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a b s t r a c t

In this paper a monitoring system is developed to guarantee safety operational conditions

for the hydrogen production from bioethanol. The key idea is to detect the most critical

faults with the minimum number of sensors. It can be done through a fault detectability

index (FDI) which drives to the optimal measurements selection for building a proper

monitoring system. The FDI calculation is based on principal component analysis (PCA)

model with combined statistics. It takes into account those sensors already selected for

control purposes and penalizes the use of new measurement devices. The overall meth-

odology is tested for fifteen failures such as the catalyzer deterioration in the reforming

reactor, faults at the fuel cell, sensors and actuators. Hence, the investment cost can be

reduced drastically without losing quality of fault detection. The monitoring system with

the selected sensors by the FDI performs better than using all the available plant

measurements.

Copyright ª 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights

reserved.
1. Introduction system. In particular, it must be remarked that hydrogen is a
The hydrogen production from bio-ethanol involves a highly

interconnected plant, named the Fuel Processor System (FPS),

to achieve good efficiencies and assure an economically

feasible option. For safety considerations the direct reforming

of ethanol instead of storing hydrogen is preferred for

handling and distributing this fuel [1,2]. Kleme et al. [3]

considered that a properly controlled and monitored process

derives in better economics indexes and a more ecological

operation. However, it is extremely difficult to achieve a

suitable monitoring without the support of a decision maker
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dangerous substance because its lower flammability limit has

a low value. In Aprea [4] was reported that for hydrogen in air

this value is 4% by volume. Mixtures between 4 and 75% are

flammable andmixtures between 18.3 and 59% are detonable.

In this context, the subject of safety involving production,

manipulation and use, is a main concern, as pointed by Aprea

[4]. Therefore, any effort focused on added security for

handling hydrogen results in a more safe plant, which is al-

ways advantageous.

In this context, the detectability indexes are useful for

determining a priori which set of variables is enough to
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Fig. 1 e Proposed strategy.
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achieve the best fault classification. It must be noticed that

accounting excessive number of measurements could deteri-

orate the quality of the fault detection. In Yiang and Xiao [5]

and Bhushan et al. [6] the selection of variables to improve

the detectability, was addressed. Jeong et al. [7] applied these

tools for a Molten Carbonate Fuel Cell of 300 kW. In this work,

the detectability index is calculated, based on the PCA model

developed opportunely. A PCA-based monitoring system is

widely used in industrial processes as well as academic

research [8,9]. It is due to their excellent properties for

handling noise and large data bases. Finally, through a proper

formulation of the genetic algorithm tool is possible to

construct an efficient monitoring system. It can be done by

formulating an objective function that penalizes the use of

new measurement devices that are not in the current control

structure. Hence, by this way, it is possible to avoid the use of

additional sensors for monitoring purpose because it will in-

crease the hardware investment cost [10].

The methodology used in this work was presented in

Zumoffen and Basualdo [11], they applied it to the well known

Tennessee Eastman Process. Therefore, a global analysis,

generalized and systematic for solving how to design an

optimal sensor network integrated to the plant-wide control

structure and the optimal monitoring system design was

performed. In the previous work of Nieto Degliuomini et al.

[12], this methodology was applied on the bio-ethanol pro-

cessor system. There, an optimal monitoring system design

(OMSD), considering typical faults in sensors, was presented.

The OMSD was based on historical data base for both, normal

and abnormal behavior of the process. In this work, the

analysis is extended to more inherent faults such as the

catalyzer deterioration in the reforming reactor to produce

hydrogen and in the fuel cell (FC). An usual problem in cata-

lyzed reactions is the reduction of the activity, consequently,

the conversion of reactions is affected. This diminution could

be due to deposition of carbon in the catalyzer, with the

consequent reduction of active surface. This is a key fault

scenario, and it could be an indicator to consider control

reconfiguration, or catalyzer regeneration, which is why it is

so important to properly detect. Moreover, three typical faults

that can occur with the FC, such as increase in the compressor

motor friction, overheating of compressor motor and increase

in the fluid resistance are considered too. Hence, these real-

istic scenarios allow to evaluate the capacity of the OMSD to

be extended to another faults too.

The main steps of this methodology are graphically sum-

marized at Fig. 1, showing the involved tools in each stage. In

Fig. 1, the block diagram with red background displays the

procedure applied in [12], the MSD approach. Meanwhile, the

blue background shows the module developed in this work

and its integration with the OMSD strategy.

The final checking about the quality of the predictions

given by the detectability index is presented. The monitoring

system based on PCA with combined statistic [13] is applied

here to the dynamic model of the controlled FPS. Therefore,

the results presented in this work will be useful to get more

insight about the benefits of having an efficient system to

determine in time if the most critical faults occur. It consti-

tutes a recommendable way for guaranteeing safety at lower

cost and efficiency for the Fuel Processor system with Proton
Exchange Membrane Fuel Cell (FPS þ PEMFC) which repre-

sents one of the new energy paradigms.
2. Fault detectability index

In this section a brief review of the main tools needed for

developing an efficient FDI used in this work is detailed.

