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Multiclass sample classification and marker selection are cutting-edge problems in metabolomics. In the
present study we address the classification of 14 raspberry cultivars having different levels of gray mold
(Botrytis cinerea) susceptibility. We characterized raspberry cultivars by two headspace analysis methods,
namely solid-phase microextraction/gas chromatography–mass spectrometry (SPME/GC–MS) and proton
transfer reaction-mass spectrometry (PTR-MS). Given the high number of classes, advanced data mining
methods are necessary. Random Forest (RF), Penalized Discriminant Analysis (PDA), Discriminant Partial
Least Squares (dPLS) and Support Vector Machine (SVM) have been employed for cultivar classification
and Random Forest-Recursive Feature Elimination (RF-RFE) has been used to perform feature selection. In
particular the most important GC–MS and PTR-MS variables related to gray mold susceptibility of the select-
ed raspberry cultivars have been investigated. Moving from GC–MS profiling to the more rapid and less inva-
sive PTR-MS fingerprinting leads to a cultivar characterization which is still related to the corresponding
Botrytis susceptibility level and therefore marker identification is still possible.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Multiclass sample classification and “explanatory” variable selection
are cutting-edge problems inmetabolomics. Oftenmetabolomic studies
concentrate on two-class problems, considering for instance treated
and non-treated samples. In the vision of integration with genomic
and transcriptomic studies for the investigation of gene functions,
metabolomic approaches should deal withmetabolite differences with-
in a specie by considering populations of individuals. A possible first ap-
proach could be the evaluationof different cultivars of a single species. It
is therefore important to develop and testmethodologies for addressing
multiclass problems in this context. Typical datasets frommetabolomic
experiments have a number of variables considerably exceeding the
number of measured samples. This poses a serious limitation to the
strategy that may be used for sample classification or response predic-
tion. For example, classical approaches such as Fisher's Linear Discrimi-
nant Analysis or General Linear Models are not suitable. A standard
method for addressing high dimensional data in food metabolomics is
unsupervised Principal Component Analysis (PCA) (Jolliffe, 2002).
However, the performance of PCAmay be limited, especiallywhen irrel-
evant factors dominate the variance or when the number of sample
classes is very high (Boccard et al., 2010; Jolliffe, 2002). Moreover, PCA
alone does not provide a quantification of class separation. Addressing
multiclass separation in metabolomics requires more sophisticated
rights reserved.
tools, such as machine learning methods (Boccard et al., 2010; Pers,
Albrechtsen, Holst, Sorensen, & Gerds, 2009; Scott et al., 2010). Here
we discuss the use of supervised classification methods to actually as-
sess the separability of classes. Random Forest (RF) (Breiman, 2001),
Penalized Discriminant Analysis (PDA) (Wold, Sjöström, & Eriksson,
2001), Discriminant Partial Least Squares (dPLS) (Wold et al., 2001)
and Support Vector Machine (SVM) (Vapnik, 1995) were applied, as a
working example, to the identification of raspberry cultivars based on
the corresponding volatile profiles.

Volatile organic compounds (VOCs) are important secondary metab-
olites that can bemeasuredwith non-invasive and non-destructive tech-
niques. Their presence is ubiquitous. They are highly studied in plant
biology, atmospheric chemistry, and breath analysis (Atkinson, 2000;
Buszewski, Kęsy, Ligor, & Amann, 2007; Tholl et al., 2006). In food indus-
try, volatile compounds are a key aspect of the quality of food products
and particularly with reference to acceptance by consumers (Klee,
2010). GC–MS profiling triggered the arise of metabolomics and it is
still unsurpassed in compound identification capabilities. However, it
suffers from relatively time-consuming measurements that render very
large studies unpractical. Alternatives are fingerprinting techniques
that privilege rapidity over analytical information, and have little sample
preparation and no chromatography (Han, Datla, Chan, & Borchers,
2009). Such techniques, on one hand, allow screening a broader number
of samples and, on the other hand,minimize the potential artifacts due to
the extraction and concentration procedures (Han et al., 2009). More-
over, machine learning methods on such datasets are often more robust
given the larger number ofmeasured samples (Han et al., 2009). Herewe
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Table 1
List of considered raspberry cultivars. Gray mold susceptibility values from Aprea et
al.(2010) are also reported.

