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According to the World Health Organization there are over 220 million people in the world with diabetes
and 3.4 million people died in 2004 as a consequence of this pathology. Development of an artificial pan-
creas would allow to restore control of blood glucose by coupling an infusion pump to a continuous glu-
cose sensor in the blood. The design of such a device requires the development and application of
mathematical models which represent the gluco-regulatory system. Models developed by other research
groups describe very well the gluco-regulatory system but have a large number of mathematical equa-
tions and require complex methodologies for the estimation of its parameters. In this work we propose
a mathematical model to study the homeostasis of glucose and insulin in healthy rats. The proposed
model consists of three differential equations and 8 parameters that describe the variation of: blood glu-
cose concentration, blood insulin concentration and amount of glucose in the intestine. All parameters
were obtained by setting functions to the values of glucose and insulin in blood obtained after oral glu-
cose administration. In vivo and in silico validations were performed. Additionally, a qualitative analysis
has been done to verify the aforementioned model. We have shown that this model has a single, biolog-
ically consistent equilibrium point. This model is a first step in the development of a mathematical model
for the type I diabetic rat.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Glucose homeostasis is a complex mechanism involving endo-
crine, autocrine, paracrine and metabolic factors. This homeostatic
process results in constancy of blood glucose concentration or in its
variation within very narrow limits, even in intake or deprivation
of food states. This adjusted response is due to the action of hor-
mones such as insulin, which could be considered the main effec-
tors of the system.

Deficiency in insulin production or the lack of tissue response to
it generates well-characterized clinical conditions such as DMTI
and DMTII. DMTI treatment usually requires the administration
of insulin; this may be done with single injections or using infusion
pumps. These devices are programmed according to the activities
and meals of the patient, obtaining good results. The final solution
for the treatment of diabetes would be an infusion pump coupled
to a continuous glucose sensor in blood, constituting an artificial
pancreas. The development of this technology requires the inter-
vention of mathematical modeling processes that characterize
the system in a quantitative way, and measurement of biological
variables involved in the homeostatic system.

During the past 40 years numerous mathematical models of the
gluco-regulatory system have been developed in the field of diabe-
tes with different purposes. These mathematical models have been
geared towards the design of controllers of glucose for obtaining an
artificial pancreas. One of the main characteristics of this type of
simulating models is that they should be able to represent, where
possible, the intra and inter patient variability of their parameters.

There are many mathematical models that describe the insulin–
glucose interaction of the endocrine system. The Sorensen [1] mod-
el divides the body into compartments. This model was originally
developed to represent a healthy subject utilizing 22 nonlinear dif-
ferential equations including 3 equations to describe the endoge-
nous insulin secretion. The parameter values were derived from
the literature and hence could only represent a nominal ‘average’
virtual subject with DMTI. As all the parameters of this model
are time-invariant the model fails to represent the within-subject
variability.

The Fabietti [2] model is a dynamic model of glucose–insulin
specifically conceived to facilitate the design and evaluation of
control algorithms. It is based in the minimal model of Bergman
[3]. In this model endogenous insulin secretion is substituted by
insulin subcutaneous injection, and glucose kinetics is represented
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Fig. 1. The glucose–insulin system. The solid lines represent flow of glucose or
insulin and the dotted lines the stimulatory ( ) or inhibitory ( ) effect. G:
blood glucose concentration (mg dl�1), I: blood insulin concentration (pmol l�1), D0:
glucose intake (mg), k0: rate constant of blood glucose incorporation from diet
(dl�1 min�1), k1: rate constant of insulin secretion (pmol dl min�1 mg�1 l�1), k2: rate
constant of insulin-dependent glucose uptake by the tissues (mg l dl�1 min�1 pmol�1),
k3: rate constant of insulin-independent glucose uptake by the tissues (mg min�1 dl�1),
k4: rate constant of uptake (glycogenesis) or production of glucose (by glycogen-
olysis and/or gluconeogenesis) by the liver (mg l dl�1 min�1 pmol�1), k6: rate
constant of blood insulin clearance (min�1).
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by two compartments. External inputs of the model such as meals
and glucose administration have been added in the sub-model of
glucose absorption from the gastrointestinal tract. An interesting
feature of the intestinal absorption model is that it allows distin-
guishing between fast and slow absorption carbohydrates. Another
interesting feature is the sinusoidal representation of the circadian
variability of insulin sensitivity. Four of 14 parameters of the mod-
el were estimated from clinical data. The others parameters of the
model were obtained from fitting data published in the literature.

