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Abstract In this article we develop a numerical scheme to deal with interfaces between
touching numerical grids when solving the second-order wave equation. We show that it
is possible to implement an interface scheme of “penalty” type for the second-order wave
equation, similar to the ones used for first-order hyperbolic and parabolic equations, and
the second-order scheme used by Mattsson et al. 2008. These schemes, known as SAT
schemes for finite difference approximations and penalties for spectral ones, and ours share
similar properties but in our case one needs to pass at the interface a smaller amount of data
than previously known schemes. This is important for multi-block parallelizations in several
dimensions, for it implies that one obtains the same solution quality while sharing among
different computational grids only a fraction of the data one would need for a comparable
(in accuracy) SAT or Mattsson et al.’s scheme. The semi-discrete approximation used here
preserves the norm and uses standard finite-difference operators satisfying summation by
parts. For the time integrator we use a semi-implicit IMEX Runge–Kutta method. This
is crucial, since the explicit Runge–Kutta method would be impractical given the severe
restrictions that arise from the stiff parts of the equations.
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1 Introduction

In many situations modern simulations of physical models based on systems of partial differ-
ential equations require the use of several grid patches. This could be because the topology
of the underlying space is not trivial and so cannot be described by a unique chart (as in the
case of codes that evolve fields on a sphere) or it could be because the problem is too large
for a single computer and so it has to be partitioned to be solved parallely in clusters of com-
puters, or because some areas of the integration domain need more resolution than others.
Information needs to be passed among these grids in a dynamical and synchronized fashion.
Therefore it is important to devise methods that guarantee the stability of the global solu-
tion and that require the minimal amount of information to be transferred at grid interfaces,
preserving this way a given accuracy.

For some years now, several numerical techniques have been available to deal with these
interface problems when solving first-order hyperbolic or parabolic equations. Some of them
use interpolation between overlapping regions, while others use penalties which modify the
system at boundary grid points by including information from the same space points at
neighboring grids [2]. This last method is preferable in many situations, for it has very nice
properties. The most interesting one is the fact that it is constructed so that the resulting
semi-discrete system preserves the corresponding continuum energy estimate of its constant-
coefficient linear system. Thus we can ensure that, at least for linear constant-coefficient
systems, the scheme is stable.

Another property that makes these schemes attractive is that the amount of information
one has to pass from one grid to the next is minimal. Thus these schemes are optimal for
massive parallel computations, where calculations must be split among several CPU/GPU’s,
and communication among them usually would add a non-trivial overhead to the computation
of the solution.

Furthermore, the accuracy of the method is only determined by the precision order of the
time and space operators. Hence the amount of data transferred is constant. This is not the
case though when interpolation is used since in order to increase the accuracy of that scheme
one has to take more points on each of the grids and use higher-order interpolants, leading
to a larger amount of data that needs to be transmitted.

For a second-order hyperbolic equation these methods can be used, but with the drawback
that one must first rewrite it as a first-order system to be able to apply the approach, by
this creating many more variables and constraints, all of which have to be monitored during
the evolution. This not only increases the required machine memory, but also increases the
amount of traffic among processors, due to the corresponding increase of information that
needs to be passed along the boundaries.

In 2008 Mattsson et al. [1] developed a method to evolve second-order hyperbolic equa-
tions in the same spirit of the standard SAT scheme without the need to reduce it to first-
order. In addition, one of us [3] recently found a way to implement similar techniques for
Schrödinger’s equation. We show in this paper that the same underlying idea in [3] can be
extended to also deal with the second-order wave equation. In this scheme only one field
needs to be passed across the boundaries, namely the time derivative of the field, making this
a very efficient and simple algorithm, while in the one developed by Mattsson et al., penalties
are imposed on the field and its spatial and time derivatives and are present in the evolution
of the internal grid points.

The idea of our scheme is to consider the boundary as a repeater which absorbs the
incoming wave on one side of the interface and creates an outgoing wave on the other, with
a non-increasing total energy.

123

Author's personal copy



J Sci Comput

This paper is organized as follows: In Sect. 2 we describe the new numerical scheme, and
derive the interface terms that need to be added to the equations for this method to work.
There are two different types of interface terms: one, including only the values of the fields
at the same side of the interface (necessary for cancelling the usual boundary term from the
elliptic part of the operator in the energy estimate) and another one, that can be regarded
as an interaction between the fields at both sides of the interface, and can be considered a
penalty, in the sense that it depends on the difference of fields on both sides of the grids and
that it drives the difference exponentially to zero. The latter is highly stiff, so a semi-implicit
method is needed in order to avoid paying a huge price in the time step. For that purpose, we
use IMEX Runge–Kutta methods. Furthermore we present, adapted to our case, the method
developed by Mattsson et al. [1].

In Sect. 3 we present some numerical results using the new scheme herein presented.
We compare the results of evolving a one-dimensional system on a circle, first with periodic
boundary conditions in a single grid and then using the interface scheme between the first and
final point of the grid. We also compare our scheme with the usual SAT approach, in which
the system is treated in its first-order form and with the second order method developed by
Mattsson et al. In addition, we study an implementation of our scheme on a two-dimensional
torus. We analyze convergence, accuracy and stability of the proposed method for different
scenarios.