Variety Botrytis susceptibility

1 Anne 4
2 Autumn Bliss 3
3 Caroline 0
4 Heritage 2
5 Himbo-top 1
6 Josephine 0
7 Opal 3
8 Pokusa 4
9 Polana 4
10 Polesie 5
11 Polka VV3-536 4
12 Polka VV5-657 4
13 Popiel 5
14 Tulameen 2
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employ two different headspace techniques: on the one hand the
well-established GC–MS, on the other hand an innovative, rapid and
non-invasive (no sample treatment) methodology that allows VOC fin-
gerprinting and measurement repetitions during product shelf life. Pro-
ton transfer reaction-mass spectrometry (PTR-MS) is a hyphenated
technique that was developed about two decades ago by Lindinger and
co-workers (Lindinger, Hansel, & Jordan, 1998). Already in its original
versions it was equipped with a quadrupole mass analyzer, having
about unit mass resolution. It couples high sensitivity (ppbt) with a
large dynamic range and a fast response time (Lindinger et al., 1998). A
complete spectrum (from 0 to 200 Th) is acquired in a few seconds. Re-
cently PTR-MS has also been coupled with time of flight (Jordan et al.,
2009) and ion trap (Mielke et al., 2008; Prazeller, Palmer, Boscaini,
Jobson, & Alexander, 2003) detectors, reaching much higher mass reso-
lutions. Compared to GC–MS, PTR-MS reduces measurement time of
about 100 times. Moreover, it provides simple output data, requiring
no pre-processing before statistical analysis. Therefore, a sample can be
fingerprinted in a few seconds in total. In this sense, PTR-MS is an ideal
tool for metabolomic investigations. A pioneer feasibility study in this
field has been carried out a few years ago by Granitto et al.(2007).
After improving the data analysis methodology (Cappellin, Biasioli, et
al., 2010; Cappellin et al., 2011), recently, the first application followed
(Cappellin, Soukoulis, et al., 2012), showing that PTR-MS coupled to a
time-of-flight spectrometer and to suitable data mining methods is a
powerful tool for separating apple cultivars and clones on the basis of
their VOC emission profiles. Another high-throughput approach has
been attempted by several other research groups through direct infusion
of non-volatile compounds (mainly from liquid samples) intomass spec-
trometers (Favé et al., 2011; Højer-Pedersen, Smedsgaard, & Nielsen,
2008; Mattoli et al., 2010; McDougall, Martinussen, & Stewart, 2008)
but with scarce results mainly due to ion suppression (Annesley, 2003;
Sterner, Johnston, Nicol, & Ridge, 2000) and very complex spectra.

Raspberry (Rubus idaeus L.) is a member of the Rosaceae family,
grown primarily for its edible berries. Raspberry fruits are important di-
etary sources of antioxidant compounds, in particular, polyphenols
(Kähkönen, Hopia, & Heinonen, 2001), which are renowned for their
health benefits (Larrosa, González-Sarrías, García-Conesa, Tomás-
Barberán, & Espín, 2006). Their typical flavor makes these fruits easily
recognizable and appreciated not only for their health impact (Aprea,
Carlin, Giongo, Grisenti, & Gasperi, 2010).

Literature studies about the volatile emission from raspberry are
scarce and mainly concentrate on gas chromatographic techniques
(Aprea et al., 2010; Guichard & Issanchou, 1983; Malowicki, Martin,
& Qian, 2008). We already pointed out the viability of the PTR-MS ap-
proach for in vivo characterization of raspberry products in a recent
study involving two raspberry cultivars (Aprea, Biasioli, Carlin,
Endrizzi, & Gasperi, 2009). In the present work we employ GC–MS
profiles and PTR-MS fingerprints for the discrimination of 14 raspber-
ry cultivars, which are listed in Table 1, via the already mentioned
classification methods. Moreover, we employ a multivariate method
for the identification of the features (peaks/volatile compounds)
that are most relevant for the raspberry classification problem.

