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7 ABSTRACT: Classical thermodynamics is assumed to be valid up to a
8 certain length-scale, below which the discontinuous nature of matter becomes
9 manifest. In particular, this must be the case for the description of the vapor
10 pressure based on the Kelvin equation. However, the legitimacy of this
11 equation in the nanoscopic regime can not be simply established, because the
12 determination of the vapor pressure of very small droplets poses a challenge
13 both for experiments and simulations. In this article we make use of a grand
14 canonical screening approach recently proposed to compute the vapor
15 pressures of finite systems from molecular dynamics simulations. This
16 scheme is applied to water droplets, to show that the applicability of the
17 Kelvin equation extends to unexpectedly small lengths, of only 1 nm, where
18 the inhomogeneities in the density of matter occur within spatial lengths of
19 the same order of magnitude as the size of the object. While in principle this
20 appears to violate the main assumptions underlying thermodynamics, the density profiles reveal, however, that structures of this
21 size are still homogeneous in the nanosecond time-scale. Only when the inhomogeneity in the density persists through the
22 temporal average, as it is the case for clusters of 40 particles or less, do the macroscopic thermodynamics and the molecular
23 descriptions depart from each other.

I. INTRODUCTION

24 In describing the physical properties of matter, there is a certain
25 length-scale for which the assumptions of classical thermody-
26 namics break down because the discrete nature of matter
27 becomes manifest. How and when this transition takes place
28 between the macroscopic and the nanoscopic domains is one of
29 the most intriguing questions in statistical mechanics and in
30 many areas within condensed and soft matter sciences.1−4 The
31 vapor pressure and the surface tension are two paradigmatic
32 examples of those collective features that can not be grasped by
33 a continuous thermodynamical approach when it comes to tiny
34 droplets and nanoparticles.5−7 Yet, the comprehension of these
35 two properties is highly relevant, not only from a fundamental,
36 chemical-physics standpoint, but also because they determine
37 processes of central interest in materials engineering and
38 catalysis,1,3,8−11 as well as in environmental and atmospheric
39 chemistry, where they appear as essential ingredients in classical
40 nucleation theory (CNT).12−14 In particular, an accurate
41 assessment of the vapor pressure of nanoaggregates is not
42 easily accessible via experiments, neither through calculations.7

43 The Kelvin equation provides the vapor pressure (Pv) of a
44 droplet as a function of the radius of curvature r of the
45 interface:
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47where P0 is the vapor pressure of the bulk substance, σ is the
48surface tension, ρ is the density of the condensed phase, R is
49the gas constant, and T is the temperature. For very small
50droplets of just a few nanometers of diameter, the effect of
51curvature on surface tension starts to be important. This can be
52accounted for through the Tolman equation5
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54with σ0 the surface tension of the planar interface, and δ the so-
55called Tolman length,15 which assumes a characteristic value for
56every fluid. The combination of eqs 1 and 2 can in principle
57yield the dependence on radius of the vapor pressure.
58Nevertheless, as the diameter of the droplet approaches the
59nanometer scale, the validity of these expressions derived from
60classical thermodynamics becomes questionable. There has not
61been a general agreement regarding the limit of applicability of
62these equations. On the basis of thermodynamic arguments or
63numerical simulations, or even based on indirect experimental
64evidence, different authors, including Tolman himself, have
65situated it in disparate lengths, from only a few Å ngströms to
66some tens of nanometers.5,7,16−25 This limit has been explored
67using Lennard-Jones potentials and molecular dynamics
68simulations with constant number of particles.7,17−19,22 The
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69 vapor pressures computed using this route exhibit large
70 uncertainties, due to the small number of particles in the
71 vapor phase and to the infrequent collisions in the vapor.17,18

