the following form

ψ(λ) = ψ0 + λψ1. (48)

That it, we assume that the second order derivative with respect to λ of ψ(λ)
vanishes at λ = 0. For this kind of linear perturbations we define the second
variation of ε as

ε2 =
d2ε(λ)

dλ2

∣∣∣∣
λ=0

. (49)

Using (18) we obtain

ε2 =

(
2e2u0

α2
0

(
p2 +

d2

η2
0

)
− 8

σ1∂Aω0∂
Aω1

η2
0

+

+2|∂σ1|2 + 4e−2u0χAB1 χ1AB + 2
|∂ω1|2
η2

0

+ 4
|∂ω0|2
η2

0

σ2
1

)
ρ. (50)

Note that ε2, in contrast with ε, is not positive definite.
For further reference we write also the zero order expression for the energy

density

ε0 =

(
|∂σ0|2 +

|∂ω0|2
η2

0

)
ρ, (51)

and the masses associated with the different orders of the energy density

m0 =
1

16

∫
R2
+

ε0 dρdz, (52)

m1 =
1

16

∫
R2
+

ε1 dρdz, (53)

m2 =
1

16

∫
R2
+

ε2 dρdz. (54)

Recall that ε1 has been calculated in (46).
We will prove that m1 vanished and that m2 is conserved and positive

definite. Since we are interested in the study of linear stability, it is impor-
tant for our present purpose (and also for future works on this subject) to
prove these statements using only the linear equations, without referring to
the original non-linear system. In the next sections we will perform these
proofs. However, from the conceptual point of view and for further possi-
ble applications to the non-linear stability problem, it is important also to
deduce these properties from the full equations. We discuss this point bellow.
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Consider a general one-parameter family of exact solutions ψ(λ) (i.e. we
are not assuming the particular linear form (48)). For this family we compute
the exact mass m(λ) given by equation (22). This quantity is conserved, that
is

dm(λ)

dt
= 0, (55)

This equation is valid for all λ. Taking derivatives with respect to λ of
equation (55) and then evaluating them in λ = 0 we obtain that

d

dt
m|λ=0 = 0, (56)

d

dt

dm

dλ

∣∣∣∣
λ=0

= 0, (57)

d

dt

d2m

dλ2

∣∣∣∣
λ=0

= 0. (58)

We can, of course, take more derivatives with respect to λ, but this will not
provide any useful conserved quantity for the linear equations.

It is clear that equations (56) and (57) are precisely

dm0

dt
= 0, (59)

dm1

dt
= 0, (60)

where m0 and m1 are given by (52) and (53) respectively.
The first equation (59) asserts that the mass of the background metric is

conserved. This is of course valid even when the background solution is not
stationary. In our case, since the background metric is stationary, not only
m0 is conserved but also the integrand ε0, given by equation (51), is time
independent, and hence the conservation (59) is trivial.

Since m1 depends only on the background solution ψ0 and the first order
perturbation ψ1 (recall that ψ0 and ψ1 are defined by (27) for a general
family ψ(λ)) then equation (60) asserts that m1 is a conserved quantity for
the linear equations. That is, from the exact conservation law (55) we have
deduced the conservation of m1 for the linear equations.

For a general background, m1 will be non-zero. However, using the Hamil-
tonian formulation of General Relativity, it is possible to show that the first
variation of the ADM mass vanishes on stationary solutions (see [8] and ref-
erence therein). In section 4 we explicitly perform this computation adapted
to our settings.
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For the third equation (58) the situation is different. This equation asserts
that the quantity

m̂2 =
d2m

dλ2

∣∣∣∣
λ=0

, (61)

is conserved
dm̂2

dt
= 0. (62)

However, m̂2 depends on the background solution ψ0, the linear perturbation
ψ1 but also on the second order perturbation

ψ2 =
d2ψ(λ)

dλ2

∣∣∣∣
λ=0

. (63)

Then m̂2 is not a quantity that can be computed purely in terms of the
background solution ψ0 and the linear perturbation ψ1 and hence it can not
be used for the linearized equations.

Note that the mass m2 defined in (54) is computed only using first order
perturbations (since we have assumed (48) to compute it). In principle, m2

and m̂2 are different quantities. Hence the conservation law

dm2

dt
= 0, (64)

can not be deduced directly from (62). But, as we will prove bellow, it turns
out that if the background is stationary and hence the first variation m1

vanishes, then we have m̂2 = m2.
Let us compute explicitly m̂2. We define

ε̂2 =
d2ε(λ)

dλ2

∣∣∣∣
λ=0

. (65)

We emphasize that in (65) we are not assuming (48) and hence this is different
from (49). The difference between ε2 and ε̂2 is given by

ε̂2 − ε2 =

(
2∂Aσ0∂

Aσ2 +
2∂Aω0∂

Aω2

η2
0

− 2σ2|∂ω0|2
η2

0

)
ρ. (66)

In this calculation we have assumed that the background is stationary in this
gauge (namely, we have assumed (28) and (29)). The difference between ε2

and ε̂2 involves, of course, the second order perturbation σ2 and ω2. However,
remarkably, the right hand side of (66) has exactly the same for as the first
variation ε1 if we replace σ1 and ω1 in ε1 (given by (46)) by σ2 and ω2. Hence,
if m1 vanishes on stationary solutions then m̂2 = m2 (that is, the integral
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of the right hand side of (66) vanishes). In fact, this result is general and
well known in the calculus of variations with non-linear variations (see, for
example, [30] p. 267).