Another area where modern multiclass methods can replace tradi-
tional approaches (as linear regression or PLS) is grading problems,
i.e. problems in which samples are divided into numbered classes that
are ordered according to a givenmeasure of similarity. Simple examples
are qualities or tolerance to stress factors. In our case, differences in vol-
atile emission between raspberry cultivarsmay be related to the diverse
level of susceptibility to certain infections. Here we concentrate on gray
mold caused by Botrytis cinerea(Elad et al., 2004; Jarvis, 1962). In a pre-
cedent study on GC–MS data (Aprea et al., 2010) we identified nine
compounds which were negatively correlated to Botrytis susceptibility.
These compounds were mainly monoterpenes, such as α-pinene,
β-phellandrene, p-cymene, and 4-terpineol, and sesquiterpenes, name-
ly trans-caryophyllene and caryophylleneoxide. Moreover, 2-heptanol,
β-damascenone and dehydro-β-iononewere found. PTR-MS is sensible
tomonoterpenes but cannot separate them, since isobaric ions generate
superposing signals. Similar remarks hold for sesquiterpenes. A key
question is in fact whether the accuracy of cultivar grading related to
Botrytis susceptibility diminishes due to this loss of information. It is
therefore interesting to assess the relationship between rapid PTR-MS
fingerprints and gray mold susceptibility grading for the considered
raspberry cultivars. We also use the four machine learning methods
named before to grad GC–MS profiles and PTR-MS fingerprints into 6
levels of Botrytis susceptibility (also listed in Table 1). The application
of diverse machine learning techniques could potentially highlight
new information about the problem at hand (grading based on GC–
MS profiles), as was demonstrated in previous works (Cappellin,
Soukoulis, et al., 2012; Granitto et al., 2007). Again,we apply amultivar-
iate method for the identification of the features (peaks/compounds)
that are most relevant for this grading. We recall from Aprea et
al.(2010), that the degree of Botrytis susceptibility was assessed for
each genotype by reporting an index on a scale from 0 to 5, 0 meaning
that no fruits showed any damage caused by this infection.

In summary, the scope of the present work is twofold. On the one
hand we show that supervised multivariate techniques, such as ma-
chine learning ones, may successfully address different multiclass
analysis problems in metabolomics: the classification of raspberry
cultivars or the grading of the same cultivars into levels of Botrytis
susceptibility. On the other hand, we discuss the advantages of
rapid PTR-MS fingerprint of volatiles compared with traditional GC–
MS profiles.

2. Materials and methods

2.1. GC–MS and PTR-MS analyses of raspberry cultivars

This study is a derivative work following our recent study on GC–
MS profiling of raspberry cultivars (Aprea et al., 2010). We therefore
refer to Aprea et al.(2010) for a detailed description of samples and
give only a brief summary here.

Fruits were produced under standard conditions (Aprea et al.,
2010) and collected from the Edmund Mach Foundation experimen-
tal orchard located in Vigolo Vattaro (Trentino, Italy). In order to
take into account possible variability two different seasons (2006
and 2007) were considered, and three batches for each of the 14 cul-
tivars were collected on three different days in each year. The actual
number of measured samples depends on the analytical technique.
The GC–MS dataset obtained for the 14 cultivars has extensively
been described in Aprea et al.(2010). Briefly, ripe berries (a batch of
about 250 g per each variety) were harvested manually, placed in
plastic container and immediately transported to the laboratory, in
ice packs, where samples were stored at 4 °C for 1 day before analy-
ses. From 4 to 5 fruits (about 20 g) per each variety where grouped
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together and used for GC analysis, obtaining six data points for GC
dataset (one data point×three different sampling days×two years)
per each variety. When enough material was available more data
points were added. From the same batch, three to six fruits (according
to availability) per each variety were sampled and individually mea-
sured by PTR-MS, obtaining at least 20 data points for PTR-MS dataset
(data points×three different sampling days×two years) per each va-
riety. Only for Josephine variety we collected 15 points (over the two
years) being the available material scarcer.

The SPME/GC–MS analysis procedure has already been described
elsewhere (Aprea et al., 2009).

