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Abstract. Polarization refers to asymmetric changes in cellular organization that occur in response to
external or internal signals. Although neurons can spontaneously establish and maintain asymmetric dis-
tributions of signaling molecules on the plasma membrane, it is not clear how intrinsic noise affects neuronal
polarization. In this work we present a stochastic model based on endocytosis, exocytosis and lateral dif-
fusion, to study the effects of low number of molecules (high noise intensity), on neuronal polarization.
Numerical results were obtained by solving the master equation using Gillespie’s algorithm. Our model
suggests that the formation of a single pole of molecular asymmetry is very robust to noise; furthermore,
in the presence of noise, neuronal polarization could occur even with reduced feedback strength.

1 Introduction

During the first stage of neuronal polarity a symmetry
breaking event takes place [1]. Before the first neurite
starts growing, some membrane proteins and members of
the Rho GTPases family show spatially localized distribu-
tions on the cell membrane [2]. These asymmetric distri-
butions are established spontaneously and can be main-
tained even without the action of external cues. Some
mechanisms, such as positive feedbacks, are thought to
be central to the process of polarized domain formation.
Although neuronal polarity also occurs in very controlled
environments, as it is the case of in vitro experiments, it
is impossible to avoid intrinsic noise.

Several mathematical models have shown the impor-
tance of positive feedback loops in cell polarity. In partic-
ular, some of them state that feedback alone can sponta-
neously establish a single site of polarity [3,4]. However,
it is also suggested that polarization could be very sensi-
tive to stochastic fluctuations. One of the issues giving rise
to controversy is the relationship between the amount of
involved particles and polarization. Altschuler et al. pre-
sented a stochastic model where cells could polarized only
when the number of molecules is small [3]. Although us-
ing the same model, Grupta showed that it is possible
to obtain cell polarity in the infinite population limit, if
the feedback strength increases linearly with the popula-
tion size [5]. Walther et al. determined a threshold num-
ber of molecules required for robust polarization [6] and
Freisinger and co-workers found that polarity establish-
ment does not depend on the quantity of molecules [7].

In this work we present a model to analyze how in-
trinsic noise affects neuronal polarity. As intrinsic noise is
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scaled with the system size, our model allows us to ana-
lyze how molecule number fluctuations affect cell polarity
in systems with a finite number of molecules. The model
itself is the stochastic version of that presented in ref-
erence [8]. This model considers the interaction between
membrane proteins and modulators of endocytosis (for in-
stance, members of the Rho GTPases family). In order to
formulate the stochastic version, we write down a master
equation considering the reactions between molecules. Its
linear noise approximation is derived using van Kampen’s
system size expansion [9,10]. Our approach indicates that
Turing patterns are not spoiled by intrinsic noise and
quasi-pattern structures can be formed with less positive
feedback intensity. Since in this approach more noise in-
tensity is associated to a small number of particles, we
found that Turing pattern formation does not depend on
the number of molecules, but quasi-patterns are not well
established if the amount of molecules is too large or too
small. Our model suggests that neuronal polarity is very
robust to noise, furthermore, in the presence of noise it
could occur even with reduced feedback strength.

2 The model

We formulate our model considering two different kinds of
molecules, one that represents a typical integral membrane
protein endocytosed by a canonical clathrin-mediated pro-
cess (e.g., cadherin); and another one, representing a
modulator of endocytosis (e.g., p. 120-catenin or Rho
GTPases). As described in reference [8], we consider the
following biological events:

1. Spontaneous membrane association: Membrane
proteins are tethered spontaneously to the cell
membrane [11,12].
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2. Membrane association through recruitment: A posi-
tive feedback circuit recruits membrane proteins to the
places where they are already localized [3,13].

3. Endocytosis: Endocytosis pathway is regulated by the
amount of modulators of endocytosis [14,15].

4. Spontaneous activation: Modulators of endocytosis are
activated spontaneously [16].

5. Deactivation:  Modulators  of
deactivated [16].

6. Activation through recruitment: The activation of mod-
ulators of endocytosis is also induced by membrane
proteins [17].

