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Abstract
Prenatal ethanol exposure modifies postnatal affinity to the drug, increasing the probability of
ethanol use and abuse. The present study tested developing rats (5-day-old) in a novel operant
technique to assess the degree of ethanol self-administration as a result of prenatal exposure to low
ethanol doses during late gestation.

On a single occasion during each of gestational days 17–20, pregnant rats were intragastrically
administered ethanol 1 g/kg, or water (vehicle). On postnatal day 5, pups were tested on a novel
operant conditioning procedure in which they learned to touch a sensor to obtain 0.1% saccharin,
3% ethanol, or 5% ethanol. Immediately after a 15-min training session, a 6-min extinction session
was given in which operant behavior had no consequence. Pups were positioned on a smooth
surface and had access to a touch-sensitive sensor. Physical contact with the sensor activated an
infusion pump, which served to deliver an intraoral solution as reinforcement (Paired group). A
Yoked control animal evaluated at the same time received the reinforcer when its corresponding
Paired pup touched the sensor.

Operant behavior to gain access to 3% ethanol was facilitated by prenatal exposure to ethanol
during late gestation. In contrast, operant learning reflecting ethanol reinforcement did not occur
in control animals prenatally exposed to water only. Similarly, saccharin reinforcement was not
affected by prenatal ethanol exposure.

These results suggest that in 5-day-old rats, prenatal exposure to a low ethanol dose facilitates
operant learning reinforced by intraoral administration of a low-concentration ethanol solution.
This emphasizes the importance of intrauterine experiences with ethanol in later susceptibility to
drug reinforcement. The present operant conditioning technique represents an alternative tool to
assess self-administration and seeking behavior during early stages of development.
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Introduction
The motivational properties of ethanol can modulate appetitive and consummatory
behaviors, particularly during early stages of ontogeny (Pautassi, Nizhnikov, & Spear,
2009). Epidemiological and preclinical studies have indicated that early experiences with
ethanol produce a heightened affinity for ethanol in both humans and rats (Baer, Barr,
Bookstein, Sampson, & Streissguth, 1998; Baer, Sampson, Barr, Connor, & Streissguth,
2003; Chotro, Arias, & Laviola, 2007; Spear & Molina, 2005). In this context, we have
observed that neonatal rats exhibit positive responses to postabsorptive ethanol effects when
very low ethanol doses (0.125 or 0.25 g/kg) are associated with a surrogate nipple
(Nizhnikov, Molina, Varlinskaya, & Spear, 2006). Moreover, the range of ethanol doses
capable of having reinforcing effects is increased (0.25, 0.5, and 0.75 g/kg) when those pups
were prenatally exposed to ethanol (Nizhnikov et al., 2006). Near-term fetuses seem to
rapidly associate olfactory cues present in the amniotic fluid with postabsorptive effects of
ethanol (Abate, Pepino, Domínguez, Spear, & Molina, 2000; Abate, Pueta, Spear, & Molina,
2008). These studies have been partially confirmed in humans. Maternal intake of ethanol
during pregnancy resulted in the fetus' detection of ethanol odor. Response patterns of 1-
and 2-day-old babies to ethanol chemosensory cues appear to be modulated by levels of
alcohol consumed by their mothers during pregnancy (Faas, Spontón, Moya, & Molina,
2000).