PTR-MS measurements were conducted using a high sensitivity
PTR-MS manufactured by Ionicon (IONICON Analytik GmbH, Inns-
bruck, Austria). The conditions in the drift tube were 2.04 mbar pres-
sure, 520 V drift tube voltage and 50 °C temperature, corresponding
to a E/N of about 120 Td. The dwell time was set to 0.2 s and the m/z
range to 20–240 Th. We chose to measure mashed berries and not in-
tact fruits for this study because of superior level of VOC emission of
the former. A comparison between intact fruit andmashed fruit regard-
ing their PTR-MS fingerprint can be found in Aprea et al.(2009). The
measuring procedure was set according to our previous work (Aprea
et al., 2009). A day after harvest, single berry fruits were taken from
the 4 °C storage space, left at room temperature for 90 min, then gently
mashed and placed into a sealed glass vessel (323 mL) equipped with
silicon septa on two opposite sides. After equilibrating for 60 min at
room temperature, the inlet of the PTR-MS was connected by a 1/16″
PTFE tube kept at 70 °C, terminating with a stainless-steel needle to
be introduced into one of the glass vessel septa. The opposite septum
was connected to a 1/4″ PTFE tube through a second stainless-steel
needle to allow outdoor air to enter the vessel, thus replacing the head-
space air that was continuously extracted for 4 min (corresponding to
the acquisition of five complete spectra) at 10 cm3 min−1. Special
care was devoted to avoid systematic memory effects: replicate order
was randomized, different glass vessels were used for each sample,
and the apparatus was flushedwith outdoor air for 6 min between con-
secutive measurements. Spectral data were normalized by the primary
ion as described in Lindinger et al.(1998) and employing a constant re-
action rate coefficient of 2·10−9 cm3 s. The systematic error that is in-
troduced in the concentration determination for each compound is in
most cases below 30% and can be accounted for if the actual rate coeffi-
cient is available (Cappellin, Karl, et al., 2012; Cappellin, Probst, et al.,
2010).

2.2. Statistical analysis

We analyzed two datasets. The GC–MS dataset consisted of 94
rows, corresponding to the measured samples, and 45 columns,
each corresponding to an identified compound. The PTR-MS dataset
Table 2
GC–MS profiles. Confusion matrix for the classification by RF of 14 raspberry cultivars cons

11 12 14 10 13 9

Polka VV3-536 Polka VV5-657 Tulameen Polesie Popiel Polan

11 Polka VV3-536 1 6 0 0 0 0
12 Polka VV5-657 6 0 0 0 0 0
14 Tulameen 0 0 4 1 1 0
10 Polesie 0 0 0 7 1 0
13 Popiel 0 0 0 0 8 0
9 Polana 0 0 0 0 0 6
7 Opal 0 0 0 0 0 0
5 Himbotop 0 0 0 0 0 0
8 Pokusa 0 0 0 0 0 0
3 Caroline 0 0 0 0 0 0
4 Heritage 0 0 0 0 0 0
1 Anne 0 0 0 0 0 0
2 Autumn Bliss 0 0 0 0 0 0
6 Josephine 0 0 0 1 0 0
consisted of 358 rows (samples) and 141 columns, each correspond-
ing to the normalized intensity of a PTR peak. The datasets were built
to take into account the intra-seasoning (three different days of sam-
pling spanned over six weeks, see Aprea et al.(2009) for more details)
and inter-seasoning (two years, Aprea et al., 2010) variabilities of the
fruits, in order to build more robust classification models.

Supervised classification models were built using RF, PDA, dPLS
and SVM on both GC–MS and PTR-MS datasets. All methods were de-
scribed in previous works on PTR-MS fingerprint analysis (Granitto et
al., 2007). In all cases, we used implementations available as free
packages for the R statistical environment software (R Development
Core Team, 2009). To evaluate the results of the classification
methods we used a leave-one-out (LOO) procedure: we iterated the
process of leaving a sample out as test set and using the remaining
of the dataset to fit the models. The free parameters of each classifier,
such as the C constant of SVM or the number of dimensions considered
in dPLS, were selected at this step by internal cross validation using only
the training dataset. After that, those models were used to individually
classify the sample in the independent test batch.We analyzed the clas-
sification results using confusionmatrices, in which rows correspond to
the true classes and columns to the predicted ones. The diagonal entries
of the confusionmatrix correspond to correct classifications. The results
are given in number of samples of each cultivar that the classifier as-
signs to the cultivar given by the column title.

Relevant Feature Identification was done using Random Forest-
Recursive Feature Elimination (RF-RFE), introduced byGranitto,
Furlanello, Biasioli, & Gasperi, (2006). The procedure has two steps.
First, RF-RFE is applied separately to each one of the several partitions
in training and test sets produced by the LOO procedure described
previously. The method produces an average error curve relating
the classification error with the number of compounds/peaks used
in the model. We use that curve to select a number p of peaks that
is as low as possible but still yields good discriminant models. In the
second step, we select the top p compounds/peaks from each run of
the RF-RFE. We compute the average number of times that each
peak is selected in these reduced lists of p discriminant inputs,
and keep only the compounds/peaks that were selected more often.
It is important to note that the output of the process is a list of
compounds/peaks that are highly relevant to the problem, not the
subset that produces the lowest classification error.