2.1. PCA-based monitoring

The principal component analysis (PCA) is the main tool used

here for performing fault detection. PCA is a projection-based

method that facilitates a reduction of data dimension. This

analysis begins by considering the data matrix X of m � n

containing m samples of n process variables collected under

normal operation. Assuming that X is the normalized version

of X, to zero mean and unit variance scaled by parameter

vectors b and s respectively. The normalized data matrix can

be represented as

X ¼ TPT þ E (1)

where T˛<m�A and P˛<n�A are the latent and principal com-

ponents matrix respectively, and A is the number of principal

components retained in the model P. The residual matrix E

represents the associated error since only A � n principal

components were selected.

P can be obtained by means of singular value decomposi-

tion (SVD) from the normalized data correlation matrix as is

shown in (2)

Rc ¼ X$X
T
=ðm� 1Þ ¼ UDlU

T (2)

by selecting only the first A columns of U. This factorization

produces a diagonal matrix Dl ¼ diag(l1,l2,.,ln), where li are

the eigenvalues of Rc sorted in decreasing order

(l1 > l2 >.> ln) and the corresponding columns of U are the

eigenvectors pi and so called the principal components. being

P ¼ [p1,.,pA] and DA ¼ diag(l1,.,lA).
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A reduction of dimensionality is made by projecting every

normalized sample vector XðkÞ (of dimension n � 1) in the

principal component space generated by P,

TðkÞ ¼ PTXðkÞ (3)

which is called the principal score vector.

Different approaches for selecting the A principal compo-

nents retained [14] can be chosen. In this work the cumulative

percent variance (CPV) is used and displayed in (4). This index

measures the percent variance captured by the first A prin-

cipal components.

CPVðAÞ ¼
PA

j¼1 lj

traceðRcÞ100% (4)

In this case a search between 1 � A � n is made in order to

satisfy the condition CPV(A) � dcpv with the minimum A.

Where dcpv is a percentage value, if it achieves lower values

means that only a few principal components retained are

needed and if it is close to 100% means that A z n.
2.2. Hotelling and square prediction error statistics

For generating quality control charts in multivariable online

monitoring process with PCA, two statistics are widely used:

theHotelling, T2(k), and the squared prediction error (SPE),Q(k)

[11,15e17]. Considering the actual process measurements at

their normalized version XðkÞ, being k the actual sampling

time, these statistics are defined as are shown in (5),

T2ðkÞ ¼ ��D�1=2
A PTXðkÞ��2

; QðkÞ ¼ ��~CxðkÞ��2
(5)

where ~C ¼ I� PPT and DXðkÞ ¼ ~CxðkÞ is the prediction error.

The test consists on declaring as normal operation if T2ðkÞ
� dT2 for Hotelling’s statistic and Q(k) � dQ for SPE statistic.

Where dT2 and dQ are the control or confidence limits for the

above statistics respectively. Supposing a Gaussian distribu-

tion the control limits can be approximated by di ¼ mi þ n$si

[18,19], where mi and si are the mean and variance values for

the statistic i computed from the normal data matrix (i ¼ T2,Q)

and n ¼ 2,3 according to the 95% or 99% confidence level

respectively.

The model, P, is computed using the normal data matrix,

which has information about the common-cause variations at

the surroundings of the process operation point. The Hotel-

ling’s statistic, T2, for a new incoming data sample is a

measurement of its distance respect to the origin of the

dominant variation subspace. This origin and its proximities

delimit the in-control zone. In case that an abnormal event

happens but the principal score vectors remain at the sur-

roundings of the in-control zone (Hotelling’s statistic is under

the confidence limit) suggests that it can not change enough

over the dominant variation subspace to advice about the

occurrence of that abnormal event. The use of the Q and T2

statistics, working together, in a combined way [13] could be

able to avoid this lose of detection. Hence, in Section 2.4 a

new detectability analysis is done based on the combined

statistics. This approach improves the detection properties

such as detection times, less false alarms occurrence and

missed detections.
2.3. Fault detectability index based on T2 and Q

Fault detectability index can be suitably obtained by using an

additive fault model representation of the abnormal process

data. This methodology can be applied to both Hotelling (T2)

and the square prediction error statistics (Q). Yue and Qin [13]

presented an approach to develop this index but for T2 and Q

separately. In the next sections an extension of it for

computing the fault detectability index based on the com-

bined statistics is proposed.

The normalized process measurement, X�ðkÞ, when a fault

is present can be written as,

X�ðkÞ ¼ X0ðkÞ þQjf j (6)

in this fault model can be observed two additive effects: X0ðkÞ
that considers the normal behavior case and Qjf j as the fault

contribution to the actual measurements. Being Qj the fault

subspace for the fault j with j ¼ 1,.,J the fault types and fj the

fault components vector.