Finally, let us discuss the sign of the second variation m2. On Minkowski,
the positive mass theorem clearly implies that the second variation of the
mass should be positive since flat space is a global minimum of the mass. In
the extreme Kerr case there is no obvious connection between the positivity
of the mass and the second variation. However, it has been proved that the
mass has a minimum at extreme Kerr under variations with fixed angular
momentum [18][20]. To prove the positivity of the second variation m2 on
extreme Kerr in section 4 we will use similar techniques as in those references.
As we pointed out above, for our purpose, it is important to prove this in
terms only of the linearized equations.

3 Minkowski perturbations

The natural first application of the linear equations obtained in section 2.2
is to study the linear stability of Minkowski in axial symmetry. The problem
of linear stability of Minkowski, without any symmetry assumptions, was
solved in [12] and the non-linear stability of Minkowski was finally proved
in [13]. The purpose of this section in to provide an alternative proof of the
linear stability of Minkowski in axial symmetry using the gauge presented in
the previous section. This is given in theorem 3.1 which constitutes the main
result of this section.

In comparison with the results in [12], theorem 3.1 has the obvious dis-
advantage that it only applies to axially symmetric perturbation. Moreover
in this theorem only pointwise boundedness of the solution is proved and not
precise decay rates as in [12]. However, the advantage of this result is that it
make use only of energy estimates that can be generalized to the black hole
case as we will see in section 4.

This system of linear equations was studied numerically in [24] and ana-
lytically in [25]. The main difficulty is that the system is formally singular at
the axis where ρ = 0. Theorem 3.1 generalize those works by including the
twist and, more important, by obtaining a pointwise estimate of the solution
in terms of conserved energies. We explain in more detail this point bellow.

The Minkowski background satisfies the assumptions (29). The value of
the other background quantities are the following

ω0 = q0 = σ0 = 0, (67)
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and
u0 = ln ρ, η0 = ρ2, α0 = ρ. (68)

Introducing the background quantities (67)–(68) on the linearized equations
obtained in section 2.2 we arrive at the following set of equations for the
linear axially symmetric perturbations of Minkowski.

Evolution equations:
The evolution equations for σ1 and ω1 are given by

−ṗ+ (3)∆σ1 = 0, (69)

−ω̈1 + (3)∆ω1 = 4
∂ρω1

ρ
, (70)

where we defined the auxiliary function p by

p = σ̇1 −
2βρ1
ρ
. (71)

The evolution equations for the metric and the extrinsic curvature are
given by

2u̇1 = ∂Aβ
A
1 + 2

βρ1
ρ
, (72)

χ̇1AB = 2∂(Aq1∂B)ρ− δAB∂ρq1. (73)

Constraint equations:
The momentum and the Hamiltonian constraints takes the following form

∂Aχ1AB = −p∂Bρ, (74)

∆q1 +(3) ∆σ1 = 0. (75)

Gauge equations for lapse and shift:
We have proved in section 2.2 that the first order lapse is zero. The

equation for the shift is given by

(Lβ1)AB =
2

ρ
χAB1 . (76)

For the mass density we have that

ε0 = ε1 = 0, (77)

and hence we have
m0 = m1 = 0. (78)
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The second order mass density is given by

ε2 =

(
2p2 + 2

ω̇2
1

ρ4
+ 2|∂σ1|2 + 2

|∂ω1|2
ρ4

+ 4
χAB1 χ1AB

ρ2

)
ρ. (79)

It is important to note that ε2, in the particular case of the Minkowski
background, is positive definite.

Before presenting the main result, let us first discuss two simple but
important properties of this set of equations. The first one (which only holds
for the Minkowski background) is that the equation for the twist ω1 (70)
decouples completely from the other equations 2. Then, it is useful to split
the density ε2 in two terms

ε2 = εσ + εω, (80)

where

εσ =

(
2p2 + 2|∂σ1|2 + 4

χAB1 χ1AB

ρ2

)
ρ, (81)

εω = 2
ω̇2

1

ρ3
+ 2
|∂ω1|2
ρ3

, (82)

and the corresponding masses

m2 = mσ +mω, (83)

where

mσ =

∫
R2
+

εσ dρdz, mω =

∫
R2
+

εω dρdz. (84)

Note that all the densities are positive definite.
Equation (70) is equivalent to the following homogeneous wave equation

− ¨̄ω1 +(7) ∆ω̄1 = 0, (85)

where (7)∆ is the Laplacian in 7-dimensions acting on axially symmetric
functions 3, namely

(7)∆ω̄1 = ∆ω̄1 + 5
∂ρω̄1

ρ
, (86)

2We thank O. Rinne for pointing this out to us before this work was started.
3The trick of writing the 2-dimensional equations that appears in axially symmetric

(which are formally singular at the axis) as regular equations in higher dimensions has
provided to be very useful. It has been used, in a similar context, in [44] and [2].
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and we have defined
ω̄1 =

ω1

ρ4
. (87)

That is, the dynamic of the twist potential is determined by a wave equation
and hence it is clear how to obtain decay estimates for the solution. In
contrast, the equations for σ1 are coupled and non-standard due to the formal
singular behaviour at the axis (see the discussion in [24] and [25]). The wave
equation (85) has associated the canonical energy density