7. Lateral diffusion: Membrane proteins and modulators
of endocytosis diffuse on the cell membrane.

endocytosis  are

We assume that membrane proteins, A, and modulator of
endocytosis, B, inhabit patches labeled by i=1,...,(2,
each of which has volume V. The number of A and B
molecules at patch ¢ are denoted by n; and m;, respec-
tively. Taking into account the biological events we de-
scribed above, the reactions/interactions between A and
B molecules at each patch are represented by:
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where the symbol () means “empty” and the index ¢ runs
from 1 to §2. The rate for each reaction is indicated above
its arrow; A; and B; denote molecules in patch ¢ at the
time the reaction occurs. We consider that the reaction

A; + B; kahin/V) B; has a non constant rate. In partic-
ular, we adopt h(x) = 1/(1 + r2z), that is equivalent to
consider a Michaelis-Menten kinetics in the macroscopic
equations [18].

In addition, we also consider migration reactions,
which describe molecular diffusion from one patch to an-
other. In this work we consider the cell membrane as a
one dimensional regular lattice with periodic boundary
conditions and homogeneous diffusion coeflicients. Then,
molecules in patch i can diffuse in or out of a neighboring
patch j through the following reactions:

(51 51
7 > Ay, g > A,
(52 52
BZ — Bj, Bj — Bl (2)

Let T(n’,m’|n, m) be the transition rate from the state
(n,m) to the state (n’,m’), where n and m are vectors
whose components are n; and m;, respectively. Assuming
a perfect mixing in each individual patch, the local and
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migration transition rates are:

n;\ 1
T(ni+ 1,mgn;,m;) = (/41 +riky V) Ql,
Ty Ty
T(n; — 1,m4|n;, m;) = kah(n;/V) VvV
T(ni,m; + 1ng;,m;) = (/% + 7"31?37;) (12,
i1
T(ni,m; — 1ng;,m;) = k4 V 0’
T(n; —1,n; + 1ni,n;) = 61 V 219
T(n; +1,n; —1|n;,n;) = 5o V 219,
T(m; —1,m; + 1lm;,m;) = 52 V 2%0
T(m; +1,m; — 1lm;,m;) = 52 v 2%0 (3)

In order to write down these expressions, we consider, for
instance, that the probability of picking A; and B; is pro-
portional to (n;/V)(m;/V)/f2. The migration terms cor-
respond to diffusion in a one dimensional grid of {2 nodes.
For a detailed explanation of how to obtain the transitions
rates, we suggest to see references [19-24].

Assuming the process defined by equations (3) as a
one-step Markov process, we can write down a master
equation given by:

aP(n7m7t) _ & loc
Py f;’lz P(n,m,t)
+ ZZTWP n,m, ), (4)
1=1 j1

where the sum over j < i indicates that j is a nearest

neighbor of i and the operators 7;/° and szq contain the

local and migration transition rates, respectively. Defining
the operators Ef! and EX! as follows [9,10]

Eilf(nl,..., cey g, M)
:f(nlv"'vni:tlv"'7n97m)7
Eiif(n,ml, ey MGy .. ,mQ)
= f(n,my,...,m; £1,...,mp),
and doing the transformation t — t/(V§2), yields:
’];loc = (E,,;l — 1) (Vkl + lelni)
+ (B} = 1) (Vs + r3ksng) + (Ep, — 1) kg,
Tm“] (E E_ — 1) 6177,1/2: + (En]E;} — 1) 5177,]'/2

(5)

The master equation contains information of both the
mean-field dynamics and the finite V' corrections. They
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<F¢ (¢°, %) + 261 (cos(Ck) — 1)
Ay =

Gy (0°,9°)

can be analyzed by doing a system-size expansion and
studying it in the limit of large but finite V' [9]. In order
to carry out this expansion we apply the transformations
ni = Vo + V12¢ and m; = Vi + VV/2n,;, where &
and 7; stand for the stochastic contributions. The lead-
ing order in the perturbative analysis of the master equa-
tion in powers of V1/2 gives the deterministic equations,
while the fluctuations are characterized by the next order.
In the next sections we analyze the mean-field solution
and the fluctuations. The details of the calculation to ob-
tain the mean-field approximation and the Fokker-Planck
equation are given in the Appendix.