The Hovorka [4] model includes three compartment sub-mod-
els: subcutaneous insulin kinetics, subcutaneous glucose kinetics,
and glucose absorption from the gastrointestinal tract. On the
whole, the model is composed of 9 ordinary differential equations
and 15 parameters. The parameters of the model were obtained
either from clinical studies in subjects with type 1 diabetes or from
population probability distributions.

The UVa Simulator [5] was developed from data collected from
204 normal subjects who participated in a protocol with isotopi-
cally labeled glucose. The use of such tracers allowed the measure-
ment of the flows of glucose and insulin after ingestion of a mixed
meal. Subsequently, the model was adapted to the diabetic popu-
lation with data obtained from the literature. On the whole, the
model has 13 ordinary differential equations and 26 parameters.
The greatest novelty of this model is a more detailed description
of the transit of glucose through the intestine.

The main disadvantages of the mentioned models lie in the
large number of parameters and the complex metabolic studies
that should be performed to estimate them. This compels to work
with average values that decrease the validity of the results and
the applicability of the models.

In this work we propose a mathematical model to study the
homeostasis of glucose and insulin in healthy rats. Additionally, a
quantitative and qualitative analysis has been done to verify the
aforementioned model. The values of the rate constants for the
homeostatic processes were obtained using experimental data of
blood glucose and insulin. Finally, the validation of the model
was achieved using situations with known effects over glucose
and insulin homeostasis. For example: NaF and physical activity.
The NaF is an important disrupting component of the system that
produces inhibition of insulin secretion after a dose [6,7]. Physical
activity causes increased response of insulin receptors, improving
the effect of this hormone in target tissues. Physical activity rises
glucose uptake by muscle tissue by increasing the number of
GLUT4 transporters [8], producing a higher insulin sensitivity [9].

The advantage of this model lies in the possibility of obtaining
all the parameters for each animal. In addition, the parameters
are obtained from blood glucose and insulin levels, common bio-
chemical measurements.
2. Model formulation

Fig. 1 shows a representative diagram of the biological model
used for the development of the mathematical model.

The proposed model consists of three differential equations that
describe the variation of: blood glucose concentration (G), blood
insulin concentration (I) and amount of glucose in the intestine (D).

dI=dt ¼ k1G� k6I ð1Þ

dG=dt ¼ �k4ðI � IpiÞ � k2I � k3 þ k0D ð2Þ

dD=dt ¼ �kaD ð3Þ

System 1
Equation (1) represents the variation of blood insulin concen-

tration. The term k1G represents the pancreatic insulin secretion,
which is regulated by blood glucose concentration; and the k6I
term represents blood insulin clearance.

Equation (2) represents the variation of blood glucose concen-
tration. The term k4 (I � Ipi) models the hepatic handling of glucose.
It is a positive term when the blood insulin concentration is lower
than Ipi (indicating the contribution of blood glucose by glycogen-
olysis and gluconeogenesis) and a negative term when blood insu-
lin concentration is higher than Ipi (indicating the uptake of glucose
by the liver for glycogenesis, glycolysis, or synthesis of lipids). Ipi is
a parameter that represents the blood insulin concentration when
the liver changes from the uptake to the production of glucose. The
k3 term represents the insulin-independent glucose uptake by the
tissues. The k2I term represents the insulin-dependent glucose up-
take by the tissues and k0D the variation in blood glucose concen-
tration due to the oral administration of glucose.

Equation (3) represents the variation of glucose in the intestine,
where the ka parameter is the rate constant of glucose absorption.
3. Mathematical analysis

We performed the study of the characteristics of the solutions
by analyzing the nature of the eigenvalues and eigenvectors of
the matrix of the coefficients.

