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ARTICLE INFO ABSTRACT

In animal models of Parkinson’s disease cortical oscillations entrain abnormal synchronous rhythms in
basal ganglia neurons. A mechanism accounting for these oscillations should: (i) vindicate a key role of
the striatum in Parkinson’s disease pathophysiology by considering how alterations in striatal
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Parkinson’s disease oscillations span the whole frequency range of oscillations observed in the normal frontal cortex; and

Oscillations (iii) provide insight into how these oscillations may relate to akinesia. Here we update our proposal that

gyr}ChmﬂiZatiOH striatal projection neurons (medium spiny neurons) behave as dopamine-dependent filters which
triatum

normally do not allow the propagation of resting cortical activity through the basal ganglia circuit. After
chronic dopamine depletion, cortical oscillations would spread through more excitable medium spiny
neurons to entrain the whole indirect pathway. Therefore, akinesia may not be directly related to
oscillations, but to the inability of medium spiny neurons to separate salient pieces of cortical
information from the ongoing cortical rhythms they are embedded in. We propose that uncontrolled
translation of ongoing cortical activity into no-go signals in the indirect pathway induces akinesia. Thus,
oscillations would be an extreme manifestation of this excessive permeability of medium spiny neurons
to cortical input in advanced stages of Parkinson’s disease.

© 2013 Elsevier GmbH. All rights reserved.
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Models trying to account for the emergence of parkinsonian
symptoms can be roughly divided into two types. One type points
to a failure in the signals involved in action selection and initiation,
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focusing on alterations in the temporal and spatial interactions
between competing “go” and “no-go” signals. These alterations
would make no-go signals to prevail when actions are attempted in
the parkinsonian state [1-3]. The other type of model looks at
changes in neuronal activity during resting behavioral states.
According to this type of model, chronic dopamine depletion sets
the basal ganglia network in a fixed functional status which
continuously sustains akinesia and/or turns the network imper-
meable to environmental and internal drive [4-7]. Although these
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two model types are not mutually exclusive, most research in the
field has taken one or the other point of view. Here we will focus on
the mechanisms underlying abnormal spontaneous neuronal
activity in a rodent model of Parkinson’s disease, the 6-hydro-
xydopamine-lesioned rat.

Neuronal activity underlying parkinsonian symptoms: rate or
pattern?

During the last decades, two main kinds of abnormal resting
activity have been described in the basal ganglia of animal models
of Parkinson’s disease and in patients: (i) changes in firing pattern
[4,5]; and (ii) emergence of oscillations and increased synchrony
within and between structures [6,8]. These “rate” and “oscillation/
synchronization” models have often been perceived as opposed to
each other [9,10].

According to the rate model the symptoms of Parkinson’s
disease stem from opposite changes in the activity of striatal
projection neurons belonging to the direct and indirect pathways.
Pioneering 2-deoxyglucose studies performed by Crossman and
coworkers in non-human primates revealed a hyperactivity of the
indirect pathway and a hypoactivity of the direct pathway in
MPTP-induced parkinsonism [11-13]. Moreover, they showed the
opposite effect on the indirect pathway in a model of chorea
induced by GABA receptor antagonist administration into the
striatum [14,15]. Their results led them to propose a central role of
the subthalamic nucleus in both conditions [15]. In parallel, the
excitatory nature of subthalamic neurons [4,16] and the segrega-
tion of D1 and D2 dopamine receptors in direct- and indirect-
pathway striatal projection neurons [17] were discovered. Findings
showing that nigrostriatal lesions result in diminished expression
of substance P and augmented expression of enkephalin in direct-
and indirect-pathway neurons respectively provided further
support to the striatal imbalance hypothesis [17,18]. The
demonstration that lesioning the subthalamic nucleus reverses
akinesia in parkinsonian monkeys provided a causal link between
subthalamic nucleus activity and the symptoms of Parkinson’s
disease [19], further supporting the rate model.