3 Mean-field approximation

The mean-field approximation is given by the following
macroscopic equations:

doi _ it

k(1 i) — k 01 Ad;,
dt 1(L+719:) 21+T2¢i+ 14¢
dipi
P ks(1+r3¢i) — kathi + 52 A4, (6)
where i =1,...,§2, and A is the discrete Laplacian oper-

ator in one dimension:

Afi =Y (fi = f)- (7)

jet

These equations are obtained by doing the system size ex-
pansion and taking the terms proportional to V1/2 (see
the Appendix). The first of equations (6) describes the
temporal evolution of ¢;. On the right-hand side, the first
term has contributions due to spontaneous membrane as-
sociation and positive feedback, while the second term
describes endocytosis with a Michaelis-Menten kinetics;
and the last term corresponds to migration. The second
of equations (6) describes the temporal evolution of ;.
On the right-hand side, the first term represents sponta-
neous activation and activation through recruitment; the
second one represents inhibitor deactivation; and the last
one corresponds to migration.

The case {2 = 1 is equivalent to consider the system
without diffusion and the limit 2 — oo when the lattice
spacing, ¢, goes to zero corresponds to a continuous de-
scription, where equation (6) becomes:

d¢ Py

. . 2
o =R~k 6V
{gf = ka(1+ra) — kavy + 52V, ®)

with the rescaling §; — 6142 and dy — Jo02.
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The homogeneous fixed points, (¢°,1%) are given by
solving the equations

P (6 0%) = b (L m1g") — s fi;s —0, (9

G (¢s,’(/ls) = k3 (1 + T3¢s) — kq® = 0. (10)
If k2k37‘3 < k4/€17‘17‘2, or if k2k37‘3 = k4/€17‘17‘2 and k2/€3 >
(r1 4+ 72)k1ks, there is only one positive solution, but
if k2k37‘3 > k4k‘17‘17“2 and k‘gk‘g > (Tl + Tg)k1k4, there
are two positive solutions. However, in all these cases
only one positive solution is stable (see Ref. [8]). Sta-
bility under homogeneous perturbations is guaranteed if
Fy(¢%,1°) + G (6%, 4%) < 0 and Fy(¢%, %)y (6°, %) —
Fy (9%, 0%)Gy(¢®,1®) > 0, where the subindex indicates
partial derivative. In order to analyze diffusive instabili-
ties, we include the spatial contributions. Considering the
solution (¢; — ¢, 1; —1*)T o exp(At+ilkj), and defining
the matrix

see equation (11) above,

it is possible to show that diffusion instabilities are present
if at least one of the eigenvalues of Ay has a positive real
part for some k = 2nw/L with n € Z. In the limit 2 — oo,
the lattice space goes to zero and 2(cos(kf) —1) — —(k£)2.
In this case the conditions for Turing pattern formation
are the same than those found in reference [8] (considering
the rescaling §; — 142 and 5y — §20?).

The phase diagram for Turing instability is shown in
Figure la. Although we used the same notation, the pa-
rameters used in reference [8] are not the transition rates
that characterize the reactions, but the reaction rate con-
stants. For a more clear comparison with reference [§],
we express the numerical values of the reaction rate con-
stants. In order to avoid misunderstanding, we denote the
reaction rate constants with the symbol “~ ”. The dia-
gram in Figure 1a is displayed in the (72,71) plane, all the
other parameters are assumed fixed and they were set as
used in reference [8]. The black area indicates the values
of 71 and 7, that can generate patterns while all the other
kinetic and diffusion parameters are fixed. The system
presented here is known as an activator-inhibitor system;
which shows Turing instabilities if the inhibitor diffuses
faster than the activator [25]. Since membrane proteins
are bigger than modulators of endocytosis, the diffusion
coefficient of modulators of endocytosis is greater than the
diffusion coefficient of membrane proteins [26-28].

4 Intrinsic noise and fluctuations

Considering the terms proportional to V? in the sys-
tem size expansion (see Appendix), we obtain the
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Fig. 1. Phase diagram (a), the black zone stands for Tur-
ing pattern formation, i.e. for the parameters in the black
zone at least one of the eigenvalues of A; has a positive
real part. In the black and gray zones, power spectra have
a maximum. The gray region corresponds to quasi-patterns.
The kinetic and diffusion parameters were selected as used
in reference [8], k1 = 0.025 nM s™', ko = 0.003 nM~* s,
ks = 225 nM s™! ks = 015 574, 7 = 04 nM™ Y, & =
0.03 pum?/s, 02 = 0.13 pum?/s. Power spectra (|&x(w = 0)]?),
(b) and (|nx(w = 0)|?), (c), for (72,71) pairs in the gray region.
From top to bottom 7 takes the values 3.75 nM~!, 3.65 nM ™!
and 3.5 nM™!; 7 = 0.16 nM L.