The proposed system is:

dI=dt ¼ �k6I þ k1G
dG=dt ¼ �ðk2 þ k4ÞI þ k0D� k3 þ k4Ipi

dD=dt ¼ �kaD

8><
>:

System 2
Subject to the following initial conditions

Ið0Þ ¼ Ia; Gð0Þ ¼ Ga; Dð0Þ ¼ D0

The differential equations system presented is a linear system
of the first order, inhomogeneous with constant coefficients;
ensuring the existence and uniqueness of a solution to the initial
values problem posed.

The stationary or equilibrium points of System 2 are obtained
by solving the following algebraic system:

�k6I þ k1G ¼ 0 ð4Þ

�ðk2 þ k4ÞI þ k0D� k3 þ k4Ipi
¼ 0 ð5Þ

�kaD ¼ 0 ð6Þ
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System 3
The following values were obtained.
From Equation (6) D⁄ = 0
Replacing in Equation (5) was obtained:

I� ¼ k4Ipi
� k3

k2 þ k4

Replacing in Equation (4) was obtained:

G� ¼ k6I�=k1

Thus the equilibrium point is: (I⁄;G⁄;D⁄)
Furthermore, if we consider that: D⁄ = 0, G⁄ is fasting blood glu-

cose concentration and I⁄ is fasting blood insulin concentration.
From this analysis and considering that I > 0 we reached the fol-

lowing condition:

k4Ipi
� k3 > 0

This condition was verified in each animal when the model was
tested in vivo (see below).

The matrix of coefficients of System 2 is:

A ¼
�k6 k1 0

�ðk2 þ k4Þ 0 k0

0 0 �ka

0
B@

1
CA

The eigenvalues of this matrix are:

k1 ¼ �ka

k2 ¼ �k6=2þ
ffiffiffiffi
D
p

=2 where D ¼ k2
6 � 4k1ðk2 þ k4Þ

k3 ¼ �k6=2�
ffiffiffiffi
D
p

=2

The nature of the equilibrium depends on the characteristics of
these eigenvalues. There are three possibilities:

Case 1: If D > 0, the three eigenvalues will be real numbers, dif-
ferent and negatives; hence the stationary point is an asymptot-
ically stable node.
Case 2: If D < 0 the two eigenvalues will be complex numbers
with a negative real part; hence the stationary point is a stable
spiral point.
Case 3: If D = 0 two eigenvalues will be real, negatives and
equal. The equilibrium point is an attractor. The character of
the critical point depends on the existence or not of two linearly
independent eigenvectors.

Plots of blood glucose concentration and blood insulin concen-
tration were obtained corresponding to case 1 and 2 (Fig. 2) in the
in vivo experiments. Case 3 was not observed.
4. Parameter estimation

The parameters were obtained by setting functions to the val-
ues of glucose and insulin in blood obtained after oral glucose
administration.

4.1. Estimation of ka and k0

Immediately after the ingestion of a dose of glucose (D0) the
processes that consume glucose are negligible in respect to the en-
try of glucose into blood. Therefore, Equation (2) of the System 1 is
reduced to the following:

dG=dt ¼ k0D ð7Þ

The glucose amount in the digestive system is represented by
Equation (8). Equation (9) is obtained by replacing Equation (8)
in Equation (7):
D ¼ D0e�kat ð8Þ

dG=dt ¼ k0D0e�kat ð9Þ

The solution of Equation (9) represents blood glucose concentration
as a function of time, for times close to the administration of glu-
cose (Equation (10)):

G ¼ Ga þ
k0D0

ka
1� e�kat
� �

ð10Þ

Using this equation to fit the values of blood glucose concentra-
tion between 0 and 15 min k0, is obtained. The parameter ka is ob-
tained by the method of residuals [10]; D0 is the amount of glucose
orally administered, and Ga is fasting blood glucose level (blood
glucose level at time 0).