In Sect. 4 we present two applications of our method in much more demanding situations,
namely, an equation with variable coefficients both in space and time which is often used in
general relativity as a standard test, and the propagation of a wave on the surface of 2-sphere
which has been partitioned into six square grids.

Finally, in Sect. 5 we present our conclusions.

2 Numerical Scheme

Let us consider, for simplicity, a one dimensional problem; the generalization to more dimen-
sions being trivial. Consider a field Φ(x, t) : S1 × � → � satisfying the wave equation:

∂2
t Φ = ∂2

x Φ, (1)

and assume sufficiently smooth initial data is given at t = 0: Φ(x, 0) = Φ0(x), ∂tΦ(x, 0) =
Π0(x).

As mentioned, the traditional way to solve this equation when interfaces are present is
by reducing it to a first-order form (hereafter F O-scheme) by introducing the variables
Π := ∂tΦ and Ψ := ∂xΦ. Then equation (1) is equivalent to the system

∂tΦ = Π,

∂tΨ = ∂xΠ,

∂tΠ = ∂xΨ. (2)

This way of solving the equation has the previously mentioned disadvantage of introducing
auxiliary variables, something that can be very expensive in terms of memory, especially
when considering systems of wave equations in many dimensions, as is often the case, for
instance, in General Relativity.

Furthermore, the use of first-order systems results in less accurate numerical approxima-
tions, since the phase error is larger than when using schemes based on the second-order
version of the systems as per [4].
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We are interested here in solving Eq. (1) in second-order form for the spatial operators,
although we shall keep the first-order form for the time integration, since we will use either
a Runge–Kutta or IMEX scheme to advance the fields in time. We therefore consider the
system

∂tΦ = Π,

∂tΠ = ∂2
x Φ, (3)

and develop a numerical method for solving it when interfaces are present. From here on
we deal exclusively with interfaces of the type called conforming grids, in which for each
interface point of a grid there corresponds another point from a neighboring grid representing
the same spatial point.

Standard theorems guarantee the existence of a solution to equation (3) satisfying the
energy norm

E :=
∫

{Π2 + ∇Φ · ∇Φ}dV . (4)

What we want is to develop a scheme that will preserve the analogous discrete-energy norm,
thus guaranteeing stability.

In order to solve this system we consider the domain that consists of the interval [0, 2],
where the first and last points are identified, resulting in a circle of length two, with the inter-
face defined in the touching extreme points. For the numerical solution we take a uniformly
spaced grid and we write the discrete solution as a vector {Φ j }, j = 0 . . . N corresponding
to points x j = dx ∗ j with the interspace between neighboring grid points dx := 2

N , so that
the last point xN coincides with the first one x0 at the interface. With this simplification we
focus on the interface treatment avoiding the treatment of boundary conditions.

We introduce the discrete l2-norm in the usual fashion,

< Ψ,Φ >:= dx
N∑

j=0

σ jΨ jΦ j , (5)

where {σ j } is a set of real-valued weights that depend on the finite-difference operators under
consideration.

The semi-discrete system we want to solve at all points except at the interface is then

∂tΦ j = Π j ,

∂tΠ j = (D2Φ) j j = 1 . . . N − 1, (6)

where D is any finite-difference operator that approximates the derivative operator to some
order q ≥ 1 satisfying the summation by parts property (SBP from now on) [5–7]. That is,
it satisfies the discrete counterpart of the integration by parts property

< Ψ, DΦ > + < DΨ,Φ >:= ΨN ΦN − Ψ0Φ0.

Alternatively, instead of D2, we could use a second-order operator D2 approximating the
second derivative, which satisfies the corresponding SBP property, i.e. that can be written as
in [8]
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D2 = H−1
(
−DT H D + RS

)
, (7)

being H = dx diag(σ0, . . . , σN ), D an operator that approximates the first derivative,
R = diag(−1, 0, . . . , 0, 1) and S an operator that approximates the first derivative at the
interface. This guarantees that the analogue of the integration by parts property for the second
derivative holds, i.e. that D2 satisfies

< Ψ, D2Φ >= ΦN (DΨ )N − Φ0(DΨ )0− < DΨ, DΦ > . (8)

This is a better choice, since the operators have a smaller stencil and preserve the solution
phase more accurately. In our scheme, we shall use the narrow diagonal SBP second-order
operators obtained in [9].

If one could prove that the linear ODE system (6) has eigenvalues with no positive real
part and a complete set of eigenvectors, then one could apply any discrete-time integrator,
and as a result obtain a stable numerical evolution for the whole system. For a more detailed
description of the theory see, for instance, [7]. A way to check those conditions is to find a
energy norm that is either constant or decreases in time. This is the procedure we shall use
to implement our scheme.

Using (5), the discretized version of the energy norm (4) becomes

E =< Π,Π > + < DΦ, DΦ >

and we get its time derivative as

∂tE = < ∂tΠ,Π > + < D∂tΦ, DΦ >

= < D2Φ,Π > + < DΠ, DΦ >

= ΠN (DΦ)N − Π0(DΦ)0. (9)

Here we have used equations (6) and (8). In order to preserve this norm during evolution we
need to cancel these terms, since the contributions in the RHS of this equation come from
each side of the interface.