3. Results and discussion

3.1. Classification of raspberry cultivars

In the present section we aim at presenting the raspberry cultivar
multiclass problems addressed by the selected data analysis methods
on both datasets.
idered in this work.

7 5 8 3 4 1 2 6

a Opal Himbotop Pokusa Caroline Heritage Anne Autumn Bliss Josephine

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
5 0 1 0 0 0 0 0
0 5 1 0 0 0 0 0
0 1 5 0 0 0 0 0
0 0 0 4 2 0 0 0
0 0 0 1 10 0 0 0
0 0 0 0 0 6 0 0
0 0 0 0 0 0 5 1
1 1 0 0 0 0 2 0



Table 3
PTR-MS fingerprint. Confusion matrix for the classification by RF of 14 raspberry cultivars considered in this work.

14 11 12 8 6 9 7 3 4 1 13 10 2 5

Tulameen Polka VV3-536 Polka VV5-657 Pokusa Josephine Polana Opal Caroline Heritage Anne Popiel Polesie Autumn Bliss Himbotop

14 Tulameen 18 0 0 0 0 0 1 0 1 0 0 0 0 0
11 Polka VV3-536 1 14 8 0 0 1 0 0 0 0 2 0 1 0
12 Polka VV5-657 0 11 9 0 0 1 0 0 0 0 0 0 0 0
8 Pokusa 0 0 1 22 0 1 0 0 0 0 0 0 0 1
6 Josephine 0 0 0 0 12 1 0 0 1 0 0 0 1 0
9 Polana 0 1 0 0 0 23 0 0 0 1 0 0 0 0
7 Opal 0 0 0 0 0 0 22 1 1 0 0 0 0 0
3 Caroline 0 0 0 0 0 0 1 16 7 0 0 0 0 0
4 Heritage 0 0 0 0 0 0 1 1 42 0 0 0 0 0
1 Anne 1 0 0 0 0 0 0 0 0 20 1 0 0 0
13 Popiel 0 1 1 0 0 0 0 0 1 1 28 0 0 0
10 Polesie 0 1 1 0 0 0 0 0 2 0 0 22 0 1
2 Autumn Bliss 1 2 1 0 1 0 0 0 0 0 0 4 9 4
5 Himbotop 0 0 0 0 0 0 0 0 5 0 0 1 1 23
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The confusion matrix reported in Table 2 provides an insight in the
classification performance provided by RF on the GC–MS dataset. The
corresponding average classification error is 0.298, meaning that on av-
erage about 70% of the samples are assigned to the correct class by the
model. The generally good prediction performance on the analyzed cul-
tivars entangles a significant and robust difference in their VOC profiles.
A close look at Table 2 suggests the existence of groups of cultivars
which are generally confused. This is particularly true in the case of
Polka VV3-536 and Polka VV5-657. In fact, these two classes correspond
to the same cultivar (Polka), confirmed by genetic analysis (data not
shown) and have been considered separately because at the beginning
of the harvesting campaign their identitywas doubtful. Thus, it does not
come as a surprise that the model is not able to distinguish between
them and can be seen as a sort of validation of the method. Caroline
and Heritage are confused in about 17% of the cases. In fact, Caroline is
genetically close to Heritage, being a crossing between Heritage and
Geo-1 (Aprea et al., 2010). The discriminatemodel is not able to correct-
ly classify the Josephine samples. Moreover, a marked confusion with
Autumn Bliss is evident. Autumn Bliss has a complex parentage includ-
ing Rubus strigosus, Rubus arcticus, and Rubus occidentalis, and 6 red
raspberry varieties (US Plant Patent 6597).

The analogous confusion matrix built on PTR-MS data is reported
in Table 3. The corresponding average classification error (0.218) is
rather lower than in the case of GC–MS, almost 80% samples being
correctly classified. The expected confusion between Polka VV3-536
and Polka VV5-657, even if less marked, is confirmed. The confusion
between Heritage and Caroline (in 8 out of 68 cases, 12%) is found
in analogy to the outcome of the analyses on the GC–MS data. Con-
trary to the model built on GC–MS data, RF on PTR-MS data is able
to correctly assign Josephine sample in 80% of the cases. Probably
Table 4
Average classification errors for the selected multivariate methods. Results are
reported for the 14 raspberry cultivar multiclass problem along with those of reduces
number of classes after merging. See text.