εω̄ = 2
(

˙̄ω2
1 + |∂ω̄1|2

)
ρ5, (88)

and corresponding energy

mω̄ =

∫
R3

εω̄ dρdz. (89)

The factor ρ5 in (88) comes from the expression of the volume element in
7-dimensions in terms of the cylindrical coordinates dx7 = ρ5dρdz. The two
densities εω̄ and εω are related by a boundary term

εω̄ − εω = −4∂ρ

(
ω2

1

ρ4

)
, (90)

and hence mω̄ = mω provided ω1 satisfies appropriate boundary conditions.
Note that equation (85) suggests that ω̄1 and not ω1 is the most convenient
variable to impose the boundary conditions.

The second property (which will be also satisfied for the Kerr background
and in general for any stationary background) is the following. The coeffi-
cients of the equations do not depend on time, hence if we take a time deriva-
tive to all equations we get a new set of equations for the time derivatives
of the unknowns which are formally identical to the original ones. That is,
the variables σ1, ω1, u1, β1, χ1 satisfy the same equations as the time deriva-
tives σ̇1, ω̇1, u̇1, β̇1, χ̇1. And the same is of course true for any number of time
derivatives. In particular, if m is a conserved quantity, then we automatically
get an infinity number of conserved quantities which has the same form as
m but in terms of the n-th time derivatives of σ1, ω1, u1, β1, χ1. For example,
let us consider the mass mσ defined by (81) and (84). It depends on the the
functions p, σ1 and χ1, to emphasize this dependence we use the notation
mσ[p, σ1, χ1]. Then we define mσ[ṗ, σ̇1, χ̇1] as

mσ[ṗ, σ̇1, χ̇1] =

∫
R2
+

(
2ṗ2 + 2|∂σ̇1|2 + 4

χ̇AB1 χ̇1AB

ρ2

)
ρdρdz. (91)
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If mσ[p, σ1, χ1] is conserved along the evolution then also mσ[ṗ, σ̇1, χ̇1] is
conserved. The same applies for mω[ω1] and mω̄[ω̄1], for example we have

mω̄[ ˙̄ω1] =

∫
R2
+

(
¨̄ω2

1 + |∂ ˙̄ω1|2
)
ρ5dρdz. (92)

We will make use also of the higher order masses mω̄[ ¨̄ω1] and mω̄[
...
ω̄ 1].

Theorem 3.1. Consider a smooth solution of the linearized equations pre-
sented above that satisfies the fall off conditions at infinity (23) and the reg-
ularity conditions at the axis (24), (25). Assume also that

˙̄ω1, ω̄1 = O1(1), (93)

at the axis and
˙̄ω1, ω̄1 = o1(r−5/2), (94)

at infinity, where we have defined

ω̄1 =
ω1

ρ4
. (95)

Then, we have:

(i) The masses mσ, mω and mω̄ defined by (84) and (89) are conserved
along de evolution and mω = mω̄. And hence, all higher order masses
are also conserved.

(ii) The solution σ1, ω1 satisfy the following (time independent) bounds

C|σ1| ≤ mσ[p, σ1, χ1] +mσ[ṗ, σ̇1, χ̇1], (96)

C
|ω1|
ρ4
≤ mω[ω̈1] +mω[

...
ω 1], (97)

where C > 0 is a numerical constant.

The value of ω at the axis determines the angular momentum (see, for
example, [20]). Hence, the physical interpretation of the boundary conditions
(93) is that the perturbations do not change the angular momentum of the
background (which is zero in the case of Minkowski).

The conservation of mσ in point (i) was proved in [24] . For completeness
we review this proof and also we perform it in different variables which are
the appropriate ones for the extreme Kerr black hole case treated in the next
section.
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We have already shown that the equation for ω1 is decoupled and it can
be converted into an standard wave equation in higher dimensions. Hence the
dynamics of ω1 is well known. In particular one has the classical pointwise
estimates for solutions of the wave equation in 7-dimensions |ω̄1| ≤ t−3C,
where the constant C depends only on the initial data (see, for example,
[42]). We present the weaker estimate (97) because it can be proved using
only the conserved energies and is likely to be useful in the more complex
case of the Kerr black hole, where the pure wave equations estimates are not
available.

The most important part of theorem 3.1 is the estimate (96). In a pre-
vious work [25] the existence of solution of this set of equations was proved
using an explicit (but rather complicated) representation in terms of integral
transforms. In contrast, the a priori estimate (96) is proved in terms of only
the conserved masses in a remarkably simple way. This estimate is expected
to be useful in the non-linear regime.

Proof. (i) Since the equations are decoupled, we can treat the conservation
for mσ and mω separately. We begin with mσ. Taking the time derivative of
εσ we obtain

ε̇σ = 4ρpṗ+ 4ρ∂Aσ1∂
Aσ̇1 + 8

χAB1 χ̇1AB

ρ
. (98)

The strategy is to prove (using the linearized equations) that the right hand
side of (98) is a total divergence and hence it integrates to zero (under ap-
propriate boundary conditions). We calculate each terms individually.