2
664
x1
�ðkÞ

x2
�ðkÞ
«

xn
� ðkÞ

3
775 ¼

2
664
x1
0ðkÞ

x2
0ðkÞ
«

xn
0ðkÞ

3
775þ

2
6664
q11j q12j . q1rj

q21j q22j . q2rj
« « « «
qn1j qn2j . qnrj

3
7775
2
6664
f 1j ðkÞ
f 2j ðkÞ
«

f rj ðkÞ

3
7775 (7)

where n is the amount of measurement points, and r the fault

components vector length for the fault type j. The columns of

Q have zero entries except for the measurement affected by

the fault, in this case the entry is 1 or -1 depending of the fault

direction.

The fault detectability condition with Q statistic is sum-

marized as

���~CQjf j
��� � 2dQ (8)

where C is the prediction errormatrix, and dQ the control limit.

Then, in this case, the detectable Minimal Fault Magnitude

(MFM) estimation results

���f j���Q

MFM
¼ ��~CQj

���1
2dQ (9)

Equations (8) and (9) summarizes the detectability and MFM

only for the SPE. An analogous analysis can be made for the

Hotelling statistic.

2.4. Fault detectability index based on combined statistic

The combined index z(k) is defined as shown at (10),

zðkÞ ¼ T2ðkÞ
dT2

þ QðkÞ
dSPE

(10)

note that z(k), T2(k) and Q(k) are the computed statistics for the

actual measurement XðkÞ. Under these assumptions can be

declared as normal operation condition if z(k) � dz, where dz is

the new control limit. A conservative selection could be dz ¼ 2,

according to the false alarms occurring when the fault

detection system is injurious.

In this subsection, the development of the fault detect-

ability index with the combined statistic, z(k), is given. It is

done by performing an extension of the concepts given in the

previous section. By grouping both Hotelling and square

http://dx.doi.org/10.1016/j.ijhydene.2013.08.059
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prediction error statistics can be obtained improvements in

the fault detection performance [11,15e17]. In this case, the

combined statistic can be represented as

zðkÞ ¼ X
T

� ðkÞPD�1
A PTX�ðkÞ
dT2

þ X
T

� ðkÞ~C
T ~CX�ðkÞ
dQ

¼ X
T

� ðkÞ
"
PD�1

A PT

dT2

þ
~C
T ~C
dQ

#
X�ðkÞ ¼ X

T

� ðkÞMX�ðkÞ (11)

with

M ¼
"
PD�1

A PT

dT2

þ
~C
T ~C
dQ

#
(12)

considering thatM is a symmetric and definite positivematrix

[13], is possible its decomposition by Cholesky factorization to

obtain M ¼ RTR. Thus, the combined statistic case presents a

similar treatment as the Q statistic in Section 2.3, giving the

following fault detectability condition

���RQjf j
��� � 2dz (13)

and its corresponding MFM estimate

���f j���z

MFM
¼ ��RQj

���1
2dz (14)

The combined matrix M (and eventually R) depends on the

PCA model developed opportunely. The influences of factors

such as sensors location in the process, signals selection to

perform PCA model, variance retained, and confidence limits

are crucial and limit the attainable MFM. Similarly, the fault

subspace matrix Qj is directly influenced by the sensors

network (potential sources of faults) and the selected control

structure. In other words, a particular design of thesematrices

can incur on losses or poor quality fault detections. In

Zumoffen and Basualdo [11] is presented an application to

large scale plants where a comparison is suggested between a

PCA model developed using the overall available measure-

ments with other based on maximizing fault detectability

with and optimal number of signals.
3. Optimal monitoring system design
(OMSD)

The methodology proposed by Zumoffen and Basualdo [11] is

graphically shown at Fig. 1. The approach stated in Nieto

Degliuomini et al. [12] (MSD) allows to find a proper plant-wide

control structure being the first step selecting the variables to

be measured. Basically, the MSD approach defines,

� the hardware requirements: amount and type of sensors

and controllers which are potential sources of faults,

� the control structure: how disturbances and abnormal

events affect (are masked by the control) the overall process

behavior,

Then, from MSD all the available measurements for con-

trol purpose are candidates to be selected to be used by the

OMSD.
3.1. Optimal signal selection based on detectability
maximization

The proper signals selection for the PCA model development

is performed by focusing on faults detectabilitymaximization.

It is based on the existing sensors network in the previously

proposed optimal control structure in [12] (MSD) and the po-

tential additional cost in case that new measurement points

would be required.

In this context, the problem can be defined as follows,

consideringNc available signals including controlled aswell as

manipulated variables in the process and Ci ¼ [c1,c2,.,cNc] a

particular signals selection, where cl ¼ {1; 0} with l ¼ 1,.,Nc

represents a binary alphabet indicating the utilization or not

of the signal in the l location. Then, the PCA model con-

struction depends on this particular selection, P(Ci) andDA(Ci).