In contrast to this first-order hyperbolic and to the parabolic case, it does not seem possible
for second-order systems to control the energy by introducing on each side only terms pro-
portional to the difference of the fields and their normal derivatives at each interface without
modifying the standard energy as in Mattsson et al. [1]. Thus, following [3] we introduce our
first modification by adding terms at the interface as follows:

∂tΠ j = (D2Φ) j + 1

dx σ0
δ j0(DΦ)0 − 1

dx σN
δ j N (DΦ)N ,

where δi j is the Kronecker delta. With this modification the interface terms are cancelled in Eq.
(9) and remaining constant the energy norm, but they introduce no interaction between the two
sides of the interface, and so the solution we get would just bounce back at the interface (the
energy is conserved and if one interface point can not possibly influence the corresponding
point at the other side, the pulse has to bounce back). However, eliminating the interface term
means that we can now concentrate on adding terms that, while preserving/decreasing the
energy norm, introduce an interaction at the touching points of the grid in such a way that
the wave can pass through the interface. We must therefore introduce a term that couples the
two sides, namely a penalty term that forces the values at both extremes to coincide. The
simplest one that satisfies this requirement is
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∂tΠ j = (D2Φ) j + 1

dx σ0
δ j0(DΦ)0 − 1

dx σN
δ j N (DΦ)N

−L(Π0 − ΠN )(
1

dx σ0
δ j0 − 1

dx σN
δ j N ), (10)

where L , which we call the interaction factor, is a positive real constant to be chosen as large
as possible in order to make the interaction as strong as possible. In this way we penalize
the difference on both sides of the interface and drive them to coincide through a very large
exponential factor while keeping the energy bounded, as follows

∂tE = < ∂tΠ,Π > + < D∂tΦ, DΦ >

= < D2Φ,Π > + < DΠ, DΦ > +Π0(DΦ)0 − ΠN (DΦ)N − L (Π0 − ΠN )2

= −L (Π0 − ΠN )2. (11)

The limitation of how large L can be chosen comes from the fact that a too large negative
real part would make the system unstable by making a large contribution to the eigenvalues
along the negative real axis, thus making explicit time integration schemes fall outside their
stability region, or making the needed time step prohibitively small. For explicit schemes,
the value of L should not be larger than L = 1, since it contributes to the CFL factor as
much as the principal part. This value turns out not to be large enough for our scheme, giving
unacceptably large errors in the form of bounces at the interface for a resolution that describes
appropriately the solution. Thus we use larger factors and resort to a semi-implicit method
which would free us from the CFL limitation.

Summarizing, the system of ordinary differential equations described in (6) with the
proposed correction introduced in (10), is evolved using a third-order IMEX method [10,11],
specifically the one called IMEX-SSP3(4,3,3) L-stable scheme as per [11]. For the spatial
discretization we propose finite-difference operators approximating the second derivative
obtained in [9].

In order to confirm the correctness of our approach we compare the results of the method
proposed with the corresponding traditional explicit third order Runge–Kutta method veri-
fying the presence of the bounces at the interface with the choice of L = 1. In addition, for
the spatial discretization, we compare the choice of the spatial operator that approximates
the second derivative with the use of first derivative operators [6,12,13] applied twice. We do
this because in some systems where off-diagonal terms occur in the Laplacian, or lower-order
terms are present, one might want to use a single operator for every derivative.

Furthermore we compare the results achieved applying these methods with the traditional
evolution obtained using the standard F O-scheme [2], which consists of adding penalty
terms to the dicretization of equation (2) at the interface points, causing the energy to be
preserved, namely

∂tΦ j = Π j ,

∂tΨ j = DΠ j − 1

2

δ j0

dx σ0
((Π0 − ΠN ) + (Ψ0 − ΨN ))

+ 1

2

δ j N

dx σN
((ΠN − Π0) − (ΨN − Ψ0)) ,

∂tΠ j = DΨ j − 1

2

δ j0

dx σ0
((Π0 − ΠN ) + (Ψ0 − ΨN ))

− 1

2

δ j N

dx σN
((ΠN − Π0) − (ΨN − Ψ0)) . (12)
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Finally, as mentioned in the Introduction, Mattsson et al. developed a finite difference
second order method that includes a SAT technique to treat the interface and the boundary
conditions (hereafter SO-Mattsson et al.’s scheme).

To be able to compare both schemes, we use the notation that we introduced in this section
for summarizing the SO-Mattsson et al.’s scheme. We consider a domain that contains an
interface at x = 0 and we denote by Φ(1) and Φ(2) the numerical solutions at the left and
right grids respectively. Hence, the conditions that must be imposed on the interface are given
by:

I1 ≡ Φ
(1)
N − Φ

(2)
0 = 0,

I2 ≡ Π
(1)
N − Π

(2)
0 = 0, (13)

I3 ≡ (RSΦ(1))N + (RSΦ(2))0 = 0,

where R and S are defined in equation (7). In addition, at the left and right boundaries we
should have:

(RSΦ(1))0 = 0 and (RSΦ(2))N = 0. (14)

The semi-discretization of the differential equation, imposing (13) and (14) becomes1:

Φ
(1)
t t = D2Φ

(1) + H−1(τeN I1 + β(RS)T eN I1 + γ eN I3 + σeN I2
)

= D2Φ
(1) + H−1(τeN I1 + βST eN I1 + γ eN I3 + σeN I2

)
,

Φ
(2)
t t = D2Φ

(2) − H−1(τe0 I1 + β(RS)T e0 I1 − γ e0 I3 + σe0 I2
)

= D2Φ
(2) − H−1(τe0 I1 − βST e0 I1 − γ e0 I3 + σe0 I2

)
. (15)

Note that the term containing ST introduces the penalties in the evolution of the interior
points on both sides of the grids.