However, neuronal recordings performed in rat and primate
models failed to convincingly demonstrate the expected rate
changes in basal ganglia neurons. Instead, studies have consis-
tently found more irregular or bursty firing patterns, excessive
oscillatory activity and enhanced interneuronal correlations both
in MPTP-lesioned monkeys and 6-OHDA-lesioned rats. Burbaud
et al. [20] reported an increase in firing rate and burstiness in the
substantia nigra pars reticulata (the main basal ganglia output
nuclei in rats) of rats with nigrostriatal lesions induced by 6-OHDA,
while others showed changes in firing pattern without any
modification in firing rate [21]. Similarly, firing rate may increase,
decrease or remain unchanged in the globus pallidus (the rodent
homologous to the external pallidum of primates) of 6-OHDA rats,
while firing pattern is severely disturbed [22-24]. Parallel results
were obtained in striatal projection recipient neurons of parkinso-
nian monkeys (i.e., internal and external pallidal segments), where
a rate change in the direction predicted by the rate model is
reported by some studies but not others, whereas changes in firing
pattern are almost invariably reported [25-30]. Consistently with
the rate model, an increased firing rate has been reported in the
subthalamic nucleus in rat and primate models of Parkinson’s
disease. However, this hyperactivity is also accompanied by
profound changes in firing pattern [31,32]. Furthermore, presum-
ably abnormal firing patterns have been reported in the
subthalamic nucleus and both pallidal segments in parkinsonian
patients [33-40]. Though, to what extent changes observed in
patients are truly abnormal is debatable given the unavailability of
appropriate controls. Overall, the view that firing pattern

alterations are more pronounced and more consequential than
firing rate changes prevails.

Several studies have examined in more detail these firing
pattern alterations. Some investigations focused their attention on
spatial aspects of neuronal activity organization, like interneuronal
correlations, while others emphasized the importance of changes
occurring in the time domain. Correlated activity is very limited in
neurons downstream of the striatum in normal animals, but it
increases dramatically in the parkinsonian state, both in rats
[32,41] and non-human primates [28,29,42-45], and has also been
reported in patients [37,46]. In the time domain, oscillatory
activity has been detected in spike trains in patients [35-39,46,47],
and found to be increased in both rat [24,48-52] and primate
[29,42,45] models of the disease. These oscillations span a wide
band of frequencies ranging from <2 Hz, through rhythms similar
to tremor frequency in patients (3-8 Hz), to beta (13-30 Hz) (see
citations above). Though it is important to mention that some
frequency bands seem more represented than others and this
seems to depend on the behavioral state.

Correlated activity can be computed directly from spike trains
corresponding to pairs of neurons, or can be inferred from examining
the temporal relationship between spiking activity in individual
neurons and oscillations in the local field potential (phase locking).
Because local field potential oscillations speak about the degree of
organization of afferent activity, synchronization of spike trains to
local field potential oscillations provides information about both the
temporal and spatial organization of neuronal activity, i.e.,
oscillatory synchronization. Exaggerated oscillatory synchroniza-
tion has been reported in animal models and patients, at different
frequency bands, in the globus pallidus, subthallamic nucleus, and
basal ganglia output nuclei [32,37,40,41,45,47,51,52]. Importantly,
spike trains recorded in one of these structures (i.e., subthalamic
nucleus) may show an enhanced synchronization with local field
potential oscillations recorded in another structure (i.e., globus
pallidus), which means that widespread neuronal networks are
oscillating synchronously. Indeed, oscillatory synchronization
extends beyond the basal ganglia nuclei since spike trains are
abnormally entrained to cortical local field potential oscillations in
6-hydroxydopamine-lesioned rats [24,32,49,50,52-56], MPTP-le-
sioned primates [45,57] and patients [39].

Models about the origin of these observed abnormal patterns of
activity need to take into account the widespread temporal and
spatial organization of neuronal activity in cortico-basal ganglia
networks.

Oscillatory synchronization in Parkinson’s disease: basal
ganglia pacemaker or basal ganglia entrainment by external
oscillators?