For the first term we just use the definition of p given in equation (71) to
obtain

4ρpṗ = 4ρσ̇1ṗ− 8βρ1 ṗ. (99)

For the second term we obtain

4ρ∂Aσ1∂
Aσ̇1 = 4∂A (ρσ̇1∂Aσ1)− 4σ̇1∂

A (ρ∂Aσ1) , (100)

= 4∂A (ρσ̇1∂Aσ1)− 4ρσ̇1
(3)∆σ1, (101)

= 4∂A (ρσ̇1∂Aσ1)− 4ρσ̇1ṗ, (102)

where in line (101) we have used the definition of the operator (3)∆ given in
equation (6) and in line (102) we have used equation (69).
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Figure 1: Domain of integration in R2
+.

Finally, for the third term we have

8
χAB1 χ̇1AB

ρ
= 4(Lβ1)ABχ̇1AB, (103)

= 8∂AβB1 χ̇1AB, (104)

= 8∂A
(
βB1 χ̇1AB

)
− 8βB1 ∂

Aχ̇1AB, (105)

= 8∂A
(
βB1 χ̇1AB

)
+ 8ṗβρ1 , (106)

where in line (103) we have used the gauge equation (76), in line (104) the
fact that χ1AB is trace-free and in line (105) we have used the time derivative
of equation (74).

Summing these results we see that only the total divergence terms remain.
That is

ε̇σ = ∂At
A, (107)

where
tA = 4ρσ̇1∂Aσ1 + 8βB1 χ̇1AB. (108)

We integrate (107) in the half disk DL of radius L in R2
+, where CL denote

the semi-circle of radius L, see figure 1. Using the divergence theorem in
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2-dimensions we obtain∫
DL

ε̇σ dρdz =

∫
DL

∂At
A dρdz, (109)

=

∫
∂DL

tAnA ds, (110)

= −
∫ L

−L
tρ|ρ=0 dz +

∫
CL

tAnA ds. (111)

where nA is the outwards unit normal vector and ds the line element of CL.
The integrated of the first term in line (111) is given by

tρ = 4ρσ̇1∂ρσ1 + 8βρ1 χ̇1ρρ + 8βz1 χ̇1ρz. (112)

The first term clearly vanished at the axis ρ = 0. The second and third term
also vanish at the axis since the regularity conditions (25) implies that βρ1
and χ1ρz are zero at the axis. Hence we obtain∫

DL

ε̇σ dρdz =

∫
CL

tAnA ds. (113)

Taking the limit L→∞ and using the fall off conditions (23) we obtain that
the integral vanished and hence ṁσ = 0 (recall that on CL we have ds = rdθ
where tan θ = z/ρ).

The conservation of mω is similar. We take the time derivative of the
mass density εω

ε̇ω = 4
ω̇1ω̈1

ρ3
+ 4

∂Aω1∂
Aω̇1

ρ3
. (114)

For the first term we have

4
ω̇1ω̈1

ρ3
= 4

ω̇1

ρ3

(
∂A∂Aω1 −

3∂ρω1

ρ

)
, (115)

where we have used equation (70).
For the second term we have

4
∂Aω1∂

Aω̇1

ρ3
= 4∂A

(
ω̇1∂Aω1

ρ3

)
− 4

ω̇1

ρ3

(
∂A∂Aω1 −

3∂ρω1

ρ

)
. (116)

Hence we obtain
ε̇ω = ∂At

A, (117)

with

tA = 4
ω̇1∂Aω1

ρ3
. (118)
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Integrating in the same domain as above and using the behavior at the axis
(93) and the fall off conditions (94) at infinity we obtain that ṁω = 0. Finally,
the equality mω = mω̄ is deduced from (90) and the assumption (93).

(ii) To prove the estimate (96) note that we have the following bounds

mσ[p, σ1, χ1] ≥
∫
R2
+

|∂σ1|2ρ dρdz, (119)

mσ[ṗ, σ̇1, χ̇1] ≥ 2

∫
R2
+

ṗ2ρ dρdz = 2

∫
R2
+

(
(3)∆σ1

)2
ρ dρdz, (120)

where in the last equality of line (120) we have used equation (69). The right
hand side of (120) can be written in the following form∫

R2
+

(
(3)∆σ1

)2
ρ dρdz =

∫
R3

((3)∆σ1)2 dx3, (121)

=

∫
R3

|∂2σ1|2 dx3. (122)

where in the right hand side of line (121) we have changed from cylindrical
coordinates (ρ, z) to Cartesian coordinates (x, y, z) in R3, with x = ρ cosφ,
y = ρ sinφ. For axially symmetric functions (i.e. functions in R3 that do
not depends on φ) we have that dx3 = ρ dρdz. In Cartesian coordinates the
Laplacian (3)∆ is given by

(3)∆σ1 = ∂2
xσ1 + ∂2

yσ1 + ∂2
zσ1. (123)

And in line (122) we have integrated by parts, due to the fall off assumptions
on σ1 the boundary terms vanishes. In this equation |∂2σ1|2 denote the sum
of the squares of all second derivatives in terms of the Cartesian coordinates
in R3, that is

|∂2σ1|2 = (∂2
xσ1)2 + (∂2

yσ1)2 + (∂2
zσ1)2 + (∂x∂yσ1)2 + (∂x∂zσ1)2 + (∂y∂zσ1)2.