Using (15), we calculate the energy proposed by Mattsson et al. and verify the correctness
of the stability conditions derived in [1], namely

γ = −1

2
= −β,

τ ≤ − 1

2 αM dx
,

σ ≤ 0 ,

where the positive constant αM is given by Lemma 2.3 in [1]. As we compare the schemes,
it arises that αM should satisfy αM ≤ σ0.

We report on the findings in the following section.

3 Tests

We test the method by running simulations both in one and two dimensions (1D respectively
2D). For the 1D case all the runs are performed on a circle of length 2 (i.e. the domain is the
interval [0, 2], where the last grid point is identified with the first one). For the 2D simulations
the domain is a torus and the grid consisted of a 2 × 2 square with the x = 0 face identified
with the x = 2 face, and similarly for the y coordinate. In this case, for simplicity, one of
the interfaces, namely the one corresponding to the y direction, is treated using penalties,

1 Notice that some signs in (15) are different from those appearing in [1], which contain some typos.
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while for the x direction we use periodic operators. In all the runs the number of points and
the order of the finite-difference operators employed guarantee a good enough resolution for
cases where the solution has a high frequency.2

3.1 Initial-Data Sets

For the purpose of analyzing convergence it is sufficient to choose smooth initial data. We
therefore choose the following data

– 1D smooth initial data

Φ0(x) := 412 x12(x − 1)12,

Π0(x) := ∂xΦ0(x).

On the other hand, for the purpose of comparing realistic situations and in order to analyze
how the method keeps the phase of the solution, we take the following rough and highly
variable data:

– 1D rough initial data

Φ0(x) := e−82(x−0.5)2
cos(50πx),

Π0(x) := ∂xΦ0(x),

corresponding to a rough pulse propagating to the left.
– 2D rough initial data

Φ0(x, y) := e−82((x−1.5)2+(y−1.5)2) cos(50π(y − x)),

Π0(x, y) := 1√
2
(∂xΦ0(x, y) − ∂yΦ0(x, y)).

3.2 Space Discretizations

As mentioned in the Introduction, in this section we perform runs for different schemes and
different choices of the space discretization. We compare the results to

– The traditional F O-scheme.
– The new second-order formulation presented in this paper (hereafter SO-interface approx-

imation) with a second derivative operator D2.
– The SO-interface approximation where the second derivative is approximated by the first

derivative operator D applied twice (i.e. D2) with and without dissipation. Here we use
the same discretization as in F O-scheme.

– The SO-Mattsson et al.’s scheme with a second derivative operator D2.

In all the runs we use a very accurate finite-difference operator, in particular, the first
derivative operator is an optimized operator of order eight in the interior and order four at
points in the boundary [6,12,13]. The second derivative operator used is of order eight in
the interior and order six at the boundary [9]; this operator comes also with a first-order
companion that is used for the boundary contributions, both of these satisfy SBP with the
same norm. In the comparison with SO-Mattsson et al.’s scheme we use the finite differ-
ence operator of 6th-order accuracy in the interior and 5th-order accuracy at the boundary
(see [1])

2 Here we aim at an accuracy of about one part in 103 for 10 periods. Enough to keep the phase without
appreciable error for about 10 crossing times.
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Fig. 1 Comparison of periodic and SO-interface approximation runs using the traditional third-order Runge–
Kutta method whit L = 10

Furthermore, the choice of these operators was made in order to preserve the correct phase
of the solution on long-time runs, and to be able to test the contribution to the error coming
form the interaction term, with the smallest possible interference from the contribution to the
error of the space discretization of the derivatives.

3.3 Time Integration

As noted in Sect. 2, we use two time integrators, a traditional Runge–Kutta scheme and an
IMEX one. The necessity of an IMEX scheme comes from the fact that the interaction factor
has to be very large, hence stiff, in order to achieve good accuracy.

To visualize this, we implement the SO-interface approximation with an interaction factor
of L = 1 and L = 10, and we evolve equation (10) using a smooth initial data and a traditional
third-order Runge-Kutta. The runs were performed with a resolution of N = 640 points and
with dt = 2.5 × 10−5 (CFL = 0.008). In the plot below, Fig. 1, we show both the periodic
solution, i.e. the exact solution of the wave Eq. (1), and the SO-interface approximation. The
extra bump to the right is the bounce of a fraction of the solution at the interface.

It is possible to reduce the error to a very small amount by enlarging the interaction factor,
but at the expense of losing efficiency, since for the traditional Runge–Kutta scheme the time
step needed for stability becomes significantly smaller. In fact, we observe that the errors
fall to very small values for an interaction factor a thousand times larger if we use, in the
traditional Runge Kutta, a time step a thousand times smaller.