Fokker-Planck equation:

oIT 29 1 82

(12)
where ¢; = (&;,7;). The functions A; (¢,) and the matrices
B;.; are given by:

Ai1 = (riks — kah/(¢i) i —
— kah(¢i)dini,
Aio = r3ks&i + (—ka + 024) 5,
Biji1 = (k1 + r1ki1¢® + kah (¢°) $°9° + 4619°) 0; 5

kah(¢i)s + 014) &

46,
_ ST,
2 ¢ (ij)»
S S S 462 S
Bijo2 = (ks + r3ksd® + katp® + 4029 ) 0i — ; P J(ij)a

Bijo1 = Bij12 =0, (13)

where Ji;;) is one if ¢ and j are nearest neighbors,
otherwise it is zero and §;; is the Kronecker’s delta.

B (& + (G (6°,1) + 20a(cos(k) = 1))°) + (Fy (8", 0))" B
(det(A1) = w2)? +w? (Tr(40))’

Biza (w0 + (Fy (6",%) + 261 (cos(k) — 1))?) + (G (6", 4°))° B
(det(Ax) — w?)? + w2 (Tr(Ax))?
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(18)

(19)

The stationary values, ¢° and 1°, are independent of the
site label 4. The last expressions in equation (13) were
obtained considering ¢; and v; equal to their stationary
values, since we are interested in studying the equations
satisfied by ¢; when the transients in the macroscopic
equations (6) have died away.

The Langevin equation associated to the Fokker-
Planck equation (12) is

a¢;

g = A (€:) + Ni(t),

(14)

where

Ai(OA; (1) = Bijo(t —t'). (15)

Since A; is linear in (;, equation (14) can be solved in
the Fourier space. Defining the Fourier transform, fj, of
a function f; on a one dimensional network, with lattice
spacing ¢ by:

fr =0 exp(—ilkj)fj,
J

fi =107 " exp(—ilkj) fr,

k

taking Fourier transforms in time and space of equa-
tion (15), and proceeding as in reference [21], we obtain

k(@) Ak (-w)) = By, (16)

where w and k stand for Fourier temporal frequencies and
spatial wavelengths, respectively. For our model the ex-
plicit expressions for the elements of By, are:

P

B =0k +rikid® + k
k11 (1 rikig 21 1y

— 4519°(cos(lk) — 1)),

B2 =4 (k3 + r3k3o® + kg — 4521/15(008(516) -1)),
By,12 = Bi21 = 0. (17)

Power spectra of the fluctuations close to equilibrium,
(€ (@)]?) and (|nx(w)|?), can be calculated by taking
Fourier transform in time and space in the Langevin equa-
tion (14) and using equation (16). In particular, for our
model they are given by:

see equations (18) and (19) above.

Stochastic pattern formation are generated when power
spectra have a maximum at w = 0. From the power spec-
trum expressions, we can see that in the numerator the
highest exponent for k is 6, while in the denominator the
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Fig. 2. Temporal evolution of n, (above), and m, (below) for different V' values. From top to bottom V takes the values 1, 20,

40 and 100. Simulations were performed with the kinetic and

diffusion parameters of Figure 1, with 72 = 0.16 nM~'. On the

left panel 7 = 4 nM ™" and Turing patterns are formed for all V. On the right panel 7; = 3.75 nM~!. For larger or smaller V
quasi-patterns are spoiled. In this plot: y axis, membrane position; x axis, non scaled time; color scale, normalized n and m

values.

highest exponent is 8. Thus, for k sufficiently large power
spectra vanish. Then, the presence of a maximum is guar-
anteed if power spectra derivative with respect to k2 are
positive for small k. The phase diagram presented in Fig-
ure la shows that the region where power spectra have a
maximum is larger than that for Turing patter formation,
(black and gray areas).

Power spectra for 75 = 0.16 nM~! and selected 7] val-
ues are shown in Figures 1b and 1lc. Since all these selected
(r2,71) pairs are in the gray zone of the phase diagram
(Fig. 1a), we do not expect spatial order to arise, in terms
of Turing pattern formation. However, power spectra have
a peak that becomes more intense close to the boundary of
the Turing region (black zone). For these parameters we
expect to have quasi-pattern structures. However, if the
intensity of the power spectra peak is not high enough,
quasi-patterns would not be clearly formed.