In addition, theMFM calculationwhen combined statistics are

used results

kf ijk
z

MFM
¼ ��RðCiÞQjðCiÞ

���1
2dz (15)

where i makes reference to the signals selection Ci, with

i ¼ 1;.; 2Nc all the possible combinations and j ¼ 1,.,J the

considered abnormal events types (disturbances, faulty ele-

ments, etc.).

A cost penalization C ¼ ½c�1;.; c�Nc
	, greater than zero each

time that extra measurements, not already included for the

control structure, are recommended to be selected. Note that c

can be selected tacking into account a tradeoff between

detectability and quantity of new sensors. Thus, lower values

of c means that the minimization of the objective function in

(16) priories detectability without considers the cost of extra

sensors. Otherwise, when c has a considerable weight the cost

of new sensors is penalized without considers the detect-

ability index. The penalization coefficients must be normal-

ized to contribute in the same order of magnitude of the term��RðCiÞQjðCiÞ
���1

2dz. Therefore, the complete problem to be

solved can be stated as

min
Ci

2
4XJ

j¼1

kf ijk
z

MFM
þ cCT

i

3
5 ¼ min

Ci

2
4XJ

j¼1

��RðCiÞQjðCiÞ
���1

2dz þ cCT
i

3
5
(16)

According to the combinatorial characteristic (16) has 2Nc

potential solutions. In addition, the minimization of the MFM

with combined statistics in (16), drives to the maximization of

the faults detectability. In other words, the search is oriented

towards to find the optimal signals selection Cop (solution of

(16)) that guarantees the best fault detection of the most ex-

pected abnormal events at a lowest investment cost.

Then, the data base from the controlled plant (or eventu-

ally from the dynamic model) is processed and analyzed. The

data corresponding to a normal behavior is used to develop

the PCAmodelwith combined statistic. On the other hand, the

abnormal data base is analyzed to build the event/fault sub-

space, Q, can be extracted by processing the overall potential

measurements and signals from the process. Initially, due to

the typical noise present in the process measurements is

applied a smoothed moving average (SMA) filter for consis-

tence. It performs the average (mean) of the original signal x(k)

http://dx.doi.org/10.1016/j.ijhydene.2013.08.059
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over a specified moving window of dimension N þ 1 samples,

as can be observed in (17), resulting in the filtered version xf(k).

xf ðkÞ ¼ ðNþ 1Þ�1
XN
i¼0

xðk� iÞ (17)

an improved algorithm exists to avoid problems with lagged

samples called exponential weightedmoving average (EWMA)

for on-line applications [20,18]. Thus, the data base is pre-

processed by auto-scaling and then filtering using eq. (17).

After this procedure, the fault subspace extraction is per-

formed to obtain the faults direction.

The faults direction are computed using the well-known

“3d edit rule” [21] which suggests that if
��xf ðkÞ�� > 3 the vari-

able is considered to be deviated from its normal state.

Analyzing the overall data base for each abnormal case, the

fault directions can be computed as

5ðj; iÞ ¼

8>><
>>:

1; if xji
f ðk�Þ > 3;

0; if �3 � xji
f ðk�Þ � 3;

�1; if xji
f ðk�Þ < �3:

with
j ¼ 1;.; J
i ¼ 1;.;Nc

(18)

where xji
f ðk�Þ is the auto-scaled and filtered version of the

variable number i from the abnormal data base (event) j

evaluated in the sampled instant k*. This temporal instant is

specified according to the dynamic response of the process

trying to avoid the transient behavior due to the fault occur-

rence k* ¼ tf þ N*. Where tf is the fault occurrence sample.

Thus each row of 5 represented by 5( j,1:Nc) corresponds to the

j fault propagation over the Nc variables analyzed from the

abnormal data base. The faults subspace Q can be computed

directly from the fault directionmatrix 5 as can be observed in

(19)

Qj ¼ nzrfdiag½5ðj;1 : NcÞ	gT (19)

where the function diag(,) takes the vector 5( j,1:Nc) as input

argument and gives back a diagonal matrix of Nc � Nc with

5( j,1:Nc) in its diagonal. On the other side, the function nzr{,}

takes as input argument the diagonal matrix constructed

previously and gives back another matrix Qj. This fault sub-

space matrix contains only the non zero rows from the original

diagonal matrix. Finally, this fault propagation matrix can be

applied as has been stated in section 2.3.