Thus to avoid small time steps, while allowing larger interaction factors, semi-implicit
methods are needed. For this reason, we use in our implementation a method among those
called IMEX, [10,11], specifically, the one called IMEX-SSP3(4,3,3) L-stable scheme pre-
sented in [11]. This method permits us to explicitly solve stiff parts of the equations while
keeping the other terms as usual in traditional Runge-Kutta schemes. In the plot below,
Fig. 2, we show the error of the interface (i.e. the difference with the periodic run) using the
IMEX method.

From now on, for all runs using SO-interface approximation, we present the results
evolved with the IMEX-SSP3(4,3,3) L-stable time integrator, while all runs for the F O-
scheme, all the periodic runs and comparison with SO-Mattsson et al.’s scheme ( in Sect. 3.8)
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Fig. 2 Error of the interface run (i.e., difference with the periodic run), using IMEX-SSP3(4,3,3) L-stable
time integrator with an interaction factor L = 106

are performed with the traditional third or fourth-order Runge–Kutta integrator. Note that the
only term that needs to be treated implicitly with this IMEX method is the term proportional
to L , that is, just the last boundary term in Eq. (10).

3.4 Convergence

In the absence of the interaction term, we expect the error to be of the form e = f1dt p+ f2dxq ,
where p depends on the time integrator used and q on the space discretization of derivatives.

The convergence rate is calculated as

Q = ln

(
‖Φ(h) − Φ(h/2)‖l2

‖Φ(h/2) − Φ(h/4)‖l2

)
/ ln(2), (16)

where Φ(hi ) is the numerical solution with grid spacing hi .
In our case, we expect p ≥ 3 for the IMEX algorithm. The precise value depends on

the nature of the solution, in particular the size of the solution near the boundary (where
the implicit part of the algorithm is used) in comparison with the size of the solution in the
interior of the grid. Since for the space discratization (in the case of D2) we use a fourth-order
accurate operator at the boundary and eighth-order accurate in the interior, q ≥ 5.

For stability reasons, the CFL condition on the explicit integrator is such that we need
to scale dt as dx , so we expect a convergence index of the order of three. Alternatively, we
might fix a sufficiently small dt and increase the space resolution, which allows us to study
in an independent way space convergence. In this case we would expect a convergence index
of the order of five. Any smaller convergence factor must result from the interface treatment.
For most of the convergence tests we used very smooth initial data, since the f1 and f2

functions depend on high derivatives of the exact solution.
We start by analyzing the convergence of the method for the 1D case with runs of

640, 1,280 and 2,560 points using the smooth data thus in F O-scheme as SO-interface
approximation with D2 and D2 operator, and with CFL and dt fixes.

From Fig. 3 we see that, for F O-scheme and SO-interface approximation with D2 operator
keeping CFL constant (0.08), the convergence factor starts at a value of 3 while the pulse is in
the interior, meaning that the main contribution to the error comes from time discretization.
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Fig. 3 Comparative plot of the convergence factor for the 1D system, for: first-order formulation F O-scheme,
SO-interface approximation using D2 and D2 respectively, at a CFL, and b dt fixes

By the time the solution reaches the boundary the Q factor climbs to ∼ 5, which means
that there the space discretization is the primary contribution to the error. For SO-interface
approximation with D2 second-order case, however, the convergence remains constant around
3, implying that during the whole run the derivative operator the contribution to the error is
negligible.

On the other hand, for fixed dt = 2.5 × 10−5, we observe that during the whole run the
error is dominated by the space operators, and the convergence factor starts at a high value,
close to 8, corresponding to the time when the pulse has not reached the boundary; and falling
to 5 when it does.

For the 2D case we performed runs of 640×640, 1,280×1,280 and 2,560×2,560 points
with the rough data.

From Fig. 4, we observe very similar behavior as in the 1D case. Before the wave reaches
the boundary, for all discretizations using the third-order Runge–Kutta integrators, both
conventional or IMEX, convergence is dominated by the time discretization with a Q factor
close to 3, climbing to ∼ 5 as the pulse reaches the interface (where the space discretization
is the one contributing the most to the error).
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Fig. 4 Comparative plot of the convergence factor for the 2D system, at fixed CFL = 0.08. Plotted are the
first-order formulation F O-scheme and SO-interface approximation using D2 and D2 respectively

We also performed a run, for comparison, using a fourth-order Runge–Kutta method for
the first-order system. In this case we observe that in the interior the convergence improves and
starts close to 8. Here the time integrator is more accurate and hence the space discretization
becomes more important. As the pulse reaches the boundary, we again obtain a Q factor of 5.

Convergence alone is not enough to guarantee that we are approaching the correct solution.
That is, in principle, the limit of our finite-difference scheme does not need to coincide with
the continuum equation (because of the boundary terms which grow with resolution). Thus,
it is necessary to analyze convergence against the true solution, which we do in the next
section.

3.5 Accuracy

Here we compare methods for realistic data, namely the rough initial data given above, both
for the 1D and 2D cases.

For the 1D case we evolve the solution up to t = 2.0, at which point the solution has
moved to the left and the pulse has completely passed the interface located at x = 0. In the
2D case a pulse is sent in an oblique direction to the interface to check whether the scheme
preserves the correct phase in this case and does not introduce, for instance, an excess bounce.