(124)
From (122), (120) and (119) we obtain the following crucial estimate

mσ[p, σ1, χ1] +mσ[ṗ, σ̇1, χ̇1] ≥
∫
R3

(
|∂2σ1|2 + |∂σ1|2

)
dx3. (125)

Note that on the right hand side of (125) there are no terms with σ2
1 and hence

we can not use directly the standard Sobolev estimate to control pointwise
the solution σ1. However, using the estimate given by lemma B.1 with n = 3
and k = 2 we obtain the desired result (96).
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To obtain the estimate (97) for ω̄1, we proceed in a similar manner. From
the definition of mω̄ we obtain

mω̄ ≥
∫
R2
+

|∂ω̄1|2ρ5 dρdz =

∫
R7

|∂ω̄1|2 dx7, (126)

where we have used that dx7 = ρ5dρdz. For the higher order masses we have

mω̄[ ˙̄ω1] ≥
∫
R2
+

¨̄ω2
1ρ

5 dρdz, (127)

=

∫
R7

((7)∆ω̄1)2 dx7, (128)

=

∫
R7

|∂2ω̄1|2 dx7, (129)

where in line (128) we have used the wave equation (85) and in line (129)
we have integrated by part and used that ω̄1 decay at infinity. In a similar
way, we obtain that energies with n-time derivatives control n + 1 spatial
derivatives, in particular

mω̄[ ¨̄ω1] ≥
∫
R7

|∂3ω̄1|2 dx7, (130)

mω̄[
...
ω̄ 1] ≥

∫
R7

|∂4ω̄1|2 dx7. (131)

Using the bound (130), (131) and Lemma B.1 with n = 7 and k = 4 the
estimate (97) follows.

We finally remark that in the proof of the conservation of m2 we have
used only the evolution equations for σ1 and ω1, the time derivative of the
momentum constraint and the gauge equation for the shift.

4 Extreme Kerr perturbations

In this section we study the linearized equation obtained in section 2.2 for
the case of extreme Kerr background. The main difference with respect to
the previous case of Minkowski is that the background quantities q0, σ0, ω0

are not zero. However, we still have that (see appendix A)

α0 = ρ. (132)
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This is the main remarkably simplification of the extreme Kerr case compared
with the non-extreme Kerr black hole.

For the explicit form of (q0, σ0, ω0) see the appendix A. These functions
depend on one parameter, the mass m0 of the black hole. This mass is given
by (52). The only properties of these functions that we will are the following.
They satisfy the stationary equations

(3)∆σ0 =
|∂ω0|2
η2

0

, (133)

∂A
(
ρ∂Aω0

η2
0

)
= 0. (134)

They satisfy the fall off conditions (23), (26). They satisfy the following
inequality in R2

+ (i.e. including both the origin and infinity) (see [18])

|∂ω0|2
η2

0

≤ C

r2
, |∂σ0|2 ≤

C

r2
, (135)

where C is a constant that depends only on m0. Finally, near the axis we
have

∂ρω0

η0

= O(ρ). (136)

The complete set of linearized equations, in axial symmetry, for the ex-
treme Kerr black hole is the following.

Evolution equations:
The evolution equations for σ1 and ω1 are given by

−e
2u0

ρ2
ṗ+(3) ∆σ1 =

2

η2
0

(
σ1|∂ω0|2 − ∂Aω1∂

Aω0

)
, (137)

−e
2u0

ρ2
ḋ+(3) ∆ω1 = 4

∂ρω1

ρ
+ 2∂Aω1∂

Aσ0 + 2∂Aω0∂
Aσ1, (138)

with

p = σ̇1 − 2
βρ1
ρ
− βA1 ∂Aσ0, (139)

d = ω̇1 − βA1 ∂Aω0. (140)

The evolution equation for the metric and the second fundamental are ob-
tained replacing (132) in equations (40) and (41). No relevant simplification
occur in these equations compared with the general expressions (40) and
(41), and hence we do not write them again in this section. Also, we will not
make use of these equations in the proof of theorem 4.1.
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Constraint equations:
The momentum constraint and Hamiltonian constraint are given by

∂Bχ1AB = −e
2u0

2ρ

(
p

(
2
∂Aρ

ρ
+ ∂Aσ0

)
+
∂Aω0

η2
0

d

)
, (141)

(3)∆σ1 + ∆q1 = − ε1

4ρ
, (142)

where ε1 is given by

ε1 =

(
2∂Aσ0∂

Aσ1 +
2∂Aω0∂

Aω1

η2
0

− 2σ1|∂ω0|2
η2

0

)
ρ. (143)

Gauge equations:
For the shift we have

(Lβ1)AB = 2e−2u0ρχAB1 . (144)

The energy density ε2 defined previously in equation (49) is given by

ε2 =

(
2
e2u0

ρ2
p2 + 2

e2u0

ρ2η2
0

d2 + 4e−2u0χAB1 χ1AB+

+2|∂σ1|2 + 2
|∂ω1|2
η2

0

+ 4
|∂ω0|2
η2

0

σ2
1 − 8

∂Aω0∂
Aω1σ1

η2
0

)
ρ (145)

Note that the energy density (145) is not positive definite and hence it is
by no means obvious that the energy m2 is positive.