14 classes 13 classes

PTR-MS
RF 0.218 0.156
PDA 0.271 0.218
PLS 0.310 0.243
SVM 0.291 0.246
mean 0.272 0.216

GC–MS
RF 0.298 0.191
PDA 0.277 0.202
PLS 0.266 0.245
SVM 0.255 0.170
mean 0.274 0.202
this superior performance is mainly related to the larger number of
Josephine samples, 15 instead of 6, that were analyzed with PTR-MS
compared to GC–MS. The same reason is probably more generally at
the basis of the lower prediction errors that multivariate models on
PTR-MS fingerprints show compared to the corresponding models
built on GC–MS data.

Table 4 reports a comparison between the considered classification
methods. In the case of PTR-MS data, RF shows the lowest prediction er-
rors, followed by PDA; PLS and SVM gives poorer results. Previous results
on multiclass classification on PTR-MS data (Granitto et al., 2007) also
showed a good performance of RF on this kind of data. For GC–MS, very
similar prediction performances are found for the four methods, SVM
giving slightly lower prediction errors than the other methods in this
case. Overall, all four methods show a good performance in both prob-
lems. Confusion matrices for the other methods are qualitatively similar
to those showed in Tables 2 and 3 (not shown for lack of space).
Table 4 also reports the prediction performances considering only 13
classes, where the two Polka cultivars are grouped together. The results
improve in all cases, showing that these two mixed and isolated classes
correspond in fact to a single class.With 13 classes the best prediction er-
rors are reduced to 0.191 for GC–MS and to 0.156 for PTR-MS.
3.2. Feature selection

In this section we address the problem of highlighting the most
relevant variables (GC–MS compounds or PTR-MS peaks) for
Fig. 1. GC–MS profiles. Mean prediction error of Random Forest over the 98 LOO repli-
cations as a function of the number of variables used in the models during the feature
selection process.



Table 5
GC–MS profiles. Fraction of times that each compound was selected among the 20
more discriminant features on RF over LOO replicated experiments, for the 14 class
problem.

Compounds Fraction of times selected

2-Heptanone 1.00
2-Heptanol 1.00
Trans-caryophyllene 1.00
Dehydro-β-ionone 1.00
α-Phellandrene 0.96
Benzyl alcohol 0.94
Trans-3-methyl-1,3,5-hexatriene 0.92
Ethyl acetate 0.84
Theaspirane B 0.84
Limonene 0.82
β-Phellandrene 0.82
Linalool 0.74
Geraniol 0.74
α-Pinene 0.70
p-Cymene 0.70
Caryophyllene oxide 0.70
3,4-Didehydro-β-ionone (t.i.) 0.68
β-Damascenone 0.62
Acetic acid 0.60
β-Pinene 0.58
Acetoin 0.58
β-Myrcene 0.56
α-Ionol 0.40
β-Ionone 0.38
Hexanal 0.36
Unidentified sesquiterpene 0.36
Acetato di esile 0.28
Hexanoic acid 0.26
5-Ethyl-(3H)-furan-2-one (t.i.) 0.18
4-Terpineol 0.14
γ-Terpinene 0.10

Table 6
GC–MS profile. Confusion matrix for the grading by RF of the raspberry samples into
the 6 gray mold susceptibility level. The class number represents the susceptibility
level.

0 1 2 3 4 5

0 3 0 4 4 0 0
1 0 4 0 2 0 0
2 1 0 15 0 0 2
3 0 0 0 12 0 0
4 0 1 0 1 28 1
5 0 0 0 0 4 12
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separating the 14 raspberry classes. As we explained in Section 2, fea-
ture selection based on RF-RFE proceeds as follows. As a first step we
assess the behavior of the mean discrimination error of RF as a func-
tion of the number of variables used in the model. In order to clarify
the procedure, in the case of the GC–MS dataset the results are
showed in Fig. 1. A trade-off between model simplicity and discrimi-
nation error is represented by 20 variables in this case, from the orig-
inal total of 45. In a subsequent step we report how often each
variable is selected among the 20 most relevant peaks by RF, over
the 94 LOO RF-RFE experiments. The results are reported in Table 5.
Fig. 2. PTR-MS fingerprints. Fraction of times that each compounds was selected among the
problem. Higher fraction means more relevant variable for the discriminant process.
Interestingly, the four variables which are always selected within
the 20 used to build the models belong to different classes of VOCs,
namely ketones (2-heptanone), alcohols (2-heptanol), sesquiter-
penes (trans-caryophyllene), and C13-norisoprenoids (dehydro-β-
ionone). This suggests that dissecting the VOC emissions of the con-
sidered raspberry cultivars entangles coarse grain differences in the
emission of diverse classes of VOCs. Multivariate models provide a
useful tool to capture such differences for classification purposes
and allow the highlighting of VOCs that are most relevant in the
discrimination.

