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Abstract In this work, we study a simple way of con-

trolling the emitted fields of subwavelength nanometric

sources. The system studied consists of arrays of nanopar-

ticles (NPs) embedded in optical active media. The key

concept is the careful tuning of NP’s damping factors, which

changes the eigenmode’s decay rates of the whole array.

This inevitably leads, at long time, to a locking of relative

phases and frequencies of individual localized-surfaces-

plasmons (LSPs) and, thus, controls the emitted field. The

amplitude of the LSP’s oscillations can be kept constant by

embedding the system in optical active media. In the case

of full loss compensation, this implies that not only the

relative phases, but also the amplitudes of the LSPs remain
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fixed, leading us, additionally, to interpret the process as

a new example of synchronization. The proposed approach

can be used as a general way of controlling and designing

the electromagnetic fields emitted by nanometric sources,

which can find applications in optoelectronic, nanoscale

lithography, and probing microscopy.

Keywords Plasmonics · Localized-surface-plasmons ·
Nanoparticles · Active medium · Synchronization

Introduction

Recent advances in the past decades in fabrication and

characterization of nanometric devices have given rise to a

revolution, fueled by the new and intriguing properties of

matter in this size scale. Among the new fields that rapidly

became central, emerged the promise of plasmonics with

applications that go from ultrasensitive nanosensors to plas-

monic circuitry [1–5]. Many of those promises have became

a reality nowadays, but the advances do not seem to slow

down and new ideas are still emerging in this field. One

interesting example is the combination of plasmonic devices

with active media that compensate in part or totally system’s

losses [6–25].

Active media are made of dye molecules or semiconduc-

tors nanocrystals, where the population inversion is created

optically or electrically. The concept of surface plasmon

amplification by stimulated emission of radiation (spaser),

also known as surface plasmon laser in a wider context, is

an example of that. Originally proposed by Bergman and

Stockman in 2003 [14], and finally implemented exper-

imentally in 2009 [18–20], it is basically a source of
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electromagnetic fields, containing both propagating and

evanescent waves, and formed by the interaction of surface

plasmons with active media that fully compensate the losses

of the plasmonics system [14–17].

Spasers can provide us with many possibilities for

prospective applications in nanoscience and nanotechnol-

ogy, in particular for near-field nonlinear-optical probing

and nanomodification. In this respect, it should be desirable

to control and to design a priori the electromagnetic fields

generated by those hybrid systems. If the plasmonic sys-

tem consist of arrays of NPs, the design of electromagnetic

fields implies a control over the synchronized oscillation

of the individual localized surface plasmons (LSPs), which

leads to another interesting aspect. Essentially, as in those

systems, not only the phases and frequencies of individ-

ual LSPs but also their amplitudes remain fixed; the whole

phenomenon can be interpreted as another example of

synchronization.

The phenomenon of synchronization, usually defined

as the adjustment of rhythms of self-sustained oscillating

objects because of their mutual interaction [26], has been

observed in many physical and biological systems: from

the coupled pendulums clocks first described by Chris-

tian Huygens [27] to the chemical or biological examples,

such as fireflies that flash in unison [26]. However, to our

knowledge, it has never been described in the context of

plasmonics.

In this work, we study plasmonic systems, consisting

of metallic nanoparticle (NP) arrays, where losses are par-

tially or fully compensated by an active medium. We not

only find that the localized surface plasmons (LSPs) of indi-

vidual NPs can be kept oscillating with a fixed amplitude

and a fixed relative phase, becoming a new example of

synchronization, but we also show that it should be rela-

tively easy to control their asymptotic states by controlling

NP’s damping. The manipulation of the system’s state at

long time implies the control of NP’s dipolar moments and

thus of their emitted electromagnetic field. Therefore, our

approach is a general way of designing the interference

patterns of sources of optical fields in the subwavelength

scale, which can have applications in several areas of

nanotechnology.

The paper is organized as follows: In “Coupled Dipole

Approximation for Ellipsoids with Radiation Damping,”

we develop the basics tools used in our calculation.

In “Results,” we present the main results, analyzed

through two simple examples of NP’s arrays, and dis-

cuss them in terms of non-Hermiticity of the dynamical

matrix and asymptotic states, phase and frequency lock-

ing, role of active media, gain-loss compensation, ampli-

tude locking, and generalization to more complex struc-

tures. Finally, in “Conclusions,” we summarize the main

conclusions.

Coupled Dipole Approximation for Ellipsoids

with Radiation Damping

The systems studied are basically different arrays of metal-

lic NPs which are modeled through the well-known coupled

dipole approximation [28–34]. In this model, each ith-NP is

described by a dipole Pi induced by the electric field pro-

duced by the other dipoles, Ej,i , and the external source,

E
(ext)
i . We assume a generic ellipsoidal shape for the NPs

whose polarizabilities α are described in a quasi-static

approximation [35, 36],

α = ǫ0V (ǫ − ǫm)

[ǫm + L(ǫ − ǫm)]
, (1)

where V is the volume, ǫ0 is the free space permittivity, ǫm

is the dielectric constant of the host medium, and L is a geo-

metric factor that depends on the shape of the ellipsoidal NP

and the direction of E. The dielectric constant of the NP, ǫ,

is described by a Drude-Sommerfeld’s like model

ǫ = ǫ∞ −
ω2
P

(ω2 + iωη)
, (2)

where ǫ∞ is a material-dependent constant and take into

account the contribution of the bound electrons to the polar-

izability, ω
P
is the plasmon frequency, and η the electronic

damping factor. Assuming for simplicity, a linear array of

NPs and a near-field approximation for Ei,j yields

Ei,j = − γ T ,LPj

4πǫ0ǫmd3
, (3)

where d is the distance between NPs, and γ is a constant that

depends on the orientation of the NP’s array relative to the

direction of E, γ T = 1 if it is perpendicular and γ L = −2
if it is parallel. If we take take into account these consider-

ations, then all Ps and E(ext)s can be arranged as vectors P

and E resulting in the following [28, 29]:

P =
(
Iω2 − M

)−1
RE = χE, (4)

where χ is the response function, M is the dynamical

matrix, and R is a diagonal matrix that rescales the external

applied field according to local properties as follows:

Ri,i = −ǫ0Viω
2
Pi

f, (5)

with

f =

[
1− (ǫ∞ − ǫm,i )

(
ω2 + iωηi

)
/ω2

Pi

]

[
ǫm,i + Li(ǫ∞ − ǫm,i)

] . (6)

To understand the physical meaning of f, first note that Eq.

4 resembles that of a set of coupled harmonic oscillators.

In the quasi-electrostatic limit, Eq. 3, and for a negligi-

ble radiation damping term, see Eq. 9, this similarity is

strict for f equal to 1. Thus, this factor essentially accounts
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for deviations of the ideal model of coupled harmonic

oscillators.

The coupling constants, Mi,j = −ω2
Xi,j (for i �= j ), and

the LSP complex square frequencies,Mi,i = ω2
SPi

− iŴi(ω),

are given as follows [28, 29]:

ω2
Xi,j =

γ T ,LViω
2
Pi

4πǫmd3i,j

f, (7)

ω2
SPi

=
ω2
Pi

Li[
ǫm,i + Li(ǫ∞ − ǫm,i)

] , (8)

and

Ŵ(ω) = ηω + ηRω3. (9)

where η is the electronic damping and ηR the radiation

damping. The electronic damping η can be calculated from

the Fermi velocity vf , the bulk mean free path lbulk , the

volume V, and the surface S of the NP by using the

Matthiessen’s rule η = vf (1/lbulk − C/leff ) with C ≈ 1,

and the Coronado-Schatz formula leff = 4V/S [37]. The

value of ηR can be calculated from the ellipsoid’s radius a, b,

and c, ηR = 2/9(abc/v3)ω2P f , where v is the speed of light

in the host medium. This extra damping term appears when

the polarizability α is corrected by using the modified long-

wavelength approximation, α′ = α[1 − i(2/12πǫ0)k
3α]−1

[36]. In the examples analyzed here, dynamic depolariza-

tion is negligible and thus not included in the equations for

simplicity.

Retardation effects change the coupling terms which now

should be determined by the true dipole-induced electric

field, i.e.,

E = eikd |P |
4πǫ0ǫmd3

{
(kd)2(d̂ × p̂) × d̂ (10)

+
[
3d̂(d̂ · p̂) − p̂

]
(1− ikd)

}
, (11)

where k is the wavenumber in the dielectric, k = ω/v

(where v is the speed of light in the medium), d̂ is the unit

vector in the direction of d (where d is the position of the

observation point with respect to the position of the dipole),

p̂ is the unit vector in the direction of P, and |P | is its mod-
ulus. If the system consists of a linear array of NPs where

the spheroids axes are aligned with respect to the direction

of the array, transversal (T) and longitudinal (L) excitations

do not mix, which allows us to preserve the form of Eq. 7

by simply replacing γ T ,L by γ̃ T ,L , where

γ̃ L

i,j = −2[1− ikdi,j ]eikdi,j

γ̃ T

i,j = [1− ikdi,j − (kdi,j )
2]eikdi,j . (12)

We use this final form of the equations in all the calcu-

lations shown here. However, the qualitative results do not

change by using the quasistatic approximation.

The temporal evolution of the dipolar moments of indi-

vidual NPs can be evaluated by Fourier transforming the

response function χ(ω) into χ(t) and using the convolution

theorem as follows:

Pi(t) =
∑

j

∫ t

0

χi,j (t − τ)E
(ext)
j (τ )dτ. (13)

The functions χ(t)i,j were numerically computed from

χ(ω)i,j by using a fast Fourier transform algorithm [38].

Here, one must be careful, in case of using active media,

of not overpassing the loss-compensation condition as one

is always assuming that the response function χi,j is square

integrable.

Results

Non-Hermiticity ofM and Asymptotic States

In the type of system studied here, frequency and phase

locking may appear as a natural consequence of the prop-

erties of non-Hermitian matrices. While isolated systems

are described by a typical Hermitian dynamical matrix M,

where the final state depends on the initial conditions, the

presence of an “environment” leads to a non-Hermitian

dynamical matrix [28, 29, 39, 41]. This interaction may

cause asymptotic states that are independent of the ini-

tial conditions. An illustrative example of that is the case

of a pair of piano strings in a unison group [42]. There,

the slightly detuned strings are coupled through the bridge,

which, in turn, is coupled to a dissipative soundboard.

Within a certain critical parametric range, this dissipative

coupling induces the synchronous oscillation of both strings

[42] and gives the piano its characteristic and persistent

aftersound. This dissipative coupling can be modeled by an

imaginary coupling which, at a critical strength, produces

the collapse of the pair of originally mistuned eigenfre-

quencies into a single tone. Simultaneously, the originally

identical dampings split into short- and long-lived modes.

The effect of this is that the long time evolution is domi-

nated, for almost any initial condition, by the normal mode

whose eigenvalue has the smallest imaginary part.

The same analysis can be straightforwardly applied to

plasmonics systems represented by Eq. 4, where the analogy

also includes the concepts of dissipative couplings, fre-

quency collapses, and damping’s splittings, see Appendix.

However, in plasmonic’s systems, it is not always obvi-

ous which is the asymptotic state of a given system, which

makes its control even less obvious. The situation worsens if

we consider that usually parameters such as NP’s shape and

separations are not accurately determined. Besides, unlike

the discussed case of coupled piano strings, the amplitude

of the oscillations of the LSPs decays so fast that it would
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be quite difficult to observe the phase and frequency lock-

ing. Therefore, two main features are desirable. The control

at will of the asymptotic state of the system and to be able

to keep the amplitude of the LSP’s oscillations over a long

period of time. In the following sections, we will address

sequentially each one of these points.

Phase and Frequency Locking

As we mentioned, the plasmonic dynamical matrix M

resembles that of coupled harmonic oscillators. This can

be used to analyze certain systems in simple terms as we

will see. Assuming the quasi-electrostatic limit, negligible

damping terms, and f ≈ 1, it is easy to evaluate the nor-

mal modes of M. In the case of three equal NPs, aligned

linearly, and equally spaced, the normal modes can be writ-

ten as follows: (P1 − P3)/
√
2, (P1 +

√
2P2 + P3)/2 and

(P1 −
√
2P2 + P3)/2. Where P1, P2, and P3 stand for the

dipolar moments in some given direction of NPs 1, 2, and 3,

respectively. If the difference in frequency between the NPs

of the ends and the central one is small, this expressions are

still approximately valid.

Let us analyze this simple example of three aligned

NPs and let us assume that we want to ensure an asymp-

totic state in which the NPs of the ends remain oscillating

in anti-phase. In this case, one only need to add a larger

damping factor to the middle NP. The normal mode of M

that has zero weight over the NP with a high damping

factor, ≈ (P1 − P3)/
√
2, has a small decay rate com-

pared with the other two, ≈ (P1 +
√
2P2 + P3)/2 and

≈ (P1 −
√
2P2 + P3)/2, which both have finite weights

over the highly dispersive nanostructure (NP 2 in this exam-

ple). The strategy is then clear, the key to control the phase

and frequency locking is the careful designing of the damp-

ing factors of NPs in such a way that it leaves one normal

mode (the one that will define the desirable phase relation-

ship and frequency) with the smallest, ideally zero, weight

over the regions of the array with the largest damping

factors.

There are of course several ways of increasing the damp-

ing factor of NPs, not only by changing their shape or

material but also by “connecting” them to waveguides for

example [28, 29]. Here, we use the shape of NPs to control

the damping factors. According to the parameters chosen,

the radiation damping term is the dominant one for the NP

with the high damping factor, while the electronic damping

term is the dominant one for the others.

In Fig. 1, we evaluate the temporal evolution of the

dipolar moment Pi(t) of each NP by using Eq. 13 in two

examples that illustrate how tuning the damping factor of

NPs can be used to control the asymptotic state of the

system. In these examples, we explicitly take into account

the material and shape of NPs, always within the couple
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Fig. 1 a Dipolar moment Pi of NPs 1 and 3 (in arbitrary units) versus

time (in units of ω−1
SP
) for three aligned and identical NPs. Between

t = 0 and 62 (mark in green), an external field of frequency ω = ωSP

and direction parallel to the array is applied locally to the first NP to

initialize the system. The parameters used correspond to spheroidal

Ag’s NPs of radii 30, 30, and 8 nm, separated 32 nm, and ǫm = 1.77. b

The same but with the middle NP having a different shape (90× 90×
8 nm). Upper insets: detail of the main figure. Bottom insets: detail

of the decay rate of different oscillation modes. S1 = (P1 +
√
2P2 +

P3)/2, A = (P1 − P3)/
√
2, and S2 = (P1 −

√
2P2 + P3)/2. Side

figures: schemes of the NP’s arrays (Color online)

dipole approximation described in “Coupled Dipole

Approximation for Ellipsoids with Radiation Damping” and

including the full dependence of ω2
X
and Ŵ on ω. The results

essentially show the above discussed. After the external

source is switched off, the LSPs decay very fast, but as indi-

cated in the lower insets, different modes decay at different

rates which leads to a natural phase and frequency locking

of the LSPs of individual NPs. The asymptotic state of case

a is not easily seen in the upper inset, but a more careful

analysis, depicted in the lower inset, reveals that the mode

with the lowest decay rate is “S1.” A comparison of Fig. a, b

shows that the asymptotic state changes as consequence of

the increased damping factor of the middle NP. It should be

mentioned that the only role of the external source of elec-

tric field is just to initialize the system. This could have been
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done in many different ways in the simulation, for example

by using a pulse of electromagnetic radiation. However, as

long as all normal modes are excited, the final state will be

the same, up to a factor in the amplitude of course.

Role of Active Media

As previously mentioned, there is a problem with the phase

and frequency locking mechanism described above. Every-

thing occurs too fast. Note that in Fig. 1, the time scale is in

units of ωSP of NPs 1 which for the NPs used corresponds

to around 0.2 fs. This implies that all the process starts and

finishes in less than 0.1 ps approximately. There is a need,

then, of keeping the system oscillating for longer periods of

time, in order to reasonably envision possible applications.

This can be done by embedding the system in an optically

active medium.

If the gain of the active medium is below the loss com-

pensation threshold, its effect can be modeled phenomeno-

logically on the basis of classical electrodynamics without

taking into account explicitly the quantum dynamics of the

chromophores. This is done by considering the medium as

a dielectric with a negative imaginary part in the refraction

index n. n = n0 − iκ [6–13, 15]. Within this model, the

active medium is consistent with a homogeneous distribu-

tion of the dye molecules, or nanocrystals quantum dots, and

with a wide band approximation for its response.

The wide band approximation implies that the eigenfre-

quencies of the modes are close compared with the fre-

quency dependence of the active medium. If this condition

is not fulfilled, each mode will have a different value of κ or

even a null one if the frequency of the mode is far enough

from the maximum of the medium’s stimulated-emission-

spectrum. In this case, the analysis of mode’s compensation

is direct as it can be based only on mode’s frequencies. On

the contrary, if the eigenfrequencies of the modes are close

enough, such as all modes experience approximately the

same value of κ , it is in principle not obvious which mode

will be compensated first, and less obvious how to control

this. This is why, the wide band approximation allows us

to explore alternatives for controlling the system’s asymp-

totic states, beyond the mechanisms based on the frequency

response of the active medium or the use of some spa-

tial inhomogeneities in its distribution around the system

[24, 25].

As mentioned, it could result not obvious how an active

medium would affect the phenomenon depicted in Fig. 1,

mainly because n enters not-linearly in the equations, see

Eqs. 4–9, and this could in principle changes the expected

asymptotic state. However, as we are precisely considering

gain media without explicit spacial distribution or frequency

dependence, it is reasonable to expect that all modes will be

excited similarly. Thus, if there are appreciable differences

in the natural decay rates, the asymptotic states with active

medium should be determined directly by them.

Figure 2 shows essentially that. Incorporation of optical

gain media does not change the asymptotic states discussed

in the previous section, even thought it has been used a

value of κ that almost completely compensate losses. In the

two examples analyzed, the slowest decaying mode keeps

as such, modes “S1” and “A” for cases a and b, respectively.

The only effect of the active medium in those examples,

besides keeping the system oscillating for longer periods of

times, is that it systematically increases even further the dif-

ferences in the decaying rates, making phase and frequency

locking to occur even earlier. As the system remains oscillat-

ing for longer periods, it is easier to see in the figures (upper

insets) the phase locking and how it is affected by chang-

ing the damping factors. In case a, the NPs of the edges

(NPs 1 and 3 in Fig. 2) end oscillating in phase, while, if we

increase the damping factor of the middle NP as in case c,

the NPs of the edges end oscillating in anti-phase. As men-

tioned before, the reason of that is simply that the anti-phase
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Fig. 2 The same as Fig. 1 but considering an optically active medium

with κ = 0.11 and 0.12 for a and b, respectively (Color online)
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oscillation of the NPs of the edges interfere destructively

over the NP of the middle where the largest damping factor

is present. The other two normal modes having some weight

on the middle NP will increase their decay rate.

Besides the examples shown in the figures, we also tried

other possibilities as other NP’s arrays or changing the sys-

tem’s parameters. However, the results were always the

same, when there are appreciable differences in the decay

rates with κ = 0, which is for example the case of Fig.

1b, a homogeneous active medium is not able to change the

expected asymptotic state. Only, for systems like case a of

Fig. 1, where the decay rates for κ = 0 are very close,

we observed, for some system’s parameters, that the active

media changes the expected asymptotic state.

Gain-Loss Compensation

At this point, it is important to discuss about the limiting

value of κ , κlim, for which losses are exactly compensated,

and the experimental feasibility of this. The value of κlim
can be evaluated from the poles of Eq. 4 by looking for the

pole with the smallest imaginary part. Thus, κlim is the value

of κ for which the imaginary part of this pole equals zero.

In some cases, it can be easy to obtain approximate analyti-

cal expressions, but in general, one must resort to numerical

evaluations.

In case b of Figs. 1 and 2, the eigenvalue of the “A”

eigenmode ω2eig−A, (P1 − P3)/
√
2, can be obtained easily

by assuming a wide band approximation as follows:

ω2eig−A ≈ ω2
SP

− iŴ, (14)

where ω2
SP
is the LSP resonant frequency of one of the NPs

of the ends, and Ŵ is its damping factor. Then, the value

of κlim can be obtained by using Eq. 8 with ǫm = n2 and

assuming a small κ . The result is as follows:

κlim ≈
Ŵ

[
n20 + L

(
ǫ∞ − n20

)]

2n0ω2SP(1− L)
(15)

which according to the parameters used, n0 = 1.33, L =
0.689, ǫ∞ = 3.7, and Ŵ/ω2

SP
≈ 0.032, gives κlim ≈ 0.121.

For case a of Figs. 1 and 2, it is more difficult to obtain

simple analytical solutions as ω2
X
also enters into the equa-

tions and depends on κ . However, they can always be

evaluated numerically. From the simulation, we estimated

the value of κlim as 0.11 and 0.12 approximately for cases a

and b, respectively, which should be close to experimental

possibilities [18–23, 44–47]. Note the agreement between

the numerical and analytical results for case b.

The value of κ is a phenomenological coefficient that

represent the property of some media of coherently amplify

an electromagnetic field. It is related with the amplification

coefficient g by g = 4πκ/λ. Gain media in plasmonics

are made of chromophores that overlap spatially and spec-

trally with the surface plasmon modes of the nanostructure.

These chromophores can be semiconductors nanocrystals,

dye molecules, rare-earth ions, or electron-hole excitations

of a bulk semiconductor. The gain coefficient can be written

as g = Nσe, where N is the concentration of electron-hole

pairs in the case of semiconductors or the concentration of

molecules and their population inversion in the case of dye

molecules. The symbol σe is the stimulated emission cross

section which, in turn, depends on the dipolar moment of

the transition [6–17].

Here, we should clarify one point. Up to now, we have

been discussing and comparing the decay rates of different

modes that have always the same direction of the electric

field, parallel to the array. However, there are two other

set of modes, those with the electric field perpendicular to

the array that can also enter in the analysis of the system’s

asymptotic state. If the dipolar moment of the transition of

the molecules or semiconductors nanocrystals that consti-

tute the active media have a preferential direction, then the

media can only feedback some modes, those with a finite

overlap between the mode’s electric field and the dipolar

moment [15–17]. In this case, only some modes, ideally

those that oscillate in the preferable direction, should be

considered. On the contrary, if the dipolar moment of the

transition has a random orientation, then one has to analyze

the full picture, i.e., the whole nine modes for the arrays. In

this last case, the shape of the NPs acquires a central role

because it determines in which direction the system will

remain oscillating. To see that, note that the Li factor of

Eq. 1 depends on both the shape of the NP and the direc-

tion of electric field, and this parameter enters, not only in

eigenfrequency of the mode, but also in the damping term Ŵ

through ηR and f.

For example, let us consider a system of three equal NPs

of 30 x 20 x 8 nm aligned in the direction of the minor

axis and separated 24 nm. Here, the mode that is compen-

sated in the first place by the active medium is that where all

LSPs are oscillating synchronous in phase and parallel to the

major axis. In this case, κlim ≈ 0.024. The equivalent modes

but for the other directions, those where the LSPs oscillate

in phase and parallel to the second largest axis and to the

minor axis, have a value of κlim of approximately 0.029 and

0.073, respectively.

Amplitude Locking

According to our equations up to now, for κ > κlim, P(t)

should grow exponentially at infinitum, which is of course

not realistic. At some point, the pumping mechanism that

keeps the inversion population must be overcome by the

decay rate of the molecules in the excited state decaying
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toward their fundamental state. The realistic situation is that

the amplitude of the surface plasmon oscillations should

stabilize at some point. This is so because the stimulated

emission that depletes the excited states depends on |E|2
which, in turn, depends on Pi , while the mechanism that

restore the inversion population is fixed and independent of

Pi [15–17].

A complete treatment would require to solve the quan-

tum mechanics dynamics of each chromophore under the

influence of the electromagnetic field corresponding to its

position and the coupled equation of motion of the sur-

face plasmon dynamics. This is beyond the scope of this

work and besides was already addressed by other authors

in the context of spasers [15, 17]. The important result of

these previous works, for the present purposes, is that the

system evolves in a somehow complex way, until a station-

ary regime is reached. This stationary regime corresponds

to a net amplification equals zero, which means that gain

exactly compensate losses [14–17], a condition expressed

in our case by Eq. 15 in terms of κlim. Essentially, the

convergence towards a stationary regime where losses are

compensated, implies amplitude locking. The asymptotic

value of the amplitude could be complex to evaluate but the

important point is that, sooner or latter, it is reached and it

is nonzero for κinitial > κlim and initial conditions different

from the trivial one, Pi = 0. The other important point is

that, once the system is in the stationary state regime, the

inversion population freezes, fixating the gain coefficient g

and thus κ , at κ = κlim. Then, independently of how or when

this stationary regime is reached, in the end one should see

the type of behaviors showed in the context of Fig. 2, i.e.,

different normal modes are compensated differently by the

active medium. Therefore, while the slowest decaying mode

is exactly compensated, the others will be undercompen-

sated which will inevitably lead to a phase, frequency, and

also amplitude locking. Note that, because of this, the plas-

monics systems studied can be considered as a new example

of synchronization.

The above analysis has also another important conse-

quence, gain medium cannot, in general, exactly compen-

sate the losses of all eigenmodes at the same time. Let us

assume the system has three eigenmodes each one with dif-

ferent values of κlim; κ1 < κ2 < κ3 . Then, if one try

to compensate the second or the third modes , κ = κ2 or

κ = κ3, the first one will be overcompensated which can

not define a stationary state as it should grow indefinitely.

The realistic situation is that the inversion population of the

active medium will be depleted by the increasing electro-

magnetic field of the first mode, reducing the value of κ

until it reaches κ1. As this argument is very general, we

believe its consequences should be present in the majority

of this kind of systems provided that the necessary ingre-

dients are present. The eigenfrequencies of the modes must

be close enough compared with the frequency response of

the medium and different modes should share somehow

the same dye molecules or semiconductor nanocrystals. We

plan to address this interesting issue in a future work.

Figure 3a, b show the electric field generated by the

examples shown in Figs. 1 and 2 for t → ∞. The for-
mer corresponds to the system with three equal NPs and

the latter to the system with the middle NP having a larger

damping factor. Note the great differences in the emitted

electric fields. The upper case shows the typical interference

patterns of a punctual dipolar source, while the lower one

shows that of a quadrupole. This example highlight the fact

that amplitude locking becomes our system into, not only

another example of synchronization, but also a nanometric

source of both evanescent and propagating waves with a

predetermined and controllable interference pattern.

Generalization to More Complex Structures

The proposed synchronization mechanism can be easily

extended to more complex nanostructures. The key is to

build the system such as all normal modes but one have

some weight on the highly dispersive NPs, the middle one

in Fig. 2b for example. Then, if the damping factor of the

highly dispersive NP is large enough, the slowest decaying

Fig. 3 |E|2 for the asymptotic state of case (a) and (b) of Fig. 2. The
strength of |E|2 is normalized to its maximum value in each figure
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a b c

...etc

Fig. 4 Schemes of others NP’s arrays. Small spheres stand for NPs

with large damping factors while the large ones represent NPs with

small damping factors (Color online)

normal mode, which will control the relative phases of the

LSP in the asymptotic state, will be that having the small-

est weight over these NPs. In Fig. 4, we present just one

possible set of examples of that for NP’s arrays of arbitrary

size. The examples assume nearest neighbors interactions.

The small spheres represent equal NPs with large damping

factors while the large ones represent equal NPs with small

damping factors. In all these cases, one can show that there

is always one eigenvalue ofM that has zero weight over the

small NPs. This normal mode corresponds to that where the

LSP of the large NPs oscillates in anti-phase with respect to

their nearest large-NPs neighbors. Thus, as this mode will

have the slowest decay rate, it will determine the phase lock-

ing at long time. Others asymptotic states are also possible