Different models have been put forward to explain the origin of
excessive oscillatory synchronization in the basal ganglia in
Parkinson’s disease. An early model suggested that the isolated
globus pallidus - subthalamic nucleus network may behave as an
abnormal pacemaker under chronic dopamine depletion. Organo-
typic cultures containing globus pallidus and subthalamic nucleus
display low frequency locally generated synchronous oscillations
[58]. Although some acute slice physiology studies suggested that
the isolated globus pallidus and subthalamic nucleus may generate
oscillations in certain conditions, the fact that oscillations in these
structures are synchronized to cortical oscillations in vivo (see
citations above) led the field to update the internal basal ganglia
pacemaker viewpoint. In this context, oscillations in the pallido-
subthalamic network are proposed to spread and amplify thanks to
a “fast loop” involving basal ganglia output to thalamus and cortex,
and direct cortical projections to the subthalamic nucleus
(“hyperdirect pathway”) [59-61].
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This model has some weak points. One is that it doesn’t take
into account the role of the striatum. Most researchers in the field
would almost undoubtedly agree on the striatum involvement in
parkinsonian akinesia. Numerous studies have shown that locally
increasing dopamine availability in the striatum diminish akinesia
in animal models of the disease [62-64]|. Moreover, studies
performed in slices have made a strong case that chronic dopamine
depletion induces marked alterations in corticostriatal synaptic
plasticity [65,66], to the point of providing causal evidence linking
these changes to movement impairments [67]. Finally, recent
studies provided causal evidence supporting the striatal imbalance
hypothesis. By using optogenetics, Kravitz et al. [68] have shown
that selectively increasing the activity of striatal direct or indirect
pathway neurons in normal mice has opposite effects on motor
activity as predicted by rate models of basal ganglia functional
organization, and that increasing activity of direct pathway
neurons relieves akinesia in a mouse model of Parkinson’s disease.
Some studies using DREADDs have also shown opposite effects on
motor output by selectively inhibiting or exciting striatal direct
and indirect pathway neurons in normal rodents ([69]; but see,
[70]). The other weak point of the “fast loop” model is that no clear
“striatum independent mechanism” has been proposed to explain
how abnormal behavior emerges in Parkinson’s disease.

Thus, the striatum stands as the key to a unifying theory of basal
ganglia dysfunction in Parkinson’s disease. In Tseng et al. [53] we
have proposed a mechanism through which the striatum may
contribute to the oscillations occurring downstream in basal
ganglia nuclei. Even in resting conditions, the thalamo-cortical
system generates oscillations of different frequencies, whose span
is usually inversely related to frequency (lower frequencies are
synchronized across wider areas) [71,72]. Despite the massive
cortical and thalamic projections to the striatum, thalamo-cortical
rhythms are weakly represented in basal ganglia spike trains in
normal conditions [24,49,50,53,56,73,74]. Our proposal was that
chronic dopamine depletion allows the spreading of thalamo-
cortical rhythms through more excitable striatal “medium spiny”
projection neurons (MSNs), resulting in an abnormal over-
representation of these rhythms across the basal ganglia circuit.

Medium spiny neurons as dopamine-dependent high pass
filters: subthreshold representation of cortical oscillations in
medium spiny neurons

Tseng et al. [53] have studied membrane potential oscillations
in MSNs under anesthesia, in control and 6-OHDA-lesioned rats.
The use of anesthesia allows the study of spontaneous network
dynamics resembling those seen in physiological conditions while
minimizing confounds inherent to behavioral states, like periph-
eral feedback. Two main resting brain states can be recorded under
anesthesia: (i) a “slow wave” state characterized by 0.5-2 Hz
oscillations in the cortical local field potential, reflecting synchro-
nous oscillatory activity in a majority of cortical and thalamic
neurons; and (ii) episodes of cortical “activation” during which
cortical neurons fire steadily and the local field potential is
dominated by higher frequency rhythms of smaller amplitude
[72,75]. Recordings of cortical ensembles show that the slow
waves can be dissected into epochs of pronounced and nearly
absent cortical activity [72,76]. This macroscopic oscillation is
produced by synchronous alternations between “up” and “down”
states in cortical pyramidal neurons. On the other hand, pyramidal
neurons show a persistently depolarized membrane potential in
the activated state [72,75]. Importantly, it has been proposed that
similar network dynamics underlie the depolarized cortical state
during the slow wave up state and the activated condition [75].
Thus, anesthesia can be seen as a tool to study basal ganglia
behavior under different patterns of cortical activity.

Striatal MSNs’ activity is also characterized by rhythmic
fluctuations in membrane potential between a highly hyperpolar-
ized quiescent “down” state and a depolarized “up” state [77].
Since MSNs fire action potentials only during the up state, these
plateau depolarizations are perceived as enabling events that allow
information processing through cortex-basal ganglia circuits [78].
Importantly, besides been a hallmark of sleep and anesthesia, up
states are also seen in MSNs in the awake animal, although these
depolarizing events are temporally disorganized compared to slow
wave sleep [79].

Several studies have demonstrated that striatal up states
depend on cortical inputs. MSNs’ membrane potential remains in a
continuous down state in striatal slices, and up states disappear
when the striatum is deprived of afferent input [77,78]. However,
whether a persistent cortical input is required to sustain striatal up
states [76,80-82], or intrinsic mechanisms can sustain striatal up
states after cessation of cortical input [83,84] remains under
debate. We have shown that MSNs’ membrane potential replicates
the activity of cortical ensembles [76,82]. Medium spiny neurons’
membrane potential follows the activity of cortical multiunit
activity, and cortical electrical stimulation induces an abrupt stop
of cortical and striatal up states which is followed by a
synchronized resumption of up states in both structures [76,80].
Moreover, it has been proposed that NMDA receptor endows MSNs
with intrinsic bistability, but our in vivo data [81] and a
computational modeling study [85] show that NMDA receptors
contribute to MSN depolarization and firing during up states
without changing up state duration. Overall, the data are
consistent with striatal up states being a subthreshold represen-
tation of firing activity in afferent ensembles.