5 Numerical results

In order to test our analytical results, we performed nu-
merical simulations using the Gillespie Multi-Particle al-
gorithm (GMP), which is equivalent to solving the mas-
ter equation [29]. In order to apply the original Gillespie

algorithm, we assumed that our system is well mixed.
Thus, transfers of molecules between patches has to be
greater than that for the reactions inside each patch. This
condition is always hold for small ¢, since the diffusion
characteristic time, 7p o ¢2, becomes much smaller than
reaction characteristic times for sufficiently small ¢. Sim-
ulations were performed with the same kinetic parameter
values as those used in reference [8], unless we state oth-
erwise. In order to correctly implement GMP algorithm,
we calculated the transition rates using the reaction rate
constants and the diffusion coefficients according to ref-
erences [29,30]. However, in the text, we express the nu-
merical values of the reaction rate constants for a more
clear comparison with reference [8]. We considered a one
dimensional grid with {2 = 50 patches and different noise
levels, which are related to the parameter V. If V is very
small, just few particles are allowed to be in each patch
leading to very strong internal fluctuations. However, if
V increases, fluctuations become weaker and in the limit
of V' going to infinity the deterministic result should be
recovered.

In Figure 2 we show the numerical results for n,
(above), and m, (below). Simulation results are normal-
ized to the final maximum value. The kinetic parame-
ters of the left panel, are located at the black zone in
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Figure 1la, i.e., Turing pattern formation conditions are
fulfilled; while the right panel corresponds to the quasi-
pattern region, (gray area). For each set of parameters
four simulations with different V' values are shown. Before
performing the simulations we ran Gillespie algorithm in
a grid of 50 patches, but without considering diffusion. We
let the system evolve until its steady state which was used
as an initial condition for the simulations with diffusion.
Using this initial configuration, places where a stable max-
imum appears, are random. However, since we used peri-
odic boundary conditions, we chose the central position
for the maximum in order to have a nicer plot.

On the left panel of Figure 2 we show the temporal
evolution of n and m for different V' values. Turing pat-
terns appear and remain very well formed along time. As
we expected, for larger V the effects of finite sizes are
mild and the system evolution has to be very close to the
macroscopic solution. Pattern formation occurs even for
small V| indicating that patterns are very robust appear-
ing even for very strong noise levels, as it is the case for
V=1

In the right panel of Figure 2, quasi-patterns are
shown, in this case 7 = 3.75 nM~!. Quasi-patterns are
not as sharp as Turing patterns. In general, the more in-
tense the power spectrum peak, the more clear the quasi-
patterns are. However, it also depends on the level of
intrinsic noise. For large V', the system evolves to the
macroscopic solution, which corresponds, for this set of
parameters to a homogeneous state without Turing insta-
bilities. Then, if V' becomes large enough quasi-patterns
are spoiled and their intensity reduces, (Fig. 2, V' = 100).
In addition, if V decreases and becomes very small, in-
ternal fluctuations are too intense that contribute nega-
tively and quasi-patterns are also spoiled. In both cases,
V large or small, quasi-patterns do not remain stable and
they may be last few hours, (Fig. 2, V =1 and V = 40).
Although quasi-pattern simulation result for V' = 20 are
clearly different than those for Turing patterns, they last
enough for the polarization process to occur.

The power spectra for the simulations shown in the
right panel of Figure 2 are plotted in Figures 1b and lc.
In Figure 3 we show simulation results for lower power
spectrum peak intensities, with 7; = 3.5 nM~!, (the two
top panels), and 71 = 3.65 nM~! (the two lower panels)
and V = 20. Since the power spectrum (|nx(w)[?) has a
more intense peak than (|&(w)|?), quasi-patterns in m
are more clear than those in n. If the power spectrum
peak intensity is not high enough quasi-patterns are not
stable, vanishing in a short period of time and, some times,
reappearing in a different membrane position (see the two
top panels in Fig. 3).