For comparison we performed a run using periodic boundary conditions with eighth-
order centered-difference operators with N = 5,120 points, or 5,120 × 5,120 for the 2D
case (referred to as P5,120 in both cases). This is used as the reference solution against
which we compare all the other runs. For these last simulations, interface conditions are
used with N = 640, 1,280 and 2,560 points for both the F O-scheme system and the SO-
interface approximation (denoted by F O640, F O1,280, F O2,560 and D2 640, D2 1,280, D2 2,560
respectively). In addition, for the SO-interface approximation, we perform simulations using
both D2, and D2 operators. All the runs are performed with an interaction factor L = 106

and keeping the CFL factor constant (0.08).
In Fig. 5, we show a comparison of the l2-norm of the error for the two different cases under

consideration: the standard F O-scheme with a third-order Runge–Kutta time integrator, and
SO-interface approximation with the D2 operator that uses the IMEX-SSP3(4,3,3) L-stable
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Fig. 5 l2-norm of the error for several different 1D runs

Fig. 6 l2-norm of the error for several different 2D runs

scheme. Note that before the pulse has reached the interface, the two methods are comparable,
but as soon as the wave reaches and passes through the boundary, the solution obtained using
our second-order method improves the accuracy by at least one order of magnitude. This
shows that the interface treatment proposed here competes very well with the traditional
F O-scheme.

We observe the same behavior for the 2D case, displayed in Fig. 6. Again our method and
the F O-scheme behave similarly in the interior region, but ours is superior to the SAT after
the pulse passes the interface.

3.6 Energy Decay

The present scheme is energy-diminishing at the semi-discrete approximation level. This
implies that if a stable time integrator is used with a sufficiently small time step the energy
given by (4) should decrease only at a rate given by the penalty term, plus, perhaps noticeable,
the inherent dissipation of the time integrator. So here we study such a decay, showing that
it is indeed very small, as one would infer from the method’s accuracy.
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Fig. 7 Relative error of the energy decay for the rough initial data for four different scenarios: periodic
boundary conditions, traditional F O-scheme, and SO-interface approximation using D2 for two choices of
the interaction factor L

Fig. 8 Energy relative error (compared to the periodic-solution energy) for the rough initial data for three
different scenarios: F O-scheme and SO-interface approximation using D2 for two choices of the interaction
factor L

Figure 7 shows the behavior of the relative error of the energy, i.e. (E − Einitial)/Einitial ,

on longer runs: ten times the previous ones.
These runs were performed with fixed CFL = 0.08, and a resolution of 5,120 points.

As expected, the decay is very small, and it improves considerably for larger values of
the interaction factor. For a value L = 106, the energy decays at a faster rate than with
the first-order SAT scheme, which coincides with the decay given by a periodic treatment.
However, if we increase the value of L , the decay approaches the periodic one, and if we take
L = 1010 the three decays (periodic solution, F O-scheme, and SO-interface approximation)
are indistinguishable. So most of the decay is due to the inherent-Runge-Kutta integrators,
and both the standard third-order and the IMEX one seem to have the same dissipation.

Finally, in order to account only for the decay associated to the method, we show in Fig. 8
the relative error of the energy compared to that of the periodic solution, i.e. (E − EP )/EP

Here we see that the F O-scheme is the one that best approximates the periodic energy,
while SO-interface approximation deviates from it. This difference decreases, however, if
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Fig. 9 Comparison of the solution at t = 2 using D2 for the spatial operator with and without dissipation,
with the periodic one

we take a larger L , showing, once more, that the larger the interaction factor, the better the
proposed method fits the solution.

3.7 Dissipation

It is worth noticing that, for all the runs performed so far, it was not necessary to introduce any
artificial dissipation, for we have been considering a linear problem with constant coefficients
and smooth data, and therefore there was no noise introduced by high frequency modes.
However if we were dealing with a nonlinear equation or one with non-constant coefficients,
we might find high frequency oscillations around the correct solution. It is well known that
adding dissipation to D2 we achieve the same result than D2. As an example of this, we used
the D2 scheme instead of the D2 used above, with the rough data.

We see in Fig. 9 that using this operator introduces some numerical noise to the solution,
diminishing its quality. We note that the solutions without dissipation are almost indistin-
guishable except near the interface, where we include a zoomed sector to the right in Fig. 9 to
show the disagreement. As known, this noise is removed by using Kreiss-Oliger dissipation
[7], that is, by adding to the equations a term proportional to a large power of the Laplacian
operator. This term contains a factor that depends on the resolution so that the error produced
is of the same or smaller order as the rest of the terms in the approximation.

In particular, we used the one that corresponds to the accuracy we are using for the finite-
difference operators [12–14], namely, eighth-derivative dissipation Qd = −σddx9
4, where

 is a finite-difference operator that approximates the Laplacian to first-order accuracy. The
runs used for this comparison were performed with a resolution of 640 points at CFL fix
(0.08), and σd = 100.

Figure 10 below shows the l2-norm of the error using D2 with and without dissipation, as
well as the error for the F O-scheme with dissipation.