Using the 6-OHDA lesion rat model of Parkinson’s disease, we
have demonstrated that a subgroup of MSNs shows a more
depolarized up state and an increased firing probability in rats with
nigrostriatal lesions (Fig. 1) [53]. As a result, cortical slow waves
are over-represented in spike trains of striatal neurons (see also
[56,86]). Of note, normal MSNs show a very low firing probability,
thanks to potassium voltage-dependent currents becoming active
at the up state membrane potential [77] and the influence of local
inhibitory circuits [87,88].

Several mechanisms may contribute to increasing the activity
of MSNs projecting to the globus pallidus in the parkinsonian
condition [86]. Corticostriatal neurons are not hyperactive in
animal models of the disease [89,90] and indirect pathway MSNs
show a lower spine density in rodents with chronic dopamine
depletion [91,92], but corticostriatal synapses show a deficitin LTD
[65,66] which may result in enhanced efficacy of the remaining
synapses. Moreover, changes in dendritic excitability [91,93] and
reduced feedback inhibition [94,95] may enhance the influence of
synapses located in distal parts of the dendritic tree on firing
probability. Overall, these changes may lock striatal cell assemblies
into an over-synchronized state [96] with enhanced influence on
downstream structures.

Over-representation of spontaneous cortico-striatal rhythms in
the parkinsonian globus pallidus

As we have already stated, influential models of basal ganglia
pathophysiology propose that chronic dopamine depletion induces
an increased gain of the indirect pathway in the parkinsonian state
[4,5]. According to this rate model, hyperactivity in MSNs
expressing the D2 receptor (D2-MSNs) would lead to globus
pallidus hypoactivity and subthalamic nucleus hyperactivity.
However, several studies show modest modifications of globus
pallidus firing rate accompanied by robust changes in firing
pattern in experimental models of Parkinson’s disease and in
patients [22,27,28,50,97-100]. This has been considered one of the
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Fig. 1. Effect of an intrastriatal NMDA receptor blocker on the abnormal low frequency oscillations induced by chronic dopamine depletion in the cortico-striato-pallidal
circuit. Diagram of the activity recorded in the cortex (ECoG), striatum (STR) and globus pallidus (GP) under slow wave activity. Under normal conditions, MSNs’ membrane
potential oscillates between up and down states mimicking cortical activity, but globus pallidus neurons show a slight increase in firing during the cortical up state (left). In
contrast, up states become more depolarized and MSNs become hyperactive in 6-OHDA lesion rats. Synchronously to the striatal activation, globus pallidus neurons decrease
their activity under cortical slow waves thus inducing abnormal low frequency oscillations in chronic dopamine depletion (middle). This abnormal oscillations can be
abolished by administrating an NMDA antagonist in the striatum, which restores striatal activity to its normal levels and eliminates globus pallidus inverse phase relationship

to the cortical slow waves (right).

main drawbacks of the classical basal ganglia model, and has lead
to questioning the functional significance of the indirect pathway
[2,97,101,102].

Previous studies have shown that in Parkinson’s disease
models, anomalous low frequency oscillations are coordinated
along striatal, pallidal, subthalamic and basal ganglia output
neurons [50,51], and between neurons in all these structures and
the frontal cortex [24,49,50,53]. Because our results suggested an
over-representation of cortical oscillations in MSNs’ spike trains
after chronic dopamine depletion, we investigated whether the
spontaneous firing pattern of globus pallidus neurons is shaped by
cortico-striatal oscillations in the parkinsonian condition.

In control animals, cortical output increases are accompanied
by a rise in pallidal activity [50,100,103]. In contrast, a high
proportion of pallidal neurons exhibits periodic inhibitions of
spiking activity coupled to the activation of striatal and cortical
neurons during slow waves in the 6-OHDA rats (Fig. 1) [50,51]. We
have proposed that this abnormal cortico-pallidal coupling
induced by dopamine depletion is due to a switch in cortical
control over the pallidum, from excitatory (cortico-subthalamo-
pallidal) to inhibitory (cortico-striato-pallidal) [50,100,104]
(Fig. 1).