6 Conclusions

In this work we presented a stochastic model for describing
neuronal polarization. This conceptual model was based
on an activator-inhibitor model whose deterministic ver-
sion was presented in reference [8].
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Fig. 3. Temporal evolution of quasi-patterns with less power
spectra peak intensity. Simulations were performed with the
kinetic and diffusion parameters of Figure 1, with 72 =
0.16 nM™" and V = 20. Temporal evolution of n (top panel),
and m (second panel), for 71 = 3.5 nM~!'. Simulations of n
(third panel), and m (fourth panel), for 7; = 3.65 nM~*. In
this plot: y axis, membrane position; z axis, non scaled time;
color scale, normalized n and m values.
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The results presented here show that patterns are very
robust, since they appear and remain stable even for high
intrinsic noise levels, allowing cell to polarize with just few
particles. We have also shown that intrinsic fluctuations
can generate quasi-pattern structures. In general stochas-
tic spatial patterns are not as sharp and robust as Turing
patterns. Although in the presence of small noise, deter-
ministic results should be obtained and the quasi-patterns
vanish, when the level of noise increases quasi-patterns
seem to be more stable and well defined. However, for too
much noise, unstable quasi-patterns are obtained again.
This would indicate that there is an optimal levell of noise
for quasi-pattern formation.

Although quasi-patterns are different than Turing pat-
terns, they can be very well defined for an interval of time
of few hours, even for high or relatively low noise levels,
(see Fig. 2, V =1 and V' = 40). Even in these cases cells
could be able to polarize, since these localized concentra-
tion of molecules for such a period of time could increase
active transport in the region and use it to sustain the
quasi-pattern [31]. Quasi-pattern structures can be formed
with less positive feedback strength than Turing patterns.
Although power spectra have a maximum even for very
low ry values, quasi-patterns formation depends on their
peak intensity, which decreases for small 7.

Turing patterns and quasi-patterns form structures
that present a single pole with high active concentration of
membrane proteins and modulator of endocytosis. Turing
patterns are very well defined even in systems with high
intrinsic noise and there are no restrictions in the number
of molecules needed for their appearance. Although quasi-
patterns sustainment depends on the number of molecules
in the system, they can induce cell polarization by the
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action of other mechanisms, such as active transport.
Our work indicates that intrinsic noise would increase the
chances for symmetry breaking, since in the presence of
intrinsic noise cell polarization could occur even with less
positive feedback strength.
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Appendix

In this Appendix we give some technical details for car-
rying out the system-size expansion of the master equa-
tion presented in this paper. We assume that the ex-
pansion parameter is V, i.e., each patch is treated as
a subsystem whose volume becomes large. The system-
size expansion [9,10] involves the change of variables,
n = Vo) + V%€ and m = Va(t) + V'/?n, as we
have already defined in the main text. The vectors ¢(t)
and v (t) are time-dependent vectors, and the vectors &
and n stand for the stochastic contributions. The four of
them have as many components as patches in the system.
The way we proceed is equivalent to those presented in
references [21,22].

The operators EF! and Eil that change n; and m;
into n; £ 1 and m; :I: 1 respectlvely, and therefore ¢; into
& £ V=12 and n; into n; £ V—1/2, are given by:

o vVl
]Ei1:1iV*1/28&+ 2 ez T (A1)
o Vo2
EXl =1+V~ 1/26m+ 2 oz T (A.2)

Taking into account that the time derivative in equa-
tion (4) is taken considering constant n and m, we have:

do dp

o TV
(A.3)

where II(€,m,t) = P(n,m,t). We also have to consider

that:

Py ) =t (o v i)

8P(n,m,t) - 6H 1/2
ot ot v Vell

V2 + Vg 4+

(A.4)

~ h(on) + 1 (@v 2+ )

Inserting these last equations into equation (4) and con-
sidering equation (5), the master equation in the new vari-
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ables takes the form:

oIl de dvp
at—\/V(Vg e " 'dt>

v, 11
¢ o vVl o2
Z{( Wasﬁ 2 853)
s (Vi + 1k ( V¢1+\/vgz))

(o, *av ) = (10 )
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1o 1
VV On 2V on?
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+< Lo 1
VV 5771‘

2V on?
1 0
+

x ;(V@ +VVE)T

_|_

+

) ka(Vap; + Vi) IT

1 /0 0\
Tov <a§iaﬁj>
1

agl a

(oo
VV O V0
51

(V¢J+x/vgj)
(! o 1 9 . 1
VV OV On; 57%

1)
X ;(Vl/%—I—\/Vm)H
n 1 0 _ 1 0 + 1
VV OV O 87;1
(A.

}.

The terms of order v/V in equation (A.5) yield the macro-
scopic equation (6), while keeping the terms proportional
to V¥ we obtain the Fokker-Planck equation (12).

5
x (Vb + Vi) IT 5)
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