4.2. Estimation of Ipi

Once glucose reaches its maximum blood value (GMg), it de-
clines to reach fasting values again and responds to a sigmoid func-
tion as described by Equation (11):

G ¼ Ga þ
ðGMg � GaÞ

1þ e
ðt�tpi Þ

B

� � ð11Þ

B is a constant characteristic of each animal. Employing the Equa-
tion (11) to fit blood glucose data from its maximum value forward,
the value of tpi is obtained. This value is the time at the inflection
point in blood glucose concentration as a function of time. The value
of blood insulin levels at this time is an estimate of the parameter
named Ipi.

GMg is the maximum concentration of glucose obtained after an
oral intake of glucose; this value is obtained by fitting a polynomial
function of degree 2. This nonlinear fitting is done for blood glu-
cose levels close to maximum blood concentration.

With the value of tpi, the Ipi can be estimated. This data of insu-
linemia should be adjusted with the exponential equation (Equa-
tion (12)) from its maximum value (IMi) onwards.

I ¼ ðIMi � IaÞ:e�K�ðt�tMiÞ þ Ia ð12Þ
4.3. Estimation of k2 and k3

At tpi time G = Gpi, I = Ipi and D = 0. Then Equation (2) can be
written:

dG=dtðtpiÞ ¼ �k4ðIpi � IpiÞ � k3 � k2Ipi

dG=dtðtpiÞ ¼ �k3 � k2Ipi ð13Þ

Changes in blood glucose levels close to tpi, can be obtained calcu-
lating the derivative from Equation (11).

dG=dt ¼
Ga � Gmg
� �

e
ðt�tpi Þ

B

B 1þ e
t�tpi

B

� �� �2 ð14Þ

Equation (14) allows to calculate dG/dt at two different times (t1

and t2) near to tpi; with the values of blood insulin levels for these
times (I1 and I2), which are calculated using Equation (12), a linear
equation system was obtained (System 4). The k2 and k3 parame-
ters can be obtained by solving this system.

dG=dtðt1Þ ¼ �k3 � k2I1

dG=dtðt2Þ ¼ �k3 � k2I2

�

System 4



Fig. 2. Blood glucose concentration and blood insulin concentration as a function of time. (A) simulation obtained from parameters of a rat that represents case 1. (B)
simulation obtained from parameters of a rat that represents case 2. The insulin curves are shown in solid line and glucose curves are represented by dotted line in both
Figures A and B.

272 M. Lombarte et al. / Mathematical Biosciences 245 (2013) 269–277
4.4. Estimation of k4

In conditions of fast, D = 0 and blood glucose level is constant;
as a consequence dG/dt = 0, insulin-dependent glucose uptake
(k2I) could be considered negligible. Therefore, from Equation (2)
of System 1, Equation (15) was obtained:
k3 ¼ �k4ðIa � IpiÞ ð15Þ

The parameter k4 can be estimated, since Ia, Ipi and k3 are
known.
4.5. Estimation of k1

Immediately after glucose administration, the process of blood
insulin depuration in respect to secretion is negligible. So Equation
(1) of System 1 is modified:
dI=dt ¼ k1G ð16Þ

Blood glucose at times close to the intake of glucose is repre-
sented by Equation (10). Combining Equation (16) and Equation
(10) and solving, Equation (17) was obtained.
I ¼ Iaþ k1Gat þ k1
k0D0

ka
t þ k1

k0D0

k2
a

e�kat � 1
� �

ð17Þ

Ia is the fasting blood level of insulin and the other parameters
have been previously defined.k1 is obtained by fitting Equation (17)
to the values of insulinemia at times close to the time of the
administration of glucose.
4.6. Estimation of k6

Finally, when insulinemia is at its maximum (IMi), G = GMi y dI/
dt = 0, so, from Equation (1) of System 1 we have:

k1GMi � k6IMi ¼ 0

In this equation, k1, IMi y GMi (GMi: blood glucose at the time at
which insulin is maximum) are known values, so we can obtain
the k6 parameter. IMi is obtained with the same method used to ob-
tain GMg (a fit with a second-degree polynomial function). GMi can
be calculated with Equation (11) at the time of the maximum insu-
lin value.