An alternative approach to obtain the fault directionmatrix

5 exists [11,15e17]. In these works, a strategy based on fuzzy

logic tools is applied and the resultant matrix rules represents

the fault propagations over the process variables. In this case,

thematrix rules evaluation accounts themean contribution of

the variables within the specified zone of analysis.
3.2. Genetic algorithm solution

Genetics Algorithms are used here for solving the problem

displayed in (16) subject to the following restrictions

PNc

l¼1

CiðlÞ > A��RðCiÞQjðCiÞ
�� > 0

(20)

where the first restriction in (20) avoids the selection Ci that

does not present dimensional reduction. In addition, if the
signal dimension is equal to the principal components

retained A the combined statistic z is reduced to Hotelling

statistic only (Q ¼ 0). The second constraint avoids the indi-

vidual selection Ci that produces
���f j���z

MFM
¼ N, which means

that a specific fault can not be detected. In other words, the

second constraint guarantees the fault detectability condition

in (13).

This kind of optimization is generally known as combina-

torial problem and may have serious drawbacks with the

dimension overgrowth which is very common in industrial

processes. Different approaches exist to solve this kind of

problems: integer optimization, mixed-integer optimization

and stochastic search, among others. In this work genetic al-

gorithms for stochastic global search is preferred, because of

the reasonsmentioned earlier. Also, GA are able to give a set of

solutions sorted by the benefit provided by each one in terms

of the minimization of the chosen cost function. Hence, the

first one is the optimal solution, and the following correspond

to the less profitable possibilities. Then, the OMSD approach is

completed by including the detectability index for combined

statistic, investment cost and Genetic Algorithms to define the

optimal signals selection.
4. Application results for hydrogen
production with fuel cell

The fuel processor system (FPS) can be seen in Fig. 2. It con-

sists of a Bio-Ethanol Steam Reforming (ESR) plug flow reactor,

wheremost of the conversion of ethanol to H2 ismade. Carbon

monoxide which poisons the fuel cell catalyst is produced in

the ESR, so additional processing is needed to remove this

substance. There are three reactors that configure the clean-

ing system; these are two Water Gas Shift (WGS), one of high

temperature (fast) and the other of low temperature, that fa-

vors the equilibrium of the reaction to higher conversion rates

of CO. The third is a Preferential Oxidation of Carbon mon-

oxide (COPrOx) reactor, where oxidation of CO into CO2 is

made; also, the undesired oxidation of hydrogen occurs, so the

catalyst is selected to improve the conversion of CO. This

plant was deeply studied in [22], so, further details about the

dynamic modeling, control structure, process constraints and

normal behavior can be seen there.

In Table 1 are summarized the available variables in the

FPS þ FC plant, with 16 potential measurements, 7 of them

( y1,y3,y7,y9,y10,y11,y15) correspond to the control structure

shown at Fig. 2, so they have the sensors installed. A first

version of the optimal monitoring system design was based

on maximizing the abnormal event detectability by tacking

into account the optimal signal selection for constructing a

representative PCA model. Seven potential sensor faults, F1to

F7, presented at Table 2 were considered in [22]. They con-

sisted of abrupt bias/offset (step type) within specific range of

magnitude. All these sensors ( y1,y3,y7,y9,y10,y11,y15) were

assumed with a normal noise distribution and magnitude

between [0.5,5]%respect to their operating points. The

following four possible process faults, are: F8, a catalyst

poisoning, and F9to F11are related to the Fuel Cell and its

compressor. The last four faults taken into account, F12 to F15,

aremanipulated variables (valves) with sticking problem. This

http://dx.doi.org/10.1016/j.ijhydene.2013.08.059
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Fig. 2 e Bio-ethanol processor system with controllers.
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work is mainly dedicated to extend the previous system given

in [22], analyze faults F8to F15and check if the same mea-

surements selection is able to present similar detectability

properties. Then, the previous results for F1to F7are summa-

rized at Table 5.

According to the data given at Table 1 (measurements and

manipulated variables) the combinatorial problem has

dimension Nc ¼ 23 and 223 z 8.3 � 106 possible solutions.

Clearly an exhaustive evaluation of the problem is unpracti-

cal. In this context, GA is used to solve the combinatorial

problem stated in (16) with the constraints given in (20). The

first step for solving this problem is the fault subspace, Q,

extraction by using themethodology stated previously. In this

case a modification is introduced to the 3d-edit rule of (18) for

robustness issues. In fact, the fault directions are computed

accounting the mean value of the filtered version data in a

zone analysis, [ki,kf], instead of a single time instant, k*. Thus,

the approach in (18) becomes,

5ðj; iÞ ¼

8>><
>>:

1; if mean
h
xji
f

��
ki; kf

��i
> 2

0; if �2 � mean
h
xji
f

��
ki; kf

��i � 2

�1; if mean
h
xji
f

��
ki; kf

��i
< �2

(21)
Table 1 e Variables in the FPS D FC process.