72 Different approaches based on Monte Carlo simulations have
73 been also applied to investigate this limit in the context of
74 CNT, reporting that the deviations from the classical theory
75 occur in a size range that goes from only four up to sixteen
76 molecular diameters, depending on the interaction potential,
77 the temperature, and the methodology.23−25 Many studies have
78 focused on the nucleation of small liquid droplets, aiming to
79 estimate size distributions and the formation free energies of
80 Lennard-Jones and water clusters as a function of temperature
81 and supersaturation.26−30 Zhukhovitskii devised a grand
82 canonical molecular dynamics scheme to identify the critical
83 cluster size of argon for different T−P conditions.26 To tackle
84 the same problem, Kusaka and collaborators later proposed a
85 coarse graining of the total volume in small compartments
86 containing in average no more than one molecule or aggregate,
87 with which they circumvented the issue of an arbitrary cluster
88 definition.27 Equilibrium distributions and free energies were
89 evaluated in the grand canonical ensemble from the probability
90 of finding a cluster of a given size in the coarse-grained volume.
91 Soon after, this method was generalized by incorporating
92 umbrella sampling and the potential energy as an order
93 parameter, allowing to characterize the free energy surface of
94 argon in terms of the number of particles and the energy of the
95 aggregate.28 Oh and Zeng implemented a canonical Monte
96 Carlo methodology where a restriction was imposed on the
97 maximum number of particles that a cluster can attain.30 This
98 strategy allows to sample a metastable situation that otherwise
99 could not be observed, and was employed to determine the
100 critical size and the formation free energy of argon clusters. A
101 rather complete overview on theoretical and simulation aspects
102 of the interfacial properties of nanoscopic liquid drops was
103 recently offered in a topical review by Malijevsky ́ and Jackson.31
104 In this article, we employ a simple grand canonical screening
105 (GCS) approach32 to calculate the vapor pressure of water
106 droplets in the range 1−4 nm diameter. This methodology, in
107 combination with first-principles DFT molecular dynamics,
108 allows us to assess the applicability and the limitations of the
109 Kelvin equation, and to analyze at the molecular level the cause
110 of its divergence with respect to the molecular description.

II. METHODOLOGY

111 A. Water Model. The mW coarse-grained model of water33

112 was employed to complete the large number of grand canonical
113 molecular dynamics simulations necessary to obtain the vapor
114 pressure curves reported in the next section. The mW potential
115 reproduces the energetics, density, and structure of liquid and
116 solid water and its phase transitions, with comparable or better
117 accuracy than most atomistic models, at nearly 1% of the
118 computational cost.33 This model represents each molecule as a
119 single particle interacting through anisotropic short-ranged
120 potentials that encourage “hydrogen-bonded” water structures.
121 It adopts the short-ranged interaction form of the Stillinger-
122 Weber force-field, which consists of a sum of two-body
123 attraction terms favoring high coordination, and three-body
124 repulsion terms reinforcing tetrahedral hydrogen-bonded
125 configurations.33 In recent years, the mW model has been
126 repeatedly applied to explain the behavior of water in various
127 conditions and regimes (see for example ref 34 and references
128 therein).

129B. Molecular Dynamics Simulations. In this study,
130molecular dynamics simulations were performed in the
131canonical and grand canonical ensemble. Grand canonical
132molecular dynamics (GCMD) schemes introduce Metropolis
133Monte Carlo sampling throughout the dynamical evolution to
134allow for particle exchange with a reservoir, hence preserving a
135temporal description at a controlled chemical potential. The
136movement of the particles is ruled by the integration of the
137Newton equations using the Verlet algorithm at constant
138temperature, which is controlled with the Nose-́Hoover
139thermostat. Insertion and deletion attempts are effected on
140single particles with equal probability and anywhere in the box,
141adopting the usual acceptance criteria of the Monte Carlo
142grand-canonical algorithm and assuming the vapor is an ideal
143gas.35,36 Along the grand canonical dynamics, a number of
144attempts for particle insertion and deletion are carried at every
145time-step: this number is the so-called GC/MD ratio. It is
146desirable to keep this parameter as low as possible to minimize
147computer time, but in turn it must be high enough to ensure
148that the target chemical potential is reached during the
149simulation.37,38 GC/MD ratios in the range 20−100 have
150been typically used in previous studies.37−39 In our simulations
151a GC/MD ratio of 20 was adopted, which is common in the
152literature and gives converged results for the systems examined
153here. GCMD simulations were performed using a properly
154modified version of the LAMMPS program.40