To provide causal evidence linking striatal activity to pallidal
inhibition during slow waves, we investigated whether enhanced
firing of MSNs during the up state promotes the anomalous
synchronization between the cortex and globus pallidus in the
parkinsonian condition. We first determined the NMDA receptor
contribution to striatal spiking activity in control and dopamine
depleted animals. Using reverse microdialysis combined with
intracellular recordings in vivo, we demonstrated that NMDA
receptors blockade reduces up states amplitude inducing a lower
firing probability of individual neurons in normal animals [81].
Furthermore, local infusion of an NMDA antagonist reduced

striatal hyperactivity in 6-OHDA rats, suggesting that tonic
stimulation of NMDA receptors contributes to sustain an increased
striatal output activity in rats with chronic nigrostriatal lesion
(Fig. 1) [56]. Then, we tested whether intrastriatal administration
of an NMDA antagonist blocked anti-phase synchronization of
pallidal spike trains with cortical rhythms in 6-OHDA rats, and
found that it completely abolished low frequency oscillations in
the globus pallidus neurons showing inverse phase relationship
with cortical slow waves (Figs. 1 and 2).

Besides the over-representation of low frequency oscillations
under chronic dopamine depletion, several studies have found
abnormal cortico-pallidal oscillatory synchronization spanning a
broad frequency range in animal models of Parkinson’s disease and
in patients [41,45,50,56,57]. We then asked if striatal hyperactivity
was responsible for the spreading of these higher frequency
oscillations observed downstream in the basal ganglia circuit in 6-
OHDA lesion rats. To do this, we broke down frontal cortex activity
in complementary frequency bands and investigated the effect of
an intrastriatal NMDA receptor blocker on the emergence of these
oscillations and on pallidal neuron coupling to these rhythms [56].
It is important to mention that the NMDA receptor contribution to
striatal hyperactivity was observed both in the slow wave and the
activated cortical states. Blocking NMDA receptor-dependent
striatal output had distinct frequency dependent effects on the
abnormal oscillatory activity observed in the globus pallidus. As
we have already mentioned, the NMDA antagonist completely
abolished inverse phase relationship of pallidal neurons to the
cortical slow waves. In addition, 2.5-5 Hz rhythms became non
significant and 10-20 Hz oscillations were clearly attenuated
(Fig. 2). On the other hand, high beta oscillations (20-40 Hz) were
only slightly reduced (Fig. 2). These results show that resting
cortical rhythms spread abnormally to downstream basal ganglia
nuclei through the striatum in dopamine depleted animals. It is
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Fig. 2. Frequency dependent effect of striatal NMDA receptor blockade on anomalous cortico-pallidal synchronization under different brain states. (A) Pathological inverse
phase synchronization between cortex and globus pallidus during slow waves is significantly decreased after intrastriatal administration of an NMDA antagonist in
parkinsonian rats. (B) Control animals show no significant synchronization to cortical rhythms during episodes of cortical activation. Chronic dopamine depletion induces
abnormal synchronous cortico-pallidal activity in a wide frequency range. Intrastriatal NMDA receptor blocker had a frequency dependent effect on these abnormal
synchronized activity. An NMDA antagonist clearly attenuated 2.5-5 Hz and 10-20 Hz oscillations in 6-OHDA lesion rats.

important to mention that the NMDA receptor blocker had no
effect on globus pallidus spontaneous activity in control animals
[56]. This suggests that spontaneous pallidal activity depends on
intrinsic pacemaker mechanisms and on excitatory influence from
the subthalamic nucleus in the intact brain (Fig. 1).

Overall, these results demonstrate that an increased gain of the
cortico-striato-pallidal axis drives functional changes in globus
pallidus spontaneous activity in experimental parkinsonism.
Rather than a decreased firing rate, as predicted by the rate
model, the main change induced by dopamine depletion is an
exaggerated transmission of cortical information in a wide range of
frequencies to downstream structures. This spreading of abnormal
oscillations would stem from a reduced “filtering” striatal capacity
in dopamine depleted animals. The fact that an NMDA receptor
blocker had distinct frequency dependent effects suggests that low
and high frequency oscillations stem from partially different
mechanisms. This view partially reconciles the rate and oscillation/
synchronization models since the abnormal oscillations observed
downstream the striatum would be the result of striatal
hyperactivity.