In the preclinical literature the use of operant techniques to evaluate the motivational effects
of ethanol during early ontogeny has been recently documented in the literature (Bordner,
Molina, & Spear, 2008; March, Abate, Spear, & Molina, 2009; Miranda-Morales, Molina,
Spear, & Abate, 2010, 2012a; Miranda-Morales, Spear, Nizhnikov, Molina, & Abate,
2012b; Ponce, Pautassi, Spear, & Molina, 2008). In 1-day-old rats, ethanol's sensorial
properties were sufficient to promote vigorous operant responses when ethanol ingestion
was contingent upon operant behavior. Furthermore, postabsorptive ethanol effects attained
with low levels of ethanol in blood (20 mg/dL) were sufficient to maintain a relatively high
level of seeking behavior during an extinction session (Bordner et al., 2008). March et al.
(2009) and Miranda-Morales et al. (2010) extended these results and indicated that prenatal
experience with ethanol during the last stages of gestation increased the probability of
executing these operant responses to obtain ethanol or a compound that mimics the sensory
attributes of the drug. Other studies showed that this sensitivity to ethanol reinforcement
during early ontogeny can also be observed during the second postnatal week of the infant
rat. For instance, self-administration of ethanol was established in terms of operant
responding in preweanling rats with no previous exposure to the drug (Miranda-Morales,
Molina, et al., 2012a; Miranda-Morales, Spear, et al., 2012b; Ponce et al., 2008).

Considering the study of Arias, Spear, Molina, & Molina (2007), who showed rapid
acquisition of operant conditioning in 5-day-old rat pups using milk as reinforcer, we aimed
to test similar operant conditioning in rat pups (5 days old) using one of two alternative
ethanol concentrations or saccharin as reinforcers. This operant conditioning was tested as a
function of prenatal experience with low ethanol doses during the last stages of gestation.
Results from the present study will help to determine if increased ethanol operant self-
administration during very early stages of development is circumscribed to the neonatal
period or can be extended to the later stages of development, and how prenatal ethanol
experience may modulate these ethanol-related behaviors.
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Materials and methods
Subjects

Sprague–Dawley rats were employed in the study (106 infant pups derived from 19
females). These animals were born and reared in the vivarium at the Center for Development
and Behavioral Neuroscience (AAALAC-accredited facility, Binghamton University,
Binghamton, NY, USA). For breeding, animals were housed in groups of 1 male and 2
females in wire mesh hanging cages. Every day female animals were checked for plugs and
the day a plug was found was considered gestational day zero (GD0). Immediately after the
plug was found the female was removed from the cage and individually housed in standard
maternity cages lined with pine shavings. Cages were checked for births daily, and the day
of birth was considered postnatal day zero (PD0). The colony was maintained at 22–24 °C
under a 14 h/10 h light/dark cycle. The experiments were approved by the Binghamton
University Institutional Review Committee for the Use of Animal Subjects and were in
compliance with the NIH Guide for the Care and Use of Laboratory Animals (National
Institutes of Health, 1996).

Prenatal Treatment
From GD17 to GD20 a randomly selected set of dams received a daily intragastric (i.g.)
administration of a 12.6% v/v ethanol solution (volume of administration, 0.01 mL/g). This
administration procedure resulted in an ethanol dose equivalent to 1.0 g/kg of body weight.
A second group of females received an equivalent number of i.g. administrations but only
with water, which served as the vehicle of ethanol. Female rats remained undisturbed until
parturition. The ethanol dose selected for prenatal treatment was based on previous studies.
Nizhnikov et al. (2006) reported that prenatal exposure to 1 g/kg ethanol during late
gestation increased the range of ethanol doses found appetitively reinforcing in newborn
rats. This study was performed in Sprague-Dawley rats, as the one employed for the present
preparation.