155Classical and first-principles molecular dynamics of water
156were performed to construct the density maps and density
157profiles. Classical molecular dynamics were realized using the
158LAMMPS program, with the same time-step as employed in the
159GCMD simulations, equal to 5 fs. On the other hand, first-
160principles dynamics were based on density functional theory
161and the Car−Parrinello method,41 as implemented in the public
162package Quantum-Espresso.42 These simulations were per-
163formed in the microcanonical ensemble using a time-step of
1640.19 fs, adopting the PW91 exchange-correlation func-
165tional,43,44 Vanderbilt ultrasoft pseudopotentials,45 and a cutoff
166of 25 Ry on the plane-waves basis set.
167C. Calculation of the Vapor Pressure: the GCS
168Approach. The grand canonical screening procedure to
169compute the vapor pressure is described in detail in reference.32

170In the following, we give a brief overview of the technique.
171According to classical nucleation theory,14 for a given
172supersaturation or chemical potential μ, a critical cluster size
173N* exists involving a saddle point in the free energy surface.
174The vapor pressure of such a cluster is related to this chemical
175potential by μeq = μθ + RT ln(Pv/Pθ). In the present approach,
176to determine Pv for a nanodroplet of size N, independent grand
177canonical simulations must be conducted, each one at a
178different chemical potential. As the simulation evolves, the total
179number of molecules may rise or drop, depending on whether
180the magnitude of μ is, respectively, above or below the
181equilibrium value μeq associated with that N. For example, if the
182value of μ fixed in the simulation is above the value of μeq
183corresponding to the initial curvature of the interface
184(determined by N), condensation occurs leading to an increase
185in radius, which in turn diminishes the magnitude of μeq. In this
186way μeq experiences a gradual decrease, moving away from μ,
187and thus the growth of the droplet continues until the
188simulation box is completely filled. Conversely, if μ is below μeq
189at the beginning of the simulation, the evaporation proceeds
190until all particles have disappeared. By repeating this computa-
191tional experiment for a given N at different chemical potentials,
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192 an upper and a lower bound can be established for μeq. The
193 uncertainty in Pv is then determined by the lower and upper
194 values of μ producing, respectively, the condensation and
195 evaporation of the droplet. It must be noted, though, that as the
196 chemical potential gets closer to μeq the ratio between particles
197 insertion and deletion tends to 1, implying that longer
198 simulations are required to discern between evaporation and
199 condensation. The error can hence be reduced at the expense
200 of computational time.32

201 In the case of very small clusters in the vicinity of the
202 equilibrium pressure, namely below 50 particles, the final
203 evaporation or condensation behavior is not uniquely
204 determined by the chemical potential but may depend on
205 “hidden variables” as the initial structure of the cluster, the
206 sequence of random numbers in the Monte Carlo run, or the
207 assignment of initial velocities from the Boltzmann distribution.
208 In other words, at the same chemical potential, two
209 independent trajectories corresponding to nanodroplets of
210 the same size might evolve distinctly to evaporation or to
211 condensation. This ambiguous behavior is only observed for
212 small N and follows from the fact that the stochastic
213 components of the computational experiment become more
214 important as the number of particles decreases. This is not a
215 serious problem as far as it is recognized and can be handled by
216 performing for each value of the chemical potential, a set of
217 several short trajectories, each one based on a different
218 sequence of random numbers or departing from different
219 initial configurations and velocities. In particular, μeq is chosen
220 as the value originating evaporation and condensation
221 trajectories with equal probability. The error bar for that
222 data-point can be similarly estimated on the basis of
223 condensation and evaporation probabilities. Here, 10 trajecto-
224 ries were performed for each data-point for N ≤ 94, with the
225 exception of N = 9 at the two highest temperatures, for which
226 25 trajectories were considered. The lower bound for the
227 uncertainty was chosen as the pressure for which the number of
228 trajectories leading to condensation was larger than 20%.
229 Similarly, the upper bound was given by the pressure above
230 which the evaporation probability (or, equivalently, the number
231 of trajectories producing evaporation) was less than 20%.
232 Further details on the computation of the errors can be found
233 in the supporting material.
234 We have shown in ref 32 that the GCS procedure described
235 above reproduces the vapor pressure of bulk water and argon
236 with a slightly better precision than the Gibbs-ensemble
237 approach. Moreover, we have computed the relative vapor
238 pressure for water aggregates of size ∼2 nm using both the mW
239 and the SPC/E models to find that the two force-fields lead to
240 the same results.32