Potential measured Manipulated

y1 ESR exit temperature u1 Water to ESR inlet

y2 Jacket exit gases temperature u2 Exchanged heat Q

y3 Burner exit temperature u3 Ethanol to Burner

y4 Burner entering molar flow u4 Oxygen to Burner

y5 Molar ratio H2O/Ethanol u5 Ethanol to ESR

y6 HTS exit temperature u6 Oxygen to CO-PrOx

y7 H production rate u7 CM voltage

y8 LTS exit temperature

y9 CO-PrOx exit temperature

y10 Molar ratio O2/CO

y11 Burner exit molar flow

y12 ESR exit molar flow

y13 CO-PrOx CO exit concentration

y14 Net power

y15 Oxygen excess

y16 Stack voltage
similarly to the fuzzy approach presented in [15e17] the zone

analysis allows to obtain a mean contribution of the process

variables and to know the trends and effects of abnormal

events in a closed loop context. Obviously, this zone is

determined according to the plant dynamic responses and

taking into account the slower responses.

With the fault subspace, Q, already obtained, the next step

is to solve the optimization problem stated in (16) and (20). In

this case, the GA approach is selected and the used parame-

ters setting are shown in Table 3. In Refs. [11,23] a complete

analysis of how the initial population, Ni, generation number,

Ng, mutation probability, Pm, crossover probability, Pco, and the

weighting parameters, c�i affect the solution of the problem

was done. For example, the unweighted, c�i ¼ 0, and the

slightly weighted, c�i ¼ 0:5, cases propose the same solutions

to the problem. The optimal signal selection to maximize

detectability is [y1,y3,y14,u1,u2,u3,u6,u7]. Taking into account

Table 1, this optimal solution suggests the use of a new sensor

for the variable y14 (net power in the FC). On the other hand,

the strongly weighted, c�i ¼ 5, is focussed on penalizing the

new hardware utilization more aggressively. In this context,

the optimal solution is [y1,y3,y15,u1,u2,u3,u6,u7], with the benefit

that it does not require new measuring points. Thus, this so-

lution only uses the already installed hardware to perform

and improve the PCA based monitoring.

In the following, a comparison of three different signals

selection for PCA based monitoring shown at Table 4 is per-

formed. The first solution, represented here with the chro-

mosome Cop, is the optimal one obtained from the

combinatorial problem in (16) and (20), by using the parame-

ters setting displayed in Table 3. There are different solutions

that can maximize the fault detection with the use of a small

number of sensors, as pointed out in section 3.2. The solution

given by the genetic algorithm is not unique, it gives a number

of chromosome combinations (solutions) ranked by perfor-

mance, and we choose the first one (Cop) to evaluate, but the

others should be providing similar results. The second signals

selection to be compared is the so called, Cunf, it represents an

unfeasible solution and does not fulfill with the detectability

condition (second constraint in (20)). Finally, the third solution

is named, Cfull, it considers all possible measurement points

and available signals to build the PCA model.

That full solution clearly presents an increase in the cost

due to the new measurement points and this sensor network
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Table 2 e Abnormal events proposed.

Faults Variable Range [%]

F1 Molar ratio O/CO 
5

F2 ESR exit temperature 
1

F3 Burner exit temperature 
3

F4 Burner exit molar flow 
5

F5 H2 production rate 
5

F6 CO-PrOx exit temperature 
1

F7 Oxygen excess 
5

F8 Catalyst surface 
40

F9 Compressor motor friction 
5

F10 Compressor motor temperature 
20

F11 Fluid resistance 
20

F12 Water to ESR 
5

F13 Oxygen to burner 
5

F14 Bio-ethanol to ESR 
5

F15 Compressor motor voltage 
5

Table 4 e Different signals selection.

Chromosome Signals selection

Cop [y1,y3,y15,u1,u2,u3,u6,u7]

Cunf [y1,y3,y4,y6,y9,y12,y13,y14,u2,u4,u7]

Cfull [y1,y2,.,y16,u1,u2,.,u7]

Table 5 e Indicators for the first seven faults.

Fault Design Td RI[%] Variable

F1 Full 0.65 96.8 U u1
Unf e 1.0 x

Opt 1.0 72.4 U

F2 Full 0.0 100.0 U y6
Unf 0.0 100.0 U

Opt 0.0 99.4 U

F3 Full e 8.6 x u3
Unf e 0.2 x

Opt 0.6 94.4 U

F4 Full 0.3 99.0 U u4
Unf 0.3 96.8 U

Opt 0.8 96.8 U

F5 Full 0.1 99.6 U u1
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does not guarantee an optimal performance from the moni-

toring point of view. It seems to indicate that the amount of

measurements is not directly related to the quality of fault

detection. The last approach is the classical method, but

generally not the optimal solution. In fact, we will see here

that optimal signals selection with the lowest hardware re-

quirements can match and even improve the performance of

the full solution from a PCA basedmonitoring system point of

view. For this comparison the PCA model construction has

been made accounting the following common parameters for

the three signals selection: cumulative percentage variance,

dcpv ¼ 90%; confidence limits for T2 and Q, 99%; z control limit,

dz ¼ 2. This setting produces that the following principal

components retained are (for each solutions): Aop ¼ 5, Aunf ¼ 7

and Afull ¼ 10.