Operant Conditioning Test
The apparatus employed for operant conditioning was similar to the one employed by Arias
et al. (2007). Rat pups were placed in a semi-supine position over the internal cotton surface
of a respirator mask (3M Particulate Respirator 8576). This holding “seat” was positioned
over a metal support box. The angle between the pup's body and the surface of the box was
equivalent to 40°. This position allowed the pup to rest its rear limbs over the filter of the
respirator mask. Each pup was strapped and buckled into a spandex “vest” with a “v”-
shaped neck designed to avoid restriction of head movements. Two holes (0.5 cm in
diameter) in this vest allowed the pup's forelimbs to be free. The vest produced no apparent
discomfort or major restriction of behavior. An articulated iron stand equipped with alligator
clips allowed positioning of a touch-sensitive bronze sensor (4 cm long × 0.5 cm wide) 1.5
cm away from the pup's mouth and perpendicular to the base of the holding seat. The tip of
this sensor was kept equidistant from each forepaw. Physical contact with the sensor
activated an infusion pump (Kashinsky-Rozboril, Model 5/2000, Binghamton, NY)
equipped with a 2-mL micrometer syringe (Gilmont Instruments; Barrington, IL) filled with
a specific solution. The sensor was connected to a single channel charge-transfer sensor chip
(Model E11x Evaluation Board; Quantum Research Group, Pittsburgh, PA) which in turn
controlled the infusion pump. The pump was set to deliver 1 μL of solution whenever the
sensor was activated (the schedule of reinforcement was set as a fixed ratio 1). The sensor
chip was also connected to a device (Simple Logger II, Model L404, AEMC Instruments,
USA; sensitivity: 1 response/0.01 s) which registered in real time the number of sensor
contacts displayed by the animals. A section of PE50 polyethylene tubing was attached to a
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needle fitted into the tip of the syringe, and the free end of the PE50 tubing was inserted into
a thinner section PE10 tubing surgically implanted into the pup's cheek.

Across the experiment, intraoral infusion was conducted by means of polyethylene cannulas
positioned in the pup's cheek. Intraoral cheek cannulation is minimally stressful in
preweanlings (Spear, Specht, Kirstein, & Kuhn, 1989) and has been shown to be a useful
tool for the assessment of responsiveness to tastants, early in life (Arias & Chotro, 2005;
Arias et al., 2007; Bordner et al., 2008). This intraoral cannulation procedure has been
extensively described in previous studies (for detailed information please see Abate, Spear,
& Molina, 2001; Arias et al., 2007; Chotro & Arias, 2003; Miranda-Morales et al., 2010).

On PD5, pups were removed from their maternal cages, cannulated, and placed in holding
cages (45 × 20 × 20 cm) partially filled with clean wood shavings for 3 h. The floor of the
cage was maintained at 27 °C (± 1 °C) using a heating pad. Pups were evaluated in 2
sessions. The first was the 15-min training session in which animals received a solution
(reinforcer) contingent upon their operant behavior (i.e., sensor contact). Immediately after,
a 6-min extinction session was performed, in which no reinforcer was available after the
execution of target behavior. Before commencement of the training session, pups were
quasi-randomly assigned to either a Paired (P) or a Yoked (Y) condition group. Each P
subject was evaluated with its corresponding Y control which, whenever possible, was
matched in terms of sex and body weight. Prior to conditioning, the anogenital region of
preweanlings was gently stroked with a cotton swab to stimulate defecation and void the
subject's bladder. The animal's weight was then registered (± 0.01 g; balance model BP410;
Sartorius Corporation, Edgewood, NY). Following these procedures, P and Y animals were
placed in the corresponding conditioning devices and their respective cannulas were
attached to the tubing exiting from the infusion pump. The touch-sensitive sensors were then
placed near the head and forepaws of each subject. Total time invested in this placement
procedure was approximately 2 min per animal. Whenever an experimental pup (P animals)
touched the sensor, a 1-μL pulse of solution was delivered into its mouth as well as into the
mouth of the corresponding Y control. Physical contacts of Y subjects with the sensor did
not result in reinforcement. All pups received 4 priming pulses of solution at the beginning
of the training session (1, 60, 120, and 180 s). Each priming pulse was equivalent to 2 μL.
These pulses were administered independently of the motor activity rates of the subjects and
were intended to familiarize them with the reinforcer and to minimally stimulate head and
body movements. After termination of the extinction session, body weights were again
recorded, cannulas were removed, and pups were returned to their mothers. The
environment where the operant procedure took place was maintained at 27 °C (± 1 °C) using
3 heating pads located around the apparatus employed for operant conditioning.