III. RESULTS AND DISCUSSION

241 We applied the GCS procedure to determine the vapor
242 pressure of water aggregates of different sizes, from only 9

f1 243 molecules up to 960. Figure 1 presents the logarithm of the
244 relative vapor pressure obtained from GCMD simulations with
245 the mW model at three temperatures as a function of the
246 inverse radius, compared with the results given by the Kelvin

t1 247 equation. This data is also summarized in Table 1. Strikingly,
248 the thermodynamic formula reproduces the simulations for
249 radii as small as 7 Å with discrepancies below 5% at 278 K, and
250 even smaller for higher temperatures. For 298 and 318 K, the
251 Kelvin equation predicts the vapor pressure of water aggregates

252with extraordinary accuracy all the way down to systems
253composed of just 37 molecules, or nearly 1.2 nm of diameter.
254The approximation shows discrepancies of up to 20%,
255depending on temperature, for the cluster of 20 particles, and
256definitely breaks for the one of 9 molecules, which exhibits
257strong negative deviations for all three temperatures.
258The magnitude and even the sign of the Tolman length (δ)
259appearing in eq 2 has for long been a matter of debate, but
260there is agreement that it must be of the order of the
261intermolecular distances.15,31,46−55 For water, the value
262originally proposed by Tolman was 1 Å,15 with many
263subsequent estimations from theory and simulations falling
264close to this former appraisal.48−52 The validity of these
265estimations has nevertheless been disputed by a number of
266studies claiming that the surface tension must increase with
267curvature (which implies δ < 0),47,54,55 with a recent work
268based on molecular dynamics simulations reporting for the
269TIP4P/2005 water model a negative value of −0.56 Å.56 On
270the other hand, the assessment of δ on the basis of experimental
271data typically involves a number of assumptions and is
272technically challenging, and this explains why consensus has
273not been met either among experimentalists, who reported
274Tolman lengths for water ranging from −0.47 to +0.6 Å.57,58

275Whereas the curvature dependence of the surface tension and
276the sign of the Tolman length remain controversial, there is
277general agreement on the following: it must be very small in
278magnitude, it depends on droplet size and temperature
279(presumably decreasing with T), and its physical meaning is
280lost when going to very small systems, in the order of a few
281molecular diameters.31,51,53 In this context, it is remarkable that
282the Kelvin equation matches our data with a Tolman length of
283approximately zero until the cluster size reaches about 4
284molecular diameters, with an abrupt failure below that range.
285Such a good performance of the thermodynamic formulation
286to describe these small objects may seem unexpected. In fact,
287the Kelvin equation turns out to be valid in a region where the
288inhomogeneities in the density of matter occur within spatial
289lengths of the same order of magnitude as the size of the
290aggregate, whereas among the major assumptions underlying
291the thermodynamic treatment, there are (i) the homogeneity of
292the surface and the continuous nature of the fluid, (ii) a
293constant density inside the droplet, independent from radius,
294and (iii) the sphericity of the aggregate. Clearly, these
295requirements do not hold for the instantaneous configurations
296 f2of clusters consisting of less than a few hundred molecules, as