Possible mechanisms leading to the strengthening of the
cortico-striato-pallidal network

The effect of dopamine over MSNs varies depending on the
currents available at the up or down state [105]. Under normal
conditions, dopamine D2 receptors impede up state transitions
and inhibit NMDA dependent currents reducing the positive
feedback loop between NMDA receptors activation and up state
amplitude in MSNs [106,107]. Furthermore, D2 receptor activation
favors endocannabinoid release and long term depression through
multiple mechanisms, including the inhibition of striatal cholin-
ergic interneurons [65,108]. Therefore, under normal conditions,
D2 receptor signaling favors feedback loops opposing depolariza-
tion and excitatory synaptic drive (Fig. 3).

Chronic dopamine depletion induces severe alterations in
cortico-striatal plasticity. In parkinsonian animals, long term
depression is absent in indirect pathway MSNs and experimental
protocols that normally induce long term depression induce
potentiation instead [65,66]. Moreover, when D2 receptor
stimulation is reduced in the parkinsonian condition, the positive

feedback between the NMDA receptor and up state depolarization
gets freed from dopamine control (Fig. 3). Thus, the lack of
dopamine in parkinsonian animals would lead to a cascade of
events resulting in a more depolarized membrane potential,
increased long term potentiation and consolidation of fixed routes
of information flow through the cortico-strtiato-pallidal axis
(Fig. 3).

Changes in local inhibitory mechanisms may also contribute to
enhance transmission of cortical oscillations through D2-MSNs
after dopamine depletion. Feedback inhibition among MSNs,
which is subject to dopamine regulated short term plasticity
[109,110], is markedly reduced after dopamine depletion [94,95].
On the contrary, inhibition by striatal GABAergic interneurons is
conserved or enhanced in rodent models of Parkinson’s disease
[111].

Additional hypothesis about how the striatum may contribute
to the emergence of oscillatory synchronization in Parkinson’s
disease

Alternative views regarding striatal contribution to the
emergence of oscillatory synchronization in Parkinson’s disease
point to: (i) local generation or exacerbation of oscillations and (ii)
striatal triggering of oscillations in non-striatal circuits.

In normal conditions, the striatum presents oscillatory local
field potential activity in a wide range of frequencies, from slow to
fast rhythms [112-115]. The proposed role for those oscillations is
to facilitate the interactions between cell assemblies. There is an
increase in oscillatory activity in the striatum after acute dopamine
depletion in mice [116], after pharmacological blockade of
dopamine receptors with haloperidol in rats [117], and after
chronic nigrostriatal lesion in rats [54,118], across a wide
frequency range, including delta, theta, beta and low gamma
frequencies (see citations above).

Different studies have addressed how the striatum itself could
generate abnormal oscillatory activity. Using a computational
model, McCarthy et al. [119] proposed that a local circuit of
interconnected MSNs can generate beta activity in the striatum.
The locally generated rhythm displayed by the striatal network
specifically acquired a frequency in the beta range because of the
interaction between the M-current (a non-inactivating potassium
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Fig. 3. Proposed mechanisms for striatal circuit changes induced in Parkinson’s disease. NMDA receptor activation promotes a positive feedback loop leading to MSNs
depolarization directly, and through LTP processes. Under normal conditions D2 receptors regulate this positive loop by: (i) reducing glutamate release from corticostriatal
terminals; (ii) decreasing NMDA receptor currents; and (iii) promoting endocannabinoid release and LTD directly and through inhibiting cholinergic interneurons (left). Lack
of D2 receptors activation, as in Parkinson’s disease, leads to an imbalance of these control loops resulting in a higher membrane potential and increased firing of D2-MSN,
presumably through excessive NMDA receptor activation and LTP (right) (see also [133]).

current) and GABA, currents. Oscillations were generated when
the inhibitory GABAergic currents reduce the potassium M-
current, inducing a post-inhibitory increase in excitability. The
strength of the oscillations depended on the magnitude of the M-
current, which is known to be regulated by acetylcholine in MSNs
[120]. Importantly, striatal cholinergic interneurons display
reduced autoinhibition through M4 receptors [121], are intrinsi-
cally more excitable [122] and show enhanced synchrony [43] in