Solutions employed as reinforcers were: 0.1% w/v saccharin; 3.0% ethanol, and 5.0%
ethanol (190 proof ethanol, Pharmaco, Brookfield, CT; vehicle: distilled water).
Consumption of reinforcers was estimated from variation in body weight and calculated
according to the following equation: ([(post-conditioning weight − pre-conditioning weight)/
(pre-conditioning weight)] × 100).

Experimental design and data analysis
Across experiments, no more than one subject from each sex in a given litter was assigned to
the same treatment condition. The dependent variable for operant performance was number
of sensor contacts executed by subjects. Data obtained during the operant task were
analyzed with analysis of variance (ANOVA). Separate ANOVAs were executed to analyze
training and extinction sessions. Each solution employed as reinforcer was analyzed using a
separate ANOVA. Operant performance across training or extinction session was analyzed
via a 2-way mixed ANOVA defined by the following factors: the between-group factor was
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prenatal treatment (ethanol or water prenatal exposure), and conditioning (P or Y) served as
a within-group factor. Consumption of reinforcers during training session was analyzed
using a similar 2-way mixed ANOVA (prenatal treatment × conditioning).

The loci of significant main effects or 2-way interactions were further analyzed with Fisher's
LSD post hoc comparisons. A rejection criterion of p < 0.05 was adopted for all statistical
analyses in the present study.

Preliminary analysis of the experimental data included sex as a variable. This factor
consistently failed to exert any significant main effect, or to interact with any other factor
under consideration. Therefore, data were collapsed across sex for all subsequent analyses.
The lack of sex effects was not unexpected: previous studies working with ethanol
reinforcement in operant conditioning during early infancy (Bordner et al., 2008; March et
al., 2009; Miranda-Morales et al., 2010; Miranda-Morales, Molina, et al., 2012a; Miranda-
Morales, Spear, et al., 2012b) found no significant effect or interaction of gender with other
factors under analysis.

Results
As can be seen in Figure 1A the ANOVA employed to assess 3% ethanol reinforcement
during the training session indicated a significant main effect of conditioning [F(1,15) =
11.95, p < 0.01]. In addition, number of sensor contacts was also significantly affected by
the interaction of the two factors [F(1,15) = 8.64, p < 0.01]. Fisher post hoc tests indicated
that P animals prenatally exposed to ethanol executed significantly more operant responses
for 3% ethanol than did their corresponding Y controls; no significant difference could be
observed in P vs. Y animals from the prenatal water exposure condition. During the
extinction session, when operant behavior did not result in ethanol reinforcement, the main
effect of conditioning and the interaction between prenatal treatment and conditioning
reached significance [F(1,15) = 8.35, p < 0.025, and F(1,15) = 5.00, p < 0.05, respectively].
Post hoc analysis indicated that P animals prenatally exposed to ethanol executed
significantly more operant responses than did all the remaining groups (their respective Y
controls, and water prenatally exposed-P or Y animals).

In terms of 3% ethanol consumption during the training session, it was observed that pups
prenatally exposed to ethanol exhibited higher body weight gains relative to pups prenatally
exposed to water. Nevertheless, the corresponding ANOVA did not show any significant
main effect or a significant interaction between prenatal treatment and conditioning.

The statistical analysis of 5% ethanol reinforcement during training and extinction sessions
did not show any significant effect of prenatal treatment, conditioning, or their interaction.
Intake scores of 5% ethanol during the training session were not significantly affected by
any of the factors or their interactions. Data from 5% ethanol reinforcement and intake are
depicted in Figure 1B and Table 1, respectively.