The results obtained for the first seven faults with the pa-

rameters given above are summarized in Table 5, with some of

the main indicators. For each fault and monitoring system, it

is presented the time detection, which is the time that the

system takes to detect the faults; the reliability index (RI),

which considers the amount of samples that are over the

confidence/control limit in percentage mode; the ability to

detect the fault; and the most affected variable. For all seven

faults, the optimal monitoring system designed, is able to

detect them. For faults F1, F3 and F6 the unfeasible system is

useless, and of particular interest is fault F3 where the optimal

system is the only one capable of detection, demonstrating

that the classical approach of using all variables sometimes

deteriorates the quality of monitoring, and can be improved

with less capital investment in sensors. Generally, the optimal

design is slower in determining the fault occurrence. In the

following, new faults are considered, regarding inner process

faults, and problems in the manipulated variables, expanding

the results obtained previously in [22].
Table 3 e GA Parameters Setting.

Ni Nc J Ng Pm Pco Selection Crossover c�i

3000 23 7 40 0.7/Nc 0.7 Roulette wheel Double-point 5
The eighth faulty scenario is shown in Fig. 3. This fault

represents a catalyst surface diminution in the ESR of 40%,

which can be produced by carbon deposition, with the

consequent deactivation, due to the minor surface exposed

for reaction. In Fig. 3(a) the temporal evolution of the com-

bined statistic z(t) is shown for the full, optimal and unfeasible

configurations. In this particular case, Cunf is unable to detect

the abnormal event, while the others are able to recognize it

rapidly. Moreover, Cfull detects the fault with no delay and

practically no probability of miss detection, while Cop needs a

little more time to detect the event. The variable that presents

the major contribution to the fault is y6, which is shown in

Fig. 3(b), it corresponds to the exit temperature of the HTS.

Another fault simulation is shown in Fig. 4. It corresponds

to an increase in the compression motor friction, which is

represented by an increment in the compressor constant kv of

5%, producing a reduction in the compressor torque scm. Fig. 4

shows the evolution of the combined statistic for the three

configurations analyzed. In this case all of them are able to

detect a problem in the system, however, the most notorious

change is in the optimal configuration because it is not

affected by superfluous measurements. The major contribu-

tion to the detection is given by u7, the compressor motor

voltage. This fault only affects the FC, so the variable that

controls the amount of air injected in the cathode is in charge

of rejecting this abnormality.
Unf 0.25 89.2 U

Opt 0.45 97.8 U

F6 Full 0.6 85.6 U u6
Unf e 1.8 x

Opt 1.3 43.6 U

F7 Full 0.05 99.0 U y16
Unf 0.3 99.0 U

Opt 0.3 99.8 U
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Fig. 3 e Fault F8 (Catalyst surface diminution L40%).

Fig. 4 e Fault F9 (increase of the compressor motor friction D5%).

Fig. 5 e Fault F10 (overheating of the compressor motor D20%).
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Fig. 6 e Fault F11 (the fluid resistance increases D20%).
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Fig. 5 corresponds to the tenth fault analyzed, it consists of

an overheating of the compressor motor. It is simulated with

an increment in the compressor motor resistance Rcm of 20%,

producing a diminution in the compressor torque scm. In

Fig. 5(a) the value of the combined statistic z(t) is shown. It can

be seen that for the optimal variables selection, the fault

detection is achieved, but for the unfeasible and the full case is

not possible, resulting in a clear miss detection. These results

demonstrate again that the full case is a bad solution from the

detectability point of view, outperformed by the optimal se-

lection of variables to monitor. Like fault number 9, this

abnormal event is local to the FC, and the most affected var-

iable is u7, shown in Fig. 5(b). The FC is forced to a new oper-

ating point in order to reject this disturbance.

The eleventh fault simulated is shown in Fig. 6, corre-

sponds to an increase in the fluid resistance. It is represented

with an increase in the orifice constant of the cathode output,

kca,out, which produces a proportional change in the outlet air

flow in the cathode, Wca,out. The evolution of the combined

statistic is shown in Fig. 6(a) for the analyzed cases. With the
Fig. 7 e Fault F12 (water to
optimal variables selection the fault detection is fast and

clear, taking a value over the control limit along the abnormal

behavior presence. The cases of full and unfeasible selection

are unable to clearly detect the operation out of normal con-

ditions, they oscillate around the control limit, presenting a

doubtful performance. For this case, the full solution (usual

approach) is as poor as the unfeasible solution considered.

The variable that is mainly affected in this scenario is y16,

shown in Fig. 6(b), corresponding to the normalized stack

voltage.

These last three faults were also analyzed for the same fuel

cell but disconnected from the plant, applying model-based

diagnosis technique in [22]. The principle of model-based

fault detection is to check the consistency of the observed

behavior while fault isolation tries to isolate the component

that is in fault. The consistency check is based on computing

residuals obtained from measured input signals and outputs

and the analytical relationships obtained by systemmodeling.