4.7. Parameter optimization

Optimization was done with the Edsberg and Wedin DIFFPAR
(DIFFerential equations with unknown PARameters) pack. The
toolbox DIFFPAR is based on formulating the parameter estimation
problem as a non-linear weighted least squares problem. A Gauss–
Newton type algorithm with local regularization is used for mini-
mizing an objective function [11]. Optimization was performed
taking the estimated values as initial values in 7 healthy rats.
Fig. 3 displays the values of estimated parameters with the de-
scribed methodology. The dispersion of the results supports the
hypothesis that the values of parameters must be calculated for
each animal.

5. Numerical simulation

In order to know the system behavior, a simulation was done
using the MatLab Simulink library. Simulink has a graphical inter-
face that allows building models in a block diagram, and includes



Fig. 3. Optimized values of parameters. The points show the values of the parameters obtained with the described methodology (n = 7). The horizontal line in each plot
represents the average for each parameter.
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an extensive library of input and output blocks, mathematical
operations, linear components and connectors. The use of display
blocks (Scopes) allows us to observe graphically the results of the
simulation. It is also possible to change the value of the parameters
and to control changes in exploration. Simulation plots were made
with the values of the parameters estimated in rats and then
theoretical modifications were generated thereof. In this paper
we show data from simulation with two glucose intakes (1500
and 2500 mg), with two values of k1 (parameter representing
Fig. 4. Simulation with different intake of glucose. The graph (A) shows the simulation
levels as a function of time. The full line shows the behavior after a dose of 1500 mg gl
pancreatic secretion) and k2 (parameter describing the insulin-
dependent glucose uptake by the tissues).

Fig. 4 shows the plots of blood glucose and blood insulin that
were obtained from simulation with optimized parameters in
healthy rats, after the intake of two different amounts of glucose.
As expected, higher intakes of glucose produce higher blood levels
of glucose and insulin.

Fig. 5 shows the plots of simulation that were obtained with dif-
ferent values of parameter k1.
of blood glucose levels as a function of time and the graph (B) shows blood insulin
ucose and the dotted line when the dose of glucose is increased to 2500 mg.
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The decrease in value of parameter k1 represents a decrease of
insulin secretion. This state could be observed in the early stage
of type 1 diabetic rats, when plasma glucose level is not higher
than renal glucose threshold. As seen in the graphs, the behavior
of the proposed model reflects the expected one. When simulating,
a lower value of k1 produces lower levels of insulin and higher lev-
els of glucose in blood.

Fig. 6 shows the simulation obtained when parameter k2 in-
creases. This parameter represents the rate constant of insulin-
dependent glucose uptake by the tissues. As expected, the simula-
tion with higher values of k2 reflected lower values of glucose and
insulin. This situation was also used as validation in vivo, increas-
ing the value of k2 by subjecting rats to physical activity.
6. Validation in vivo

In vivo experiments were carried out to validate the values of k1,
k2 and k6 parameters.
6.1. Validation of parameter k1

The parameter k1 is the rate constant of insulin secretion. The
parameter was validated throughout the administration of NaF, be-
cause it has been previously demonstrated that this substance re-
duces insulin secretion [6]. Parameters were estimated and
optimized, using the methodology described, in two experimental
Fig. 5. Simulation with different values of k1 parameter. The graph (A) shows the simulati
as a function of time. Full line is used when displaying graphs obtained with estimated
groups: Controls (n = 7) and NaF (n = 4, orally treated with
40 lmol/100 g of NaF before glucose administration). The parame-
ters were obtained with the same methodology in both experimen-
tal groups, and then the values of the parameter k1 were compared
with Student’s t test.

Fig. 7 shows a significant decrease in parameter k1 in animals
that were treated with NaF, p = 0.0251.

6.2. Validation of parameter k2

The parameter k2 is the rate constant of insulin-dependent glu-
cose uptake by the tissues. It is known that exercise increases insu-
lin receptors and sensitivity to the hormone [8,9]. The parameter
was estimated and optimized in a sedentary group of 7 rats (Con-
trols) and in 4 rats (Exercise group) that did exercise in a treadmill,
30 min/day, 2, 5 m/seg, for 30 days. The values of k2 were com-
pared with Student’s t test.