The ANOVA employed to analyze saccharin reinforcement during training session found no
significant effects of any of the factors considered. For extinction, the ANOVA revealed a
significant main effect of conditioning [F(1,16) = 5.81, p < 0.03]. P animals displayed
significantly more operant responses than Y counterparts did in the absence of saccharin
reinforcement. The ANOVA employed to analyze saccharin intake scores indicated no
significant effect of the factors or their interaction. Results are depicted in Figure 1C
(operant responses) and Table 1 (intake scores).
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Discussion
The main result of this study was that prenatal experience with a small amount of ethanol
during late gestation facilitated operant responding for a low-concentration ethanol solution
in 5-day-old pups. Contingency between operant behavior and ethanol reinforcement
produced an increase in target behavior, a result not observed in yoked control pups. This
effect was also evident during the extinction session when, in the absence of the reinforcer,
Paired pups had higher levels of operant responding than Yoked controls. Of major
importance, operant behavior toward ethanol reinforcement was only observed in those
infant rats prenatally exposed to low ethanol doses during late gestation. When saccharin
was employed as the reinforcer, prenatal ethanol's facilitating effect could not be observed.
Even these animals did not show clear operant conditioning for saccharin reinforcement
during training; P pups exhibited significantly more operant responding than Y controls
during extinction, which indicated operant reinforcement. The differences in saccharin
reinforcement observed across sessions could be due to a general increase in motor activity
during a training session. For instance, Arias et al. (2007) employed two 15-min training
sessions to evaluate milk operant reinforcement in 5-day-old pups, in order to observe
differential responding between P and Y animals.

Consistent with previous studies with 1-day-old rats (March et al., 2009; Miranda-Morales
et al., 2010), 3% ethanol solution served as a positive reinforcer only in pups that had
previous experience with the drug during late gestation. However, unlike Bordner et al.
(2008) with 1-day-old pups, we observed no ethanol reinforcement in 5-day-old pups that
had not experienced ethanol prenatally. Infant pups also seem capable of responding
differentially to 2 different concentrations of the drug. In this sense, the effects of pre-
exposure to ethanol have been found to vary markedly, perhaps partially dependent on the
developmental period during which the pre-exposure and the test takes place (Spear &
Molina, 2005). Truxell, Molina, & Spear (2007) indicated a progressive decline in ethanol
acceptance across ontogeny. The present results seem to indicate that at this infantile age,
prenatal experience with the drug has a more relevant impact in the later acceptance of
ethanol than a few minutes of neonatal exposure to the drug. This fact is supported by the
results obtained in the present preparation. As depicted in Figure 1, 3% ethanol was highly
reinforcing in animals prenatally exposed to ethanol, while no evidence of reinforcement
could be observed in control animals prenatally exposed to water. On the other hand,
reinforcement was not observed toward 5% ethanol in pups prenatally exposed to ethanol,
while the prenatal control group tended to show an aversion to that solution, as evidenced by
a decrease of responding in P pups when compared to Y controls.

As was discussed in earlier studies (March et al., 2009; Miranda-Morales et al., 2010),
differences across prenatal treatments cannot account for differences in associative learning
capabilities: with saccharin as the reinforcer, no effect of prenatal ethanol treatment could be
found. Ethanol reinforcement is not better explained in terms of ethanol-induced
hyperactivity or hyper-reactivity [which has been encountered in other studies, although
when much higher doses of ethanol have been chronically administered during gestation
(Abel, 1980; Anandam, Felegi, & Stern, 1980; Bond, 1988)].