Feature selection in the case of PTR-MS data was carried out in an
analogous way. We chose to keep, again, 20 peaks over the initial 141
peaks measured by PTR-MS (figure not shown in this and following
experiments). The final results are reported in Fig. 2. In this case it
is less straightforward to draw conclusions. Among the more relevant
variables, we find peaks 69, 95 and 137, which mainly correspond to
monoterpenes and their fragmentation (Steeghs, Crespo, & Harren,
2007; Tani, Hayward, Hansel, & Hewitt, 2004). The peak at m/z 73 is
related to aldehyde fragments and 2-butanone and the one at m/z
83 corresponds to a fragment of hexanal (Aprea et al., 2009). m/z
41 is a general fragment. In analogy to the case of GC−MS, VOCs be-
longing to very different classes are important for differentiating the
studied raspberry cultivars. Note that RF-RFE may include isotopic
peaks that entangle the same information, such as for instance peak
at 137 amu and its isotope at 138 amu.
3.3. Botrytis susceptibility

The basic question addressed in this paragraph is whether moving
from GC–MS profiling of the selected raspberry cultivars to their
20 more discriminant features on RF over LOO replicated experiments, for the 14 class

image of Fig.�2


Table 7
PTR-MS fingerprint. Confusion matrix for the grading by RF of the raspberry samples
into the 6 gray mold susceptibility level. The class number represents the susceptibility
level.

0 1 2 3 4 5

0 26 0 8 3 1 1
1 0 22 6 0 2 0
2 1 0 59 2 2 0
3 2 0 4 25 12 3
4 0 0 1 0 116 3
5 0 0 2 2 12 43

Table 9
GC–MS profiles. Fraction of times that each compound was selected among the 6 more
discriminant features on RF over LOO replicated experiments, for the 6 class grading
problem.

Compounds Fraction of times selected

Dehydro-β-ionone 1.00
4-Terpineol 0.98
p-Cymene 0.91
α-Phellandrene 0.89
Trans-caryophyllene 0.65
Unidentified sesquiterpene 0.59
Theaspirane B 0.52
β-phellandrene 0.22
γ-Terpinene 0.11
Geraniol 0.09
2-Heptanone 0.04
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PTR-MS fingerprints leads to a cultivar characterization which is still
related to the corresponding gray mold susceptibility level; or wheth-
er, at the contrary, it leads to a loss of information that disrupts that
relationship. We recall that in the case of the PTR-MS dataset a larger
number of samples per each raspberry cultivar have been considered,
given the highly reduced measurement time required by PTR-MS
compared to GC–MS.

We first apply a multiclass analysis approach to both GC–MS and
PTR-MS data in order to grade the samples into classes of equal sus-
ceptibility level.

Tables 6 and 7 report the confusion matrices for RF models in the
case of GC–MS and PTR-MS data, respectively. The corresponding av-
erage prediction errors are 0.21 and 0.19, meaning that in both
datasets the correct Botrytis susceptibility level is assigned by the
model to about 80% of the samples. A comparison between the per-
formances of the various classification methods is reported in
Table 8. In general RF is found to reliably provide good results. In
fact, RF (prediction error 0.19) outperforms all other methods in the
case of the PTR-MS, the other methods showing poorer results. For
the GC–MS dataset RF (prediction error 0.21), PDA (0.20) and SVM
(0.22) display similar performances, while PLS gives a higher error
(0.27). As this is a grading problem, it is important to consider also
the type of error produced by the diverse classifiers. Beside classifica-
tion error, Table 8 also reports the fraction of samples that are
assigned to a class distant 1 level (denoted as “1 Level”) from the cor-
rect one or more than 1 level (denoted as “>1 Level”). Interestingly,
the results are rather different for the two datasets. In fact PTR-MS
not only produces better results in general, i.e. lower prediction er-
rors, but also the confusion is more related to neighbor classes than
in the case of GC–MS data. Again, this fact could be probably attribut-
ed to the larger number of samples considered for PTR-MS investiga-
tions. In conclusion both PTR-MS and GC–MS are suitable to address
the presented grading problem and when experiment time is an
issue PTR-MS should be preferred.