It is remarkable that applying the residuals methodology it

was necessary the use of four signals for detecting the three
ESR sticking at D5%).
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Fig. 8 e Fault F13 (oxygen to burner sticking at D5%).
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faults. In this work, the same fault detection is made using

only two sensors corresponding to the FC with less time of

detection.

Faults F12 to F15 correspond to failures in manipulated

variables, sticking of valves for the first three cases and in the

compressor motor voltage for the last one, all at þ5%. The

combined statistic for these simulations are shown in Figs.

7(a), 8(a) and 9(a) and 10(a) respectively. In all cases the three

selections are able to detect the abnormal behavior, although

for the twelfth failure, the unfeasible combination has a small

percentage of miss detection; again the same selection is slow

to detect F14. The more affected manipulated variables for F12
and F13 are shown in Figs. 7(b) and 8(b), and they correspond to

the measurement that is stuck, water to ESR and oxygen to

burner respectively. Figs. 7(b) and 8(b) show the water to ESR

and stack voltage, which are, correspondingly, the most

deviated variables when faults F14 and F15 occur.

It is important to remark that these faults were studied

here in the context of the overall plant which is an important
Fig. 9 e Fault F14 (bio-ethanol
contribution of this work. The same faults considered here for

the fuel cell were analyzed previously but this device was

isolated. The methodology used here was able to detect the

same faults but more quickly and using a less number of

measurements. In addition, the same set of measurements

chosen initially was able to detect the rest of faults (8) pre-

sented here.

Finally, in Table 6 the indicators for the faults analyzed in

this work are summarized. Of particular interest is the Fault

F10 where the optimal monitoring system designed is the only

one capable of detecting the abnormal situation, giving a

better solution than the full case, which is the most common

used in industry. Moreover, this full case implies the

maximum hardware investment, because sensors must be

bought for every variable that could be measured. And this

solution is not even the best from the detectability point of

view. So, the solution proposed does not require new sensors

(it uses the already installed from the control structure se-

lection stage), and it is able to maximize the fault detection. It
to ESR sticking at D5%).

http://dx.doi.org/10.1016/j.ijhydene.2013.08.059
http://dx.doi.org/10.1016/j.ijhydene.2013.08.059


Fig. 10 e Fault F15 (compressor motor voltage sticking at D5%).
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does not require extra costs while Cfull needs the maximum

investment, and is not up to the performance of the best

solution.
5. Conclusions

A monitoring system for a bio-ethanol processor has been

designed using a systematic and generalized approach based

on PCA. The optimal number of measurements is selected by

using a fault detectability index. This concept is able to reduce

the investment cost since the set of measurements can be

obtained together with a maximization of the detectability.

The results obtained here confirmed that the use of all
Table 6 e Indicators for the last eight faults.

Fault Design Td RI[%] Variable

F8 Full 0.0 91.2 U y6
Unf e 16.0 x

Opt 0.7 75.0 U

F9 Full 0.0 100.0 U u7
Unf 0.0 99.0 U

Opt 0.4 98.6 U

F10 Full e 5.6 x u7
Unf e 18.2 x

Opt 0.6 72.2 U

F11 Full 1.1 62.2 U y16
Unf 1.0 77.2 U

Opt 0.1 99.6 U

F12 Full 0.0 100.0 U u1
Unf 0.25 82.0 U

Opt 0.0 100.0 U

F13 Full 0.0 100.0 U u4
Unf 0.0 100.0 U

Opt 0.45 98.2 U

F14 Full 1.0 96.6 U u1
Unf 3.7 84.4 U

Opt 1.7 93.4 U

F15 Full 0.0 100.0 U y16
Unf 0.0 100.0 U

Opt 0.0 100.0 U
available measurements for monitoring purposes, is not only

superfluous, even more, it can deteriorate the quality of the

detectability. The optimal supervisory system is developed

using multiple-integrated tools as PCA, combined statistic,

detectability analysis, fault subspace extraction and associ-

ated investment costs. These elements are included in the

objective function so as to promote the use of the existing

sensors installed for control purposes. In this work was ob-

tained an optimal solution using only the already existing

hardware providing by the control structure. This methodol-

ogy was firstly applied to detect the most usual faults in seven

sensors. In this work the analysis was extended to specific

abnormal events inherent to the hydrogen production plant

connected to a fuel cell. Hence catalyzer deterioration and

troubles in the fuel cell and its auxiliary equipment were

tested too. It is demonstrated that the monitoring system is

flexible enough to be extended for other faults not considered

since the beginning. It was given an integral procedure for an

open problem such as the integration of the fault detectability,

diagnosis and investment cost analysis in the context of a well

driven plant-wide control structure. These advances applied

on the hydrogen production system with the FC give the

conceptual engineering basis to achieve safety conditions for

the overall plant through an integral robust design for this

kind of novel and dangerous systems.
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