Even when the measure employed for reinforcer intake was not an optimal index of
consumption scores (animals were weighed after an intervening extinction session and not
immediately after the training session), it allowed us to ascertain that animals effectively
consumed the drug during reinforcement. In fact, values of intake scores descriptively
showed a similar profile as observed in operant reinforcement: ethanol intake scores were
higher in animals prenatally exposed to ethanol, but saccharin intake scores were similar
across both prenatal groups. Previous studies (March et al., 2009) also failed to show that
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ethanol intake patterns statically resembled operant activity patterns, as a function of
prenatal experience with the drug. Nevertheless, palatability of the different reinforcers
seemed to result in differential body weight gained. It seems that a low-concentration
ethanol solution was better accepted than a higher one (5% ethanol) by animals prenatally
exposed to ethanol. These results, even though they were not statistically supported through
intake scores, did find support when considering number of operant responses. Another
finding that deserves consideration is the fact that the ethanol intake profile seemed to differ
as a function of conditioning treatment. This result has previously been found in neonates
(Bordner et al., 2008; March et al., 2009) and infant rats (Ponce et al., 2008). For animals
prenatally exposed to ethanol, contingency between operant behavior and reinforcer delivery
seemed to promote higher levels of 3% ethanol intake, while at 5% ethanol the opposite
effect was seen. This fact brings up the possibility that, at 5% ethanol, P animals may have
rejected part of the reinforcement, which could be seen later in the low frequency “seeking
behavior” phase during the extinction session. Rejection of 5% ethanol could be in part due
to the palatability of the specific concentrated reinforcer. Newborns evaluated in a similar
operant conditioning task showed rejection of 6% ethanol and, moreover, that solution was
not found to increase operant performance, even in animals prenatally exposed to ethanol
(March et al., 2009).

The heightened ethanol acceptance after prenatal exposure could be due to mere pre-
exposure to the sensory attributes of the drug. Another plausible hypothesis is that fetuses
can form an associative memory comprising ethanol chemosensory cues and its positive
hedonic effects. Both hypotheses predict similar postnatal outcomes, i.e., higher affinity and
greater potential for reinforcement from ethanol (Abate et al., 2008; Spear & Molina, 2005).
A recent study emphasizes the possibility that associative learning could occur prenatally.
Prenatal exposure to anise or vanilla during late gestation increased neither intake nor
palatability of these tastants on PD14, but prenatal ethanol exposure did show an increased
acceptance of ethanol during infancy (Díaz-Cenzano, Gaztañaga, & Chotor, 2013). These
results seem to indicate that prenatal ethanol exposure not only represents for the fetus a
chemosensory stimulus, but also represents the presence of a reinforcer, which is supposedly
ethanol's pharmacological effects (Díaz-Cenzano et al., 2013).

In summary, the conditioning technique employed here represents an alternative tool for the
ontogenetic analysis of ethanol-mediated learning and memory processes. This study
supports the notion that ethanol exposure during fetal developmental influences later
patterns of ethanol use (Abate et al., 2008; Spear & Molina, 2005). Prenatal exposure to a
low ethanol dose such as 1.0 g/kg facilitates not only neonatal (1-day-old; March et al.,
2009) operant learning, supported by intraoral administration of a low-concentration ethanol
solution, but also infantile (5-day-old) operant learning as evidenced by increased operant
behavior during the training session and the maintenance of seeking behavior during
extinction.
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Figure 1.
Total number of operant responses (sensor contacts) toward 3% ethanol (Panel A), 5%
ethanol (Panel B), or 0.1% saccharin (Panel C) reinforcement during training and extinction
sessions, as a function of prenatal treatment (0 or 1 g/kg ethanol) and conditioning treatment
(paired or yoked conditions). Values are expressed as mean ± standard error of the mean.

Miranda-Morales et al. Page 10

Alcohol. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Miranda-Morales et al. Page 11

Table 1

Body weight gained during training session as a function of solution used as reinforcer, prenatal treatment, and
conditioning treatment. Values represent mean ± SEM.

Reinforcer

Prenatal Treatment

1 g/kg Ethanol Water

Paired Yoked Paired Yoked

3.0% ethanol 0.21 ± 0.05 0.14 ± 0.04 0.14 ± 0.02 0.10 ± 0.03

5.0% ethanol 0.13 ± 0.04 0.24 ± 0.07 0.08 ± 0.03 0.06 ± 0.03

0.1% saccharin 0.16 ± 0.02 0.21 ± 0.04 0.19 ± 0.03 0.18 ± 0.05
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