We calculated the error by comparing a periodic run with 5120 points against interface
runs with 640, 1280 and 2560 points. These were done keeping the CFL factor fix (0.08) and
using an interaction factor L = 106. We see that adding the dissipative term improves the
accuracy by one or two orders of magnitude. The errors calculated with dissipation for both
F O-scheme and SO-interface approximation systems are almost the same.
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Fig. 10 Behavior of the relative error of the l2-norm for runs with operator D2 with and without dissipation

Also, by comparing with Fig. 6, we see that the errors for the SO-interface approximation
with D2 and F O-scheme with a dissipation are similar to the error calculated SO-interface
approximation with the second-order operator D2. Thus, as expected, methods that use dis-
sipation are competitive with the D2 discretization.

3.8 Comparison with Mattsson et al.’s Method

When implementing the SO-Mattsson et al.’s scheme, we choose σ = 0 αM = σ0 and
τ = − 6.0

dxσ0
and in our SO-interface approximation we choose an interaction factor of

L = 1010. These runs are performed with a fixed factor CFL = 0.08.

Furthermore we use the smooth initial data described in Sect. 3.1 and the finite difference
operators of second-order accuracy and, of 6th-order accuracy in the interior and 5th-order
at the boundary, calculated by Mattsson et al. in [1]. For our scheme we use the operators of
second-order accuracy and, of 8th-order accuracy in the interior and 6th-order at the boundary
with a first-order companion, calculated in [9].

In Fig. 11a, b we show the error of both method when comparing the numerical solutions
obtained using the SO-Mattsson et al.’s scheme (ΦM ) and our one (ΦD2 ) with the corre-
sponding periodic solutions of same difference operator’s accuracy (P2560) for a resolution
of 2,560 grid points.

We see that both methods are very similar with a better performance in our scheme when
the pulse reaches the interface (see Fig. 11b). Since both methods basically only differ in
the treatment of the interface, the difference becomes appreciable in that region. The method
developed by Mattsson et al. treats the interface using penalty techniques on Φ, Π and DΦ.
These are present not only in the evolution of the terms of the interface, but also in the
evolution of the interior point, being the amount of points subjected to the operator accuracy,
whilst our method we only needs to communicate the Π field, even though the IMEX scheme
requires that this information is passed twice.

4 Applications

In this section, we present two applications of the method developed above, namely, a variable
coefficient problem (gauge-wave) and a wave packet propagating on the surface of the 2-
sphere.
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Fig. 11 l2-norm of the error corresponding to SO-Mattsson et al.’s scheme and to SO-interface approximation
for N = 2,560 with a a second-order accuracy difference operator for both scheme and b a 6th and 8th-order
accuracy difference operator respectively

4.1 Gauge-Wave

As an application of our method involving variable coefficients, we consider a simple 1D
test in numerical relativity: a linearized solution of Einstein’s equations around a gauge-wave
background with line element [15]

ds2 = eA sin(π(x−t))(−dt2 + dx2) + dy2 + dz2. (17)

This background describes flat spacetime, in which a coordinate transformation on the (t, x)

plane has been performed, with a sinusoidal dependence along t − x . This gauge-wave
problem provides us with a simple, yet non trivial, numerical test, for it is linear, the amplitude
of the coefficients can be controlled by only adjusting the parameter A, and does not lead to
any singularities. This test differs from those of the previous sections since in this case the
coefficients depend both on space and time.

There are various papers that deal with this problem [12,15–17]. Most of them use a
method that involves a first-order formulation with periodic boundary conditions, except for
[12], which uses a boundary treatment. A second-order scheme with boundary conditions for
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this gauge-wave problem was studied in [18,19]. One aspect that these papers show is the
exponential growth and loss of convergence displayed by the solution for large amplitudes.

In this section we will apply the method developed above to analyze this problem. We
use the same approach as [12] where perturbations of (17) are considered and introduced in
Einstein’s equations in order to derive the linearized evolution equations for the fields. Here
we study the short-time behavior since we are only interested in the stability of the method
as the waves go through the interface.

The non trivial variables for this problem are the relevant components of the metric and
its time derivative (gxx , Kxx ), and the lapse α. We consider, therefore, perturbations of the
form

gxx = eA sin(π(x−t)) + δgxx , (18)

Kxx = A

2
cos(π(x − t))e

A
2 cos(π(x−t)) + δKxx , (19)

α = e
A
2 sin(π(x−t)) + δα. (20)

The resulting equations are

∂tΦ = Π + Aπ cos(π(x − t)),

∂tΠ = 1

α̂
∂x (α̂∂xΦ)

−1

2

(
Aπ2 sin(π(x − t)) + A2π2

2
cos2(π(x − t))

)
Φ

−1

2
Aπ cos(π(x − t))Π, (21)

where α̂ = e
A
2 sin(π(x−t)), Φ = δα/α̂ and Π = δKxx .

We perform several runs and compare the results for the SO interface approximation
treated in this paper, using first derivative operator applied twice (D2) and the second deriv-
ative operator (D2). The semidiscretization of the second derivative term in (21) is thus of
the form

∂x (α̂∂xΦ) ≈ D(α̂DΦ), (22)

for the D2 case.
For the D2 case, on the other hand, we split the second derivative as

∂x (α̂∂xΦ) ≈ α̂D2Φ + (∂x α̂)D1Φ, (23)

where the derivative of α̂ is calculated analytically, and D1 and D2 are fully compatible
finite-difference operators approximating the first and second derivative respectively (see
[9]). Note that, in certain circumstances, the chain-rule form can experience instability but
this is not the case, thus for simplicity, we use the chain-rule to expand de D2 operator despite
there are narrow stencil formulations for this operator.