The Fig. 8 shows a significant increase in parameter k2 in ani-
mals that perform physical activity for 30 days, p = 0.0071.

Simulations were performed with the values of k1 and k2 obtained
before, for control and treated groups. Fig. 9 shows the insulin and
glucose behavior when the parameters k1 and k2 are changed.

6.3. Validation of parameter k6

The parameter k6 is the rate constant of blood insulin clearance.
The validation of parameter k6 was done by the estimation of this
on of blood glucose levels as a function of time and the graph (B) blood insulin levels
and optimized values of k1 for healthy rats, and dotted line with lower values of k1.



Fig. 6. Simulation with different values of k2 parameter. The graph A shows the simulation of blood glucose levels as a function of time and the graph B blood insulin levels as
a function of time. Full line was used when displaying graphs obtained with estimated and optimized values of k2 for healthy rats, and dotted line when k2 was increased.

Fig. 7. Values of k1 in control and NaF group. The plot shows the optimized values
of parameter k1 in Control (healthy rats) and NaF (with decreased insulin secretion)
groups. Data are shown as mean ± SE and ⁄ indicates significant differences from
normal rats. p < 0.05 unpaired Student’s t test.

Fig. 8. Values of parameter k2 in Control (sedentary rats) and Exercise groups. The
plot shows the optimized values of parameter k2 in Control (healthy rats) and
Exercise (with increased insulin-dependent glucose uptake) groups. Data are shown
as mean ± SE and ⁄ indicates significant differences from normal rats. p < 0.05
unpaired Student’s t test.
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parameter with the model described in this paper. In the same
animals the parameter was calculated as the constant of blood
insulin clearance after an intravenous injection of insulin. Blood
insulin levels were fitted with a one phase exponential decay,
I ¼ I0 � e�k6t . The values of k6 obtained by the two methodologies
were compared with paired Student’s test.

No significant differences were found between the estimated
and optimized values of k6 (n = 4) using the mathematical model
(0.1759 ± 0.1482) min�1 compared with the values obtained by
nonlinear fitting as described after intravenous insulin injection
(0.1323 ± 0.1038) min�1. Paired Student’s t test, p > 0.05
7. Discussion and conclusions

According to the World Health Organization there are over 220
million people in the world with diabetes and 3.4 million people
died in 2004 as a consequence of this pathology. It is expected that
deaths from diabetes will multiply by two between 2005 and 2030.
This high incidence of diabetes worldwide and the significant dete-
rioration in the quality of life experienced by the patient with dia-
betes has led to propose different strategies to treat this disease.
The development of an artificial pancreas would restore the control



Fig. 9. Blood glucose and insulin in Control, NaF and Exercise groups. These graphs show the simulation curves of the three biological conditions: Control group (healthy rats)
in solid line, NaF group (with decreased insulin secretion) in dashed-line and Exercise group (with increased consumption of glucose insulin-dependent) dot line. The graph A
corresponds to the curves of blood glucose levels and the graph B to the curves of blood insulin levels.
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of blood glucose by coupling an infusion pump to a continuous glu-
cose sensor in blood. The design of such a device requires the
development and application of mathematical models represent-
ing the gluco-regulatory system. Models developed by other re-
search groups [1–5] as Cobeli’s model, [12,13] describe very well
the gluco-regulatory system but have a large number of mathe-
matical equations and require complex methodologies for the esti-
mation of its parameters. This model has 35 parameters, 12
differential equations and 18 algebraic equations. It is appropriate
for the development of a simulator, but the high number of param-
eter makes it inappropriate for the application to individual cases.
They are also developed for humans and the efforts to obtain all the
parameters in the rat have been unsuccessful [14]. This was one of
the reasons for developing a new model. This model was built to
find a relationship between plasma glucose levels and insulin lev-
els. In this manner, it would be useful for the development of a
control algorithm that could be applied to an artificial pancreas.