Figure 1. Logarithm of the relative vapor pressure of water
nanodroplets as a function of the inverse radius. Blue circles: grand
canonical screening results. The dashed and dotted lines show the
predictions of the Kelvin equation for different Tolman lengths. Black:
σ = σ0 (δ = 0). Orange: δ = −0.5 Å. Red: δ = 0.5 Å. Green: δ = 1.0 Å.
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f2 297 can be seen in Figure 2, and as reflected in the nonequal
298 eigenvalues of the moment of inertia tensor, presented in the

299 Supporting Information. Interestingly, however, they do hold
300 for the temporal averages of their trajectories, displayed in the

f3 301 density maps of Figure 3. Since the thermodynamic properties
302 are manifestations of the behavior averaged in the macroscopic
303 time-scale, it can be argued that the master equations remain
304 valid for those systems in which the dynamics smoothes down
305 the discrete, inhomogeneous structure of the nanoaggregate.

f4 306 Figures 3 and 4 show that droplets of 1.2 nm diameter or larger
307 reasonably fit into this premise: they all exhibit a spherical
308 shape and a constant density along the most part of the
309 condensed phase, equal to 0.033 Å−3, which is the density of
310 bulk water. Smaller droplets depart from this paradigm: the
311 averaged density is not homogeneous, but presents a peak on
312 the boundary, while the sphericity is lost in shorter time
313 lengths. Coincidentally, the agreement between the Kelvin
314 equation and the simulations deteriorates at the same point

315where the averaged density profile of the cluster starts to
316become strongly inhomogeneous.
317The effect of rotations on the density distributions were
318checked by aligning the eigenvectors of the moment of inertia
319tensors at each step of the molecular trajectories. No
320appreciable differences were found when rotation was taken
321into account, presumably because the liquid-like nature of these
322clusters at room temperature produces continuous deforma-
323tions in which the rotational and the internal degrees of
324freedom are too much coupled. The particular density
325distribution observed for the smallest clusters has been
326corroborated in the case of the 9 molecules aggregate by
327 f5means of ab initio molecular dynamics simulations (Figure 5),

Table 1. Relative Vapor Pressures (Pv/P0) and Radii (r, in Å) for Different Water Droplets Composed by N Moleculesa

278 K 298 K 318 K

N r Pv/P0 r Pv/P0 r Pv/P0

9 3.43 8.31 (3.61) 3.59 7.35 (1.96) 3.61 6.82 (2.63)
20 5.16 6.38 (0.62) 5.24 5.71 (0.72) 5.33 4.87 (0.64)
37 6.30 5.15 (0.63) 6.30 4.39 (0.51) 6.32 3.84 (0.53)
51 7.00 4.50 (0.42) 7.14 3.78 (0.39) 7.19 3.47 (0.34)
94 8.66 3.31 (0.27) 8.69 3.02 (0.14) 8.74 2.76 (0.23)
237 11.81 2.38 (0.02) 11.84 2.18 (0.02) 11.84 2.10 (0.03)
471 14.85 2.14 (0.02) 14.86 1.82 (0.02) 14.90 1.83 (0.03)
960 18.86 1.70 (0.02) 18.88 1.62 (0.02) 18.90 1.58 (0.02)

aAbsolute errors are given in parentheses. The values of P0 for the mW model at 278, 298, and 318 K, are, respectively, 0.13 mbar, 0.49 mbar and
1.50 mbar.

Figure 2. Instantaneous configurations of water clusters of different
sizes, randomly selected from the molecular dynamics simulations at
298 K. The shape deviation from sphericity is significant for systems
with less than 150 particles.

Figure 3. Bidimensional density maps of water droplets of different sizes at 298 K. Units for the color scale bar are Å−3. The densities were averaged
over time-windows of 100 ns for the smaller systems and 3 ns for the largest.