We run the SO interface approximation using N = 161, 321 and 641 points and N =
321, 641 and 1,281 points both using D2 and D2 operators. In Figs. (12) and (13) we show
the convergence factor and the l2-norm of the error for these two cases compare with the
periodic solution with N = 5,120 points, respectively. The runs were performed in the
[−1, 1] interval, using an amplitude of 0.5, CFL = 0.01 and the following smooth initial
data
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Fig. 12 Convergence factor for two different resolutions with D2 and D2 in the SO-interface approximation

Fig. 13 l2-norm of the error for various resolutions for the SO-interface approximation

Φ0(x) := 10012 (x + 0.6)12(x + 0.4)12, (24)

Π0(x) := ∂xΦ0(x). (25)

For all the runs, except for the D2 case with the lowest resolution, the convergence factors
oscillate between the expected values of 8 and 5, consistent with the order of the difference
operators used. The l2-norm of the error shows again that the D2 formulation has a lower
error compared to the D2 case for all the resolutions considered. This illustrates the superior
performance of the present method even for variable coefficients, which opens a wide range
of possible applications.

4.2 Waves in the 2-Sphere

As a second application of our method, consider the wave propagation on the surface of a
2-dimensional sphere. We discretize the domain using six identical square grids, one for each
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Fig. 14 Configuration of the grid patches used to cover the 2-sphere

of the six patches whose faces are identified in such a way that they cover the sphere (see Fig.
14). The idea is to evolve each patch separately by independent processors and, by imposing
the proper interface conditions, obtain the global evolution of the solution.

So, we consider the 2-dimensional wave equation

∂2
t u = 1√

g
∂a

(√
ggab∂bu

)
, (26)

with gab the metric of the sphere in the coordinates of each patch and g its determinant. We
use the initial data on the sphere given by

u(θ, φ, t = 0) =
{

2
(
(θ4 − k4)/k4 + 0.1

)
if θ ≤ k

0.2 if θ > k,
(27)

where θ and φ are the standard polar angles on the sphere, and k = 0.5, and apply the method
introduced in Sect. (2) so that each interface is treated using the scheme presented in (10).
In Fig. 15 we show the evolution of the solution for several different times (first and third
row panels), as well as the difference between this solution and the one obtained treating the
interface using the standard SAT method [2] (second and fourth row panels). We see that
the wave packet behaves nicely as it passes through the interfaces, and that the difference
between the two methods is of order 10−4. We also can see from the second and third row
panels that the interface treatment in our method seems to be as good as the SAT scheme,
since there is no appreciable difference in the interface, the largest values of the error being
the ones in the interior of the patch where the initial bump is located.

5 Conclusions

We have shown that it is possible to implement an interface scheme of “penalty” type for the
second-order wave equation similar to the ones used for first-order hyperbolic and parabolic
equations and for second-order wave equation with Mattsson et al.’method. Our scheme
shares with them similar properties: Only data at interface points need to be passed between
grids, and convergence is ensured for linear, constant-coefficient systems.

Our scheme was applied as well to a problem with non-constant coefficients (perturbations
of a gauge-wave background) and the wave propagation on the surface of a 2-dimensional
sphere. The accuracy of the method seems to be as good as the accuracy of the finite-
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Fig. 15 Evolution of the wave packet in the surface of the 2-sphere with our method (first and third row
panels) and the difference between this solution and the one obtained with the SAT technique (second and
fourth row panels)

difference operators and of the time integrators used, and competes favorably with both the
usual F O-scheme and SO-Mattsson et al.’s scheme for all the cases we have tried.

Note that for the wave equation in both the F O-scheme and SO-Mattsson et al.’s scheme
one must pass at the boundary many more quantities than in our scheme, namely, in addition to
the time derivative fields, either all space derivatives or the normal derivative at the boundary.
This fact is important for multi-block parallelizations in several dimensions, for it implies that
one obtains the same solution quality while sharing among different computational grids only
a small fraction of the data one would need for a comparable (in accuracy) SAT or Mattsson
et al.’s method. This will considerably improve the scalability properties of multi-block MPI
computations. It might even be advantageous to use it when dividing a grid block into many
smaller grids to be dealt by different MPI processes as in binary black hole simulations in
General Relativity. In this case the traditional way of doing it is to pass at the boundary the
whole stencil needed to compute finite differences using centered operators. The accuracy of
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our method implies one could just pass among the neighboring grids the values of the fields,
gaining a substantial step on scalability.

Since the information passed along the interface is a time derivative, it behaves as a scalar
with respect to coordinate changes in space.3 So, its values at both sides of the grid, namely
at two different coordinate patches, should be identified without any change. By contrast,
when using F O-scheme or SO-Mattsson et al.’s scheme and passing space derivatives of
the fields, a coordinate transformation is needed in the generic case at which the boundary
regions represent different curvilinear coordinate patches. Thus the new scheme requires less
coding and less computation.

This new method of dealing with interfaces is not unique to second-order systems, for its
underlying ideas can be applied to many cases of interest. In particular, it can be extended
to the general case of symmetric hyperbolic first-order systems. This case is under present
investigation.
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