Theorem 4.1. Consider a smooth solution of the linearized equations pre-
sented above, such that it satisfies the fall off decay conditions at infinity
(23), the decay conditions at the extra asymptotic end at the origin (26) and
the regularity conditions (24), (25) at the axis. Assume also that ω1 satisfies
the following conditions. At the axis we have

˙̄ω1, ω̄1 = O1(1), (146)

and both at infinity and at the origin we impose

˙̄ω1, ω̄1 = o1(r−5/2), (147)

where we have defined

ω̄1 =
ω1

η2
0

. (148)

Then, we have:
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Figure 2: Domain of integration in R2
+ for the extreme Kerr black hole.

(i) The first order mass m1 defined by (53) with ε1 given by (143) vanishes
m1 = 0. The second order mass m2 defined by (54) with ε2 given by
(145) is equal to the following expression, which is explicitly definite
positive

m2 =
1

16

∫
R2
+

ε̄2 ρdρdz, (149)

where

ε̄2 =

(
2
e2u0

ρ2
p2 + 2

e2u0

ρ2η2
0

d2 + 4e−2u0χAB1 χ1AB+

+
(
∂σ1 + ω1η

−2
0 ∂ω0

)2
+
(
∂
(
ω1η

−1
0

)
− η−1

0 σ1∂ω0

)2
+

+
(
η−1

0 σ1∂ω0 − ω1η
−2
0 ∂η0

)2
)
ρ. (150)

(ii) The mass m2 is conserved along the evolution.

Note that the boundary condition (146) at the axis (outside the origin)
is identical to the one used in Minkowski in section 3, since η0 behaves like
ρ2 at the axis.

Proof. (i) We first prove that m1 = 0. Take the density ε1 given by (143),
for the first term we have

2ρ∂Aσ0∂
Aσ1 = 2∂A (ρσ1∂Aσ0)− 2σ1∂

A (ρ∂Aσ0) , (151)

= 2∂A (ρσ1∂Aσ0)− 2ρσ1
(3)∆σ0, (152)

= 2∂A (ρσ1∂Aσ0)− 2ρσ1
|∂ω0|2
η2

0

, (153)
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where in line (152) we have used the definition of (3)∆ given by equation (6)
and in line (153) we have used the stationary equation (133).

For the second term we have

2ρ∂Aω0∂
Aω1

η2
0

= 2∂A
(
ρω1∂Aω0

η2
0

)
− 2ω1∂

A

(
ρ∂Aω0

η2
0

)
, (154)

= 2∂A
(
ρω1∂Aω0

η2
0

)
, (155)

where in line (155) we have used the stationary equation (134). Summing
up these terms we find

ε1 = ∂At
A, (156)

where

tA = 2ρσ1∂Aσ0 + 2ρω1
∂Aω0

η2
0

. (157)

We integrate equation (156) in the domain showed in figure 2 for some finite
δ and L with 0 < δ < L. At the axis the axis the first term in (157) clearly
vanished. The second term also vanishes by the assumption (146) and the
behavior (136) of the background quantities. Hence, the integral of (156)
contains only the two boundary terms Cδ and CL. Then, we take the limit
δ → 0 and L → ∞. Using the assumptions (147) on ω1, the assumptions
(23) and (26) on σ1 and the background fall off (135) we obtain that these
two boundary integrals vanish. Hence, it follows that m1 = 0.

We prove now the positivity of m2. The proof is identical to the proof of
positivity presented in section 3 of [18], which is based on the Carter identity
[10]. The last four terms in (145) are identical to the integrand of equation
(24) in [18] (in that reference a different notation is used, namely σ1 = α,
ω1 = y, η0 = X and ω0 = Y ). Then, Carter identity given by equation (57)
in [18] in the notation of this article can be written as

ε̄2 − ε2 = ∂At
A, (158)

where

tA = 2ρ

(
2σ1∂Aσ1 + ω1

∂Aω1

η2
0

− 2σ1ω1
∂Aω0

η2
0

+
ω1

η0

∂A

(
ω1

η0

))
, (159)

and ε̄2 is given by (150). Recall that the divergence term in the right hand
side of equation (158) has two contributions, one is the right hand side of
equation (57) in [18] and the other comes from the integration by parts in
equation (63) in [18]. Also note that in [18] Cartesian coordinates in R3 are
used for the integration, and here we use cylindrical coordinates, and hence

28



the factor ρ appears in (159). Integrating equation (158) and using the fall
off conditions at infinity and at the axis it follows that m2 is given by (149)
and hence it is positive.

(ii) To prove the conservation of m2 we take a time derivative of the mass
density (145), we obtain

ε̇2 = 4
e2u0

ρ
pṗ+ 4

e2u0

ρη2
0

dḋ+ 8e−2u0ρχAB1 χ̇1AB+

+4ρ∂Aσ1∂
Aσ̇1+4ρ

∂Aω1∂
Aω̇1

η2
0

−8ρσ1
∂Aω0

η2
0

∂Aω̇1+8ρ
|∂ω0|2σ1σ̇1

η2
0

−8ρσ̇1
∂Aω0

η2
0

∂Aω1.

(160)

The strategy is very similar (but the calculations are more lengthy) than in
the Minkowski case discussed in section 3: using the linearized equations we
will write the right hand side of (160) as a total divergence. We proceed
analyzing term by term.