Figure 4. Time-averaged radial density profiles of water droplets of
different sizes at 298 K. The averaging was performed on NVT
molecular dynamics trajectories extended for at least 3 ns.
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328 which show that it is not an artifact of the mW potential. The
329 agreement between the classical and the DFT ab initio
330 calculations stems from the fact that both the mW and the

f6 331 DFT dynamics explore the same minima in phase space. Figure
f6 332 6 presents some representative instantaneous configurations

333 extracted from the classical and the quantum dynamics. Both
334 approaches produce the same structures, typically showing a
335 molecule in each one of the eight corners of a cube, plus a ninth
336 molecule off an edge. These geometries turn out to be
337 coincidental with the ab initio minimum energy configurations
338 of the cluster of 9 water molecules reported in the
339 literature.59,60 Therefore, we would not expect a substantial
340 improvement if the mW potential were to be replaced by an
341 atomistic or even a quantum-mechanical treatment: the
342 resulting vapor pressure is ultimately determined by the
343 magnitude of the intermolecular interactions, which classical
344 water force-fields are fitted to reproduce pretty accurately,
345 sometimes even better than obtained via first-principles
346 simulations (for example, within DFT-GGA the solid−liquid
347 transition temperature in water is off by around 140 K61).
348 Estimates to the vapor pressure of water nanodroplets can be
349 obtained from the literature related to classical nucleation
350 theory. Kusaka and collaborators applied a grand canonical
351 methodology to evaluate equilibrium distributions and free
352 energies of SPC/E water.27 The maxima in the free energy
353 curves of Figure 7 gives the critical cluster sizes,27 in fair

354agreement with our own results. For example, for a super-
355saturation P/P0 ≈ 5 at 298 K the critical cluster has
356approximately 35 molecules, whereas for the same temperature
357we find Pv/P0 = 4.39 for an aggregate of 37 mW molecules
358(Table 1). The critical sizes are slightly overestimated in
359Kusaka’s method with respect to our approach, this over-
360estimation becoming more notorious for higher supersatura-
361tions. The small discrepancies are attributable to the different
362methodologies and, to a lesser extent, to the distinct potentials
363(in previous work32 we showed that both the SPC/E and the
364mW models give very similar relative vapor pressures for a
365cluster of 94 molecules). The dynamical nucleation theory by
366Schenter et al. provides a different route to the vapor pressure
367of water clusters, based on the ratio between the evaporation
368and the condensation rates.62,63 Figure 3 of ref 62 shows for P/
369P0 = 10 that the rate constants αi and βi−1 reach the same value
370for droplets of slightly above 40 molecules. The GCS procedure
371predicts a P/P0 ratio close to 5.2 for clusters of this size at 278
372K. The classical Kelvin equation, in turn, gives a relative vapor
373pressure of nearly 5.6, meaning that while our approach yields
374negative deviations from the Kelvin equation, the dynamical
375nucleation theory technique would show positive deviations.
376Part of this disagreement might be ascribed to differences in
377temperature and force fields: simulations in ref 62 have been
378performed at 243 K with a polarizable water model. Beyond
379this particular result, it must be noticed that methods based on
380CNT are designed to predict the evaporation and condensation
381rates for a distribution of nanoaggregates of different sizes in
382dynamical equilibrium. Our approach, instead, considers a
383single droplet (or interface) in equilibrium with the vapor
384phase, but isolated from any other cluster or interface. This is
385the same situation described by the Kelvin equation, which may
386explain why it shows a closer agreement with our results. A full
387accord between the two methodologies should then not be
388expected. The dynamical nucleation theory is a more powerful
389approach since it gives information on a full distribution of
390clusters. Moreover, CNT schemes provide evaporation and
391condensation rates, which in GCMD would require a careful
392validation to ensure that time-evolution is quantitatively
393realistic. On the other hand, dynamical CNT techniques rely
394on more assumptions and parameters than our approximation,
395which depends only on the force-field, and therefore we expect
396it to be more accurate to predict the relative vapor pressure of
397an isolated nanodroplet. In those CNT applications where, at
398variance with dynamical nucleation theory, aggregates are
399envisioned as independent entities in the vapor phase, with no
400connection with clusters of other sizes, the framework of a
401dynamical exchange of particles between a distribution of
402droplets of different sizes is lost, and the critical cluster size for
403a given supersaturation has to be consistent with the one
404predicted from our analysis. Possibly, the present treatment
405may be used in a complementary way to classical nucleation
406theory methods, by providing values for the vapor pressures of
407clusters that can be exploited in larger-scale models.
408Our approach to the vapor pressure of clusters is
409conceptually analogous to the one followed by Zhukhovitskii
410to estimate critical sizes.26 In that work, a grand canonical
411molecular dynamics scheme was proposed where the insertion
412of molecules takes place at random positions on the system
413boundary with velocities chosen from the Maxwell−Boltzmann
414distribution, removing at the same time any molecule coming
415from the simulation cell and traveling across this boundary.26 In
416this way, the algorithm reproduces a vapor environment