normal

animal models of Parkinson’s disease, resulting in an increased
local cholinergic tone [123]. Thus, the authors modeled dopamine
depletion as an increase in local cholinergic tone, which resulted in
increased beta power and a more persistent oscillation pattern
over time. Coincident with the changes in beta activity they also
show an increase in firing rate in the MSN population, which
through enhanced local GABAergic inhibition further potentiated
beta power in the network. A shortcoming of this model is that the
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Fig. 4. Schematic representation of the emergence of altered firing patterns and oscillatory synchronization in the basal ganglia according to the “spreading” model. Left: In
normal conditions the firing of D2-MSNs is tightly controlled and does not clearly follow specific events in the cortical local field potential (ECoG), which is mainly represented
as subthreshold modulations of the MSN membrane potential [76,82]. Firing in D2-MSNs would produce short interruptions in the tonic activity of globus pallidus neurons,
which are currently believed to stop unwanted actions [1,3]. Middle: the excitability of D2-MSNs is proposed to increase even after partial degeneration of the nigrostriatal
pathway. This would increase the probability of translating into striatal firing cortical events which are unrelated to current environmental signals and internal needs. Pallidal
activity would show more frequent interruptions resulting in altered firing patterns, especially when attempting actions, but the temporal and spatial organization of these
interruptions would not necessarily result in widespread oscillatory synchronization. Importantly, due to the vast convergent/divergent nature of the striatopallidal
projection it is proposed that, even a small change of excitability in D2-MSNs may alter pallidal firing pattern. Right: In advanced stages of the disease D2-MSNs would
translate into firing the ongoing oscillatory activity of the cortex. Although the increase in firing in individual MSNs may be small even after complete ablation of the
nigrostriatal pathway, the vast convergence of the striatopallidal pathway may warrant a tight coupling between pallidal firing and cortical oscillations. Of note, in this
scheme the spike train is mean to represent a cluster of MSNs rather than a single neuron. The frequency and properties of the abnormal oscillations are proposed to depend
on behavioral state. Because there is an inverse relationship between frequency and spatial span of oscillations in the cortex, clusters of pallidal and subthalamic neurons may
oscillate synchronously at different frequencies when high frequency rhythms dominate [47].
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chloride equilibrium potential should be around —80 mV for the
inhibition to have a significant effect on the M-current. To support
the model, they experimentally show that infusion of carbachol
into the striatum increases striatal beta oscillations in normal
rodents. Moreover, others have found that cholinergic stimulation
enhances synchronization of striatal neurons in slices [124].
However, whether an enhanced cholinergic tone is necessary and
sufficient to sustain synchronous oscillation in animal models of
Parkinson’s disease has not been proved yet.

Another model focusing on striatal generation of abnormal
synchrony relayed on changes induced by chronic dopamine
depletion on feed-forward inhibition mediated by fast spiking
interneurons [125]. Fast spiking interneurons inhibit both direct-
and indirect-pathway MSNs but they are more likely to synapse on
direct-pathway MSNs in normal animals. After chronic dopamine
depletion there is an increase in the connectivity between fast
spiking interneurons and D2-MSNs, demonstrated both function-
ally and structurally, which elevates GABAergic input onto these
cells. Based on these data, Gittis et al. [125] developed a
computational model which suggests that increased inhibition
by fast spiking interneurons is sufficient to increase the level of
synchrony in the D2-MSN population. However, direct experi-
mental evidence implicating fast spiking interneurons in oscillato-
ry synchronization in Parkinson’s disease has not been provided
yet. Fast spiking interneurons show enhanced phase locking to low
gamma local field activity in 6-OHDA rats, but not to other
frequency bands (delta, theta, low beta), which are also enhanced
after dopamine depletion [118]. Moreover, fast spiking interneur-
ons do not show changes in excitability or spontaneous activity
after dopamine depletion [111]. According to Dehorter et al. [111]
enhanced inhibition of MSNs in parkinsonism stem from the “low
threshold spike” striatal GABAergic interneurons, which display an
abnormal, intrinsically generated bursting activity in slices from 6-
OHDA rats. Further studies are necessary to determine whether
enhanced inhibition from low threshold spike interneurons can
induce oscillations in striatal output.

Alternative computational models suggest that the degree of
tonic striatal inhibition over the globus pallidus determines
whether the pallido-subthalamic network will show irregular
asynchronous firing or rhythmic synchronous activity patterns.
Terman et al, [126] have simulated a non-patterned striatal
inhibition as a hyperpolarizing current in pallidal cells, and
examined the effects of changing this tonic inhibition on pallido-
subthalamic interactions. Based on their simulations, they
proposed that elevated striatal tonic inhibition accompanied by
reduced local intrapallidal inhibition make the pallido-subthala-
mic network enter into a synchronous oscillatory mode. However,
intrapallidal inhibition is not decreased, but increased, in rat 6-
OHDA rats [127]. Another model developed by Kumar et al., [128]
explored whether oscillations can be induced in a large scale
pallido-subthalamic network without changing intrapallidal or
pallido-subthalamic connectivity. Each pallidal neuron received
input from hundreds of striatal neurons, which were indepen-
dently simulated as a Poisson spike train generator. In this network
an increase in firing rate of the striatal population is sufficient to
induce oscillations in the pallido-subthalamic network. Thus, non-
patterned striatal inhibition can trigger oscillations in the pallido-
subthalamic network even in the absence of local changes in
synaptic connectivity.