This new simplified mathematical model of the glucose–insulin
system for healthy rats presents, as opposed to other models, a
small number of parameters that can be estimated by simple
determinations of plasma glucose and insulin for each individual.
The minimal model of Bergman, as ours, is a simplified model
based upon physiology that could account for the glucose-insulin
system; it has 3 differential equations and 7 parameters. All the
parameters of the model can be estimated from a single data set
using simple mathematical techniques and thus, avoiding unverifi-
able assumptions [15].However, the Bergman’s model is a clinical
tool to understand the composite effects of insulin secretion and
insulin sensitivity on glucose tolerance and risk for type 2 diabetes
mellitus. The model presented in this paper does not predict risk of
diabetes but can represent and allow studying glucose homeostasis
in different biological situations. It could be applied for any situa-
tion in which homeostasis of glucose insulin system is disturbed
without the presence of glucose in urine (e.g. as described in the
inhibition of insulin secretion by fluoride, this paper, Section 5.1
page 9). Also, this model has a parameter (k2) that represents insu-
lin sensitivity of the tissues and parameter (k4) that represents the
hepatic sensitivity to insulin. The values of these parameters are
modified on biological situations where physiological processes
are affected, as it was observed in the experiments with the exer-
cise group (see Fig. 8, page 9).

Unlike other models, as Sturis, Polonsky, Tolic’s or Li’s model
[16–18], this model does not include time delays to describe the
circadian oscillation. However, in certain cases the sinusoidal
behavior was observed. In this model the oscillation depends on
the values of the parameters (see Fig. 2B, page 5).

In this paper, the proposed model has been validated in two dif-
ferent biological situations: experimentally decreased insulin pro-
duction by the administration of NaF, and increased peripheral
consumption of glucose by physical activity. The model parameters
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were modified in the sense envisaged by the experimental inter-
vention on carbohydrate metabolism. Another validation in vivo
was made estimating the k6 parameter using two methodologies:
the model described in this paper and the plasma clearance of
insulin after an intravenous injection. The obtained k6 values did
not differ significantly. In addition, we have shown that this model
has a single biologically consistent equilibrium point. Using com-
puter tools we could simulate variations in blood glucose and insu-
lin generated by different intakes of glucose, as well as respond to
changes in its parameters as expected. So far this model has been
applied to healthy rats, but the immediate goal is to adapt it and
validate it in vivo and in silico models for diabetic animals. This
model might be a helpful tool for the experimental design of diabe-
tes drugs research. Also, it enables the design and development of
mechanisms for the control of glycaemia in order to improve the
quality of life of diabetic patients.
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Appendix A.

A.A. Animals

Experiments were carried out in female Sprague Dawley rats of
200 ± 20 g body weight, fed with balanced food (GEPSA, Pilar, Cór-
doba, Argentina) and tap water ad libitum. The animal room had a
dark/light cycle of 12 h/12 h and temperature of 23 ± 1 �C. Blood
samples were obtained from the vein of the tail in heparinized
tubes; they were centrifuged and plasma was saved at 20 �C to
measure glucose and insulin concentrations. All experiments were
performed in accordance with the international ethical guidelines
of animal care [19,20]. The protocol was approved by the Ethics
Committee, School of Medicine, Rosario National University.
A.B. Glucose oral administration

Animals with 8 h of fast received glucose (0,6 g/100 g body
weight) by orogastric tube. Blood samples were obtained before
and after glucose intake (0, 5, 10, 15, 30, 60, 90, 120, 180, 240,
300, 360 min).
A.C. Intravenous injection

Intravenous injection was applied for insulin (regular porcine
insulin Betasint, Laboratorios beta SA. Buenos Aires, Argentina)
injection and was performed through the lateral vein of the tail
after disinfecting the area with alcohol [21]. A sterile 27G dispos-
able needle was used. Blood samples were obtained before injec-
tion and after 30, 90, and 180 min.
A.D. Glucose Measurement

Glucose concentration was spectrophotometrically measured
with a commercial kit (Wiener Laboratorios, Rosario, Argentina)
in a Perkin Elmer lambda 11 spectrophotometer.

A.E. Insulin measurement

Measurement of blood insulin levels were carried out by RIA
using a commercial kit (Ria kit Rat insulin, Millipore Corporation,
Billerica, MA, USA).
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