Figure 5. Same as Figure 3, obtained for the droplet of 9 molecules
from ab initio molecular dynamics. The nonuniform density
distribution is due to an insufficient averaging time of 20 ps.

Figure 6. Different configurations of a cluster of 9 water molecules,
taken from quantum (A) and classical (B) molecular dynamics
simulations, based on DFT and on the mW model, respectively. For
the sake of comparison, only the oxygen atoms are depicted. Bars are
indicative of two atoms lying at less than 3.4 Å, which is the distance
between two water molecules forming an H-bond. The first image of
the series predominates along the dynamics in both approaches.
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417 corresponding to a desired temperature and pressure. To
418 identify the critical cluster size for different conditions, the
419 number of particles N was monitored as a function of time at a
420 fixed pressure and temperature, starting from different cluster
421 sizes. Two possibilities were observed for these trajectories:
422 evaporation or condensation, meaning respectively that the
423 initial size was below or above the critical value. This behavior
424 is analogous to the one observed in the GCS simulations, with
425 the only distinction that in our work different chemical
426 potentials were screened for a given initial size to determine the
427 vapor pressure, whereas Zhukhovitskii screened different initial
428 values of N for a fixed pressure to obtain the critical size.
429 Nevertheless, the two approaches are equivalent and provide
430 access to the same information, i.e., the size of the metastable
431 cluster associated with a given vapor pressure. The molecular
432 dynamics method proposed in ref 26 is likely to be better suited
433 to examine weakly interacting fluids as the Lennard-Jones
434 model, for which small clusters are difficult to stabilize in a
435 more conventional grand canonical framework. On the other
436 hand, our approach seems more appropriate for systems
437 exhibiting a low vapor pressure as water, where the application
438 of Zhukhovitskii’s scheme would require very large simulation
439 cells and long sampling times to ensure a reasonable exchange
440 of particles in the vapor phase that provides a converged
441 statistics.

IV. FINAL REMARKS

442 In summary, we have determined the vapor pressure of water
443 nanodroplets from 9 to 960 molecules. The results led us to
444 conclude that the Kelvin equation is valid as far as the
445 temporally averaged density of the water droplets exhibit a
446 homogeneous profile, which establishes a link between time
447 and the basic assumptions behind any thermodynamic
448 approach. This is in fact the case for droplets as small as 0.6
449 nm radius at 278 K or even smaller at higher temperatures. For
450 water, this implies a radius of only two molecular diameters,
451 which is much smaller than the limit of around 10 molecular
452 diameters for which the capillary approximation is considered
453 to be valid in the literature.31 A question remains on the
454 universality of the present conclusions, specially their
455 connotation for other nanosystems exhibiting different
456 structure and interactions strength. This topic will be the
457 subject of future investigations.
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