Variable selection was performed in order to unveil which vari-
ables are more important for dissecting gray mold susceptibility in
the selected raspberry cultivars.

Table 9 reports variable selection results for RF-RFE applied to the
GC–MS dataset. The four most relevant variables, selected in between
80% and 100% of the LOO experiments, are α-phellandrene, p-cymene,
4-terpineol, and dehydro-β-ionone. Consistently, such compounds
were also found by Aprea et al.(2010) using a regression method and
Martens' uncertainty test.
Table 8
Average classification errors for the employed multivariate methods. Results are
reported for the Botrytis susceptibility multiclass problem for both PTR-MS and GC–
MS headspace analyses.

PTR-MS GC–MS

Method Error 1 Level >1 Level Error 1 Level >1 Level

RF 0.187 0.109 0.078 0.213 0.064 0.149
PDA 0.282 0.14 0.142 0.202 0.085 0.117
PLS 0.299 0.142 0.157 0.266 0.117 0.149
SVM 0.257 0.162 0.095 0.223 0.063 0.160
The RF-RFE variable selection in the case of the PTR-MS is reported
in Fig. 3. Again, terpenes are among the most relevant features. In fact,
the peak at m/z 69 is a common fragment of terpenes and aldehydes;
the peak at m/z 137 is related to monoterpenes, m/z 95 is a terpene
fragment (Aprea et al., 2009). m/z 115 is probably related to
2-heptanone (Aprea et al., 2009). Such results are consistent with
the findings using GC–MS and suggest that rapid PTR-MS fingerprint
captures properties of raspberry cultivars that are closely connected
to their resistance to gray mold susceptibility. The potential role of
monoterpenes and sesquiterpenes in the inhibition of gray mold in-
fections has been pointed out by many other studies (Bouchra,
Achouri, Hassani, & Hmamouchi, 2003; Daferera, Ziogas, & Polissiou,
2003; Reddy, Angers, Gosselin, & Arul, 1998; Sekine, Sugano, Majid,
& Fujii, 2007). For example, Reddy et al.(1998) highlighted the action
of essential oils from Thymus vulgaris against B. cinerea for strawberry.
Sekine et al.(2007) tested the effect of p-cymene and cuminaldehyde
vapor phase concentrations on the mycelial growth inhibition of phy-
topathogenic fungi such as B. cinerea.

4. Conclusions

In the present study we showed that supervised multivariate tech-
niques, such as machine learning ones, may successfully address dif-
ferent multiclass analysis problems in metabolomics. We employed
modern machine learning methods to analyze diverse aspects of
two different multiclass problems. First, we classified 14 raspberry
cultivars on the basis of their GC–MS profiles and PTR-MS finger-
prints. Good results were achieved with both techniques, with slight-
ly lower classification errors for the PTR-MS dataset, probably
because of the larger number of analyzed samples. In fact, PTR-MS
is a high-throughput technique that allows the reduction of measure-
ment time by about 100 times compared to standard GC–MS analysis.
Groups of cultivars with similar volatile emission were consistently
identified using confusion matrices. These similarities were related
to genetic affinities, varieties sharing common parents are generally
grouped together. Among the classification methods considered, Ran-
dom Forest showed the best classification performance, in particular
for PTR-MS data, but the other methods also showed to be effective
in both cases.

Feature selection by RF-RFE allowed the identification of the peaks/
compounds that are more relevant to these classification problems and
suggested that VOCs of very diverse compound classes are needed for
the full discrimination of the considered raspberry cultivars.

The same analysis procedure was employed to grade the raspberry
cultivars on levels of gray mold susceptibility. Models based on the
GC–MS dataset and on the PTR-MS one displayed similar grading er-
rors but marked differences in the confusion matrices. In fact, in the
PTR-MS case multivariate model prediction errors were primary
based on confusions between raspberries belonging to cultivars
with close level of susceptibility, while this did not hold true in the



Fig. 3. PTR-MS fingerprints. Fraction of times that each compound was selected among the 6 more discriminant features over LOO replicated experiments for the gray mold sus-
ceptibility grading problem. Higher fraction means more relevant variable for the discriminant process.
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GC–MS case. Again, RF reliably displayed the best grading capabilities.
Several VOCs, in particular terpenes, were found to be related to the
gray mold susceptibility level. We showed that moving from GC–MS
profiling to PTR-MS fingerprinting leads to a cultivar characterization
which is still related to the corresponding Botrytis susceptibility level
and therefore marker identification is still possible.
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