Finally, according to a computational model proposed by
Leblois et al. [2], cortico-basal ganglia oscillations may result from
an imbalance between the opposite influences of the direct
pathway and the hyperdirect pathway on basal ganglia output
nuclei neurons. Striatal dopamine depletion would result in a
diminished activity in the direct pathway, which by itself would
impair action selection capacity. Oscillatory synchronization in the

“fast loop” would only emerge after extreme dopamine depletion,
when activity in the direct pathway is too small to counterbalance
the effect of the excitatory hyperdirect pathway on basal ganglia
output. One prediction of this model is that decreasing the activity
in the striatum would trigger oscillations in the pallido-sub-
thalamic network in normal animals. However, but reducing
striatal activity in normal animals does not induce abnormal
oscillations in the globus pallidus [56]. Because at the time of the
publication the degree of segregation between the direct and
indirect pathways was under debate, the role of the indirect
pathway was not analyzed. It remains to be determined whether
silencing of the direct pathway interacts with other factors like a
strengthening of the cortico-striato-pallidal axis to induce
oscillatory synchronization in the basal ganglia.

Concluding remarks

Hypotheses about the mechanisms underlying the emergence
of abnormal oscillatory synchronization in the basal ganglia in
Parkinson’s disease need to take into account the role played by the
striatum, whose involvement in the pathophysiology of Parkin-
son’s disease remains undisputed. Our findings show how
hyperactive striatal neurons may allow the propagation of cortical
rhythms through the cortico-striato-pallidal axis. Spreading
through the striatum involves oscillations of up to 20 Hz, thus
encompassing most of the over-represented frequencies observed
in animal models and patients. Importantly, we propose an
explanation about how alterations in synaptic plasticity and
excitability in indirect pathways MSNs [65,66,91,93] may account
for this exaggerated spreading of cortical oscillations (Fig. 3). Thus,
our hypothesis grounds on well established striatal adaptations
and partially reconciles rate and oscillation/synchronization
models of Parkinson’s disease.

Alternative hypotheses based on computational modeling have
addressed how adaptations in the striatal circuit may specifically
generate beta oscillations [119,125,128]. However, cortico-pallidal
coupling in the high beta range (>20 Hz) is partially resistant to
interventions reducing striatal hyperactivity [56]. The fact that
high beta cortico-pallidal coupling is limited to neurons showing
abnormal oscillations in lower frequency ranges [56] points to a
common causal mechanism. Chronic striatal hyperactivity may
induce long term adaptations in the pallido-subthalamic network
which may turn it into a beta pacemaker. Additionally, decreased
activity in the direct pathway may contribute to beta rhythm
generation [2]. Further interventions on striatal hyperactivity
allowing a more profound and widespread control of indirect
pathway MSNs than that obtained in our studies [56] is necessary
to fully understand striatal contribution to high beta oscillations.

Whether oscillations are causally related to akinesia is under
debate [2,129,130]. The dominant frequency of abnormal oscilla-
tions varies across species and in the same individual/animal it
varies along time [29,42,47,55,100,131]. Moreover, oscillatory
synchronization seems to appear late during the course of the
disease as indicated by experiments in animal models
[100,131,132]. Hypotheses dealing with the origin of oscillatory
synchronization in Parkinson’s disease should be able to explain
the apparent dissociation between the symptoms of the disease
and the frequency of oscillations or even their presence. We
propose that it is not the specific frequency of oscillations but the
general mechanism underlying them what produces akinesia.
Striatal medium spiny neurons behave as dopamine-dependent
filters which normally don’t allow the propagation of resting
cortical activity through the basal ganglia. We propose that it is the
uncontrolled translation of ongoing cortical activity into no-go
signals in the indirect pathway what induces akinesia (Fig. 4). This
uncontrolled propagation takes the form of alterations in firing
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pattern in nuclei located downstream the striatum, whose specific
properties may depend on how much has advanced the
degenerative process [2,100]. In this context, oscillations would
be an extreme manifestation of this excessive permeability of
MSNs and the specific frequency of oscillations would depend on
the frequency content in afferent ongoing activity.
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