For the first two terms we just use the definition of p and d given in
equations (139) and (140) respectively. We obtain

4
e2u0

ρ
pṗ = 4

e2u0

ρ
ṗ

(
σ̇1 −

2βρ1
ρ
− βA1 ∂Aσ0

)
, (161)

4
e2u0

ρη2
0

dḋ = 4
e2u0

ρη2
0

ḋ
(
ω̇1 − βA1 ∂Aω0

)
. (162)

For the third term we have

8e−2u0ρχAB1 χ̇1AB = 8χ̇AB1 ∂Aβ1B, (163)

= 8∂A(β1Bχ̇
AB
1 )− 8β1B∂Aχ̇

AB
1 , (164)

= 8∂A(β1Bχ̇
AB
1 ) + 4

e2u0

ρ

(
ṗ

(
2
βρ1
ρ

+ βA1 ∂Aσ0

)
+ ḋ

βA1 ∂Aω0

η2
0

)
,

(165)

where in the line (163) we have used equation (144) and the fact that χAB1 is
trace free and in the line (165) we have used the time derivative of equation
(141).

For the fourth term we have

4ρ∂Aσ1∂
Aσ̇1 = 4∂A(ρσ̇1∂

Aσ1)− 4σ̇1∂
A(ρ∂Aσ1), (166)

= 4∂A(ρσ̇1∂
Aσ1)− 4σ̇1ρ

(3)∆σ1, (167)

= 4∂A(ρσ̇1∂
Aσ1)− 4

σ̇1ṗe
2u0

ρ
+ 8

σ̇1

η2
0

ρ∂Aω1∂
Aω0 − 8

σ̇1σ1ρ|∂ω0|2
η2

0

,

(168)
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where in line (167) we used the definition of the operator (3)∆ given by
equation (6), in line (168) we used equation (137).

For the fifth term we obtain

4ρ
∂Aω̇1∂

Aω1

η2
0

= 4∂A
(
ρω̇1∂Aω1

η2
0

)
− 4ω̇1∂

A

(
ρ∂Aω1

η2
0

)
, (169)

= 4∂A
(
ρω̇1∂Aω1

η2
0

)
− 4

ρω̇1

η2
0

(
(3)∆ω1 −

4∂ρω1

ρ
− 2∂Aω1∂

Aσ0

)
,

(170)

= 4∂A
(
ρω̇1∂Aω1

η2
0

)
− 4

e2u0

ρη2
0

ḋω̇1 − 8
ρω̇1∂Aω0∂

Aσ1

η2
0

, (171)

where in line (170) we have used the definition of the operator (3)∆ given in
equation (6) and the definition of η0 given in equation (35). In the line (171)
we have used the evolution equation (138).

For the sixth term we obtain

−8ρσ1
∂Aω0∂

Aω̇1

η2
0

= −8∂A
(
ρω̇1σ1

∂Aω0

η2
0

)
+ 8ω̇1∂

A

(
ρσ1

∂Aω0

η2
0

)
, (172)

= −8∂A
(
ω̇1σ1

∂Aω0

η2
0

)
+ 8ρω̇1

∂Aω0∂
Aσ1

η2
0

+ 8ω̇1σ1∂
A

(
ρ∂Aω0

η2
0

)
,

(173)

= −8∂A
(
ω̇1σ1

∂Aω0

η2
0

)
+ 8ρω̇1

∂Aω0∂
Aσ1

η2
0

, (174)

where in line (174) we have used the stationary equation (134).
We sum the six terms obtained above plus the two last terms in (160),

only the divergence terms survive, we obtain

ε̇2 = ∂At
A, (175)

where

tA = 4ρσ̇1∂
Aσ1 + 8β1Bχ̇

AB
1 + 4

ρω̇1∂
Aω1

η2
0

− 8ω̇1σ1
∂Aω0

η2
0

. (176)

Remarkably we get only one extra term compared with the Minkowski case
(compare (176) with the sum of (108) and (118)).

We integrate equation (175) in the domain showed in figure 2. The bound-
ary term at the axis vanished by the hypothesis (25). Then, we take the limit
δ → 0 and L → ∞, and the other two boundary integrals also vanished by
the fall off conditions (23), (26) and (146), (147).
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A Kerr black hole in the maximal-isothermal

gauge

In this appendix we explicitly write the Kerr black hole metric in the maximal
– isothermal gauge described in section 2. In particular, we show that in this
gauge the metric satisfies the conditions (29).

The Kerr metric, with parameters (m, a), in Boyer-Lindquist coordinates
(t, r̃, θ, φ) is given by

g = −V dt2 + 2Wdtdφ+
Σ

Ξ
dr̃2 + Σdθ2 + ηdφ2, (177)

where
Ξ = r̃2 + a2 − 2mr̃, Σ = r̃2 + a2 cos2 θ, (178)

and

V =
Ξ− a2 sin2 θ

Σ
, (179)

W = −2mar̃ sin2 θ

Σ
, (180)

η =

(
(r̃2 + a2)2 − Ξa2 sin2 θ

Σ

)
sin2 θ. (181)

The angular momentum is given by

J = ma. (182)

The metric (177) is stationary and axially symmetric because it has the
following two Killing vectors

ξµ =

(
∂

∂t

)µ
, ην =

(
∂

∂φ

)ν
, (183)

where ξµ is timelike near infinity (i.e. outside the ergosphere) and ηµ is
spacelike and it vanished at the axis. The scalars (179), (180) and (181) are
written in terms of the Killing vectors as follows

V = −ξµξνgµν , η = ηµηνgµν , W = ηµξνgµν . (184)
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In particular, η is the square norm of the axial Killing vector ηµ. In these
equations we are using 4-dimensional indices µ, ν · · · .

The twist potential ω of the axial Killing vector ηµ is given by

ω = 2ma(cos3 θ − 3 cos θ)− 2ma3 cos θ sin4 θ

Σ
. (185)

The 3-dimensional Lorenzian metric h on the quotient manifold (see equa-
tion (26) on [24], we follow the notation of that article) is defined by

ηgµν = hµν + ηµην . (186)

Using the explicit form of the Kerr metric (177) and the Killing vector ηµ we
obtain that h is given by

h = −(V η +W 2)dt2 +
ηΣ

Ξ
dr̃2 + ηΣdθ2. (187)

For the Kerr metric, the following remarkably relation holds

V η +W 2 = Ξ sin2 θ. (188)

Using (188) we further simplify the expression for the metric h

h = −Ξ sin2 θdt2 +
ηΣ

Ξ
dr̃2 + ηΣdθ2. (189)

This metric is static. The foliation t = constant has zero extrinsic curvature
and hence it is a maximal foliation. The shift of this foliation also vanished,
then the condition (29) is satisfied. However, the coordinates (r̃, θ) are not
isothermal because they do not satisfy the condition (2).

To introduce isothermal coordinates we will assume that m ≥ |a| (i.e. the
Kerr metric (177) describe a black hole). Let r be defined as the positive
root of the equation

r̃ = r +m+
m2 − a2

4r
, (190)

that is

r =
1

2

(
r̃ −m+

√
Ξ
)
. (191)

We have

dr̃ =

√
Ξ

r
dr. (192)

We define the cylindrical coordinates (ρ, z) in terms of the spherical coordi-
nates (r, θ) by the standard formula

ρ = r sin θ, z = r cos θ. (193)
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Then the metric h in the new coordinate system (t, ρ, z) is given by

h = −α2dt2 + e2u(dρ2 + dz2), (194)

where

α =
√

Ξ sin θ = ρ

(
1− (m2 − a2)

4r2

)
, (195)

and

e2u =
ηΣ

r2
. (196)

The intrinsic metric of the t = constant of the slices is

q = e2u
(
dρ2 + dz2

)
. (197)

That is, the coordinates system is isothermal.
The function σ is defined in terms of the norm η by

eσ =
η

ρ2
, (198)

The function q is given by

e2q =
sin2 θΣ

η
, (199)

We have the relation
u = q + σ + log ρ. (200)

Note that the lapse satisfies the maximal gauge condition

∆α = 0. (201)

In the extreme case m = |a| and hence we have

α = ρ. (202)

B A Sobolev like estimate

In this appendix we prove the following Sobolev type estimate.

Lemma B.1. There exists a constant C > 0 such that for all u ∈ C∞0 (Rn),
with n ≥ 3, the following inequality holds

C

(∫
Rn

(
|∂ku|2 + |∂k−1u|2

)
dxn
)1/2

≥ sup
x∈Rn

|u(x)|, (203)

where k > n/2.
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Proof. The estimate (203) will be a consequence of the following two classi-
cal estimates. The first one is the Gagliardo-Nirenberg-Sobolev inequality:
assume that 1 ≤ p < n, then exists a constant C, depending only on p and
n, such that

||u||Lq(Rn) ≤ C||∂u||Lp(Rn), (204)

for all u ∈ C∞0 (Rn), where

q =
pn

n− p. (205)

The second estimate is the Morrey’s inequality: assume n < p ≤ ∞, then
there exists a constant depending only on p and n, such that

sup
x∈Rn

|u(x)| ≤ C||u||W 1,p(Rn). (206)

See [27] for an elementary and clear presentation of these inequalities and
the functional spaces Lp(Rn), W 1,p(Rn) involved in them.

We first observe that the estimate (204) can be iterated as follows:

||u||Lpk (Rn) ≤ C||∂ku||Lp(Rn), (207)

where 1 ≤ k ≤ n/p, 1 < p and pk is given by

pk =
pn

n− pk . (208)

To prove (207) we use induction in k. For k = 1 the inequality (207) reduces
to (204). Assume that (207) is valid for k. If ∂k+1u ∈ Lp(Rn), then by (204)
we obtain that ∂ku ∈ Lq(Rn) with q given by

q =
pn

n− p. (209)

By the inductive hypothesis we obtain that u ∈ Lqk(Rn) with

qk =
qn

n− qk . (210)

We substitute (209) in (34) to obtain

qk =
pn

n− (k + 1)p
. (211)

And then the desired result is proved.
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To prove (203), note that the left hand side of (203) implies that ∂k−1w, ∂k−1u ∈
L2(Rn) where w = ∂u. Then, we apply the inequality (207) for both w and
u, to obtain that w, u ∈ Lp(Rn), with p given by

p =
2n

n− 2k + 2
. (212)

By hypothesis k > n/2, then we obtain that p > n. Hence, we have proved
that u ∈ W 1,p(Rn) with p > n. We use the Morrey inequality (206) and the
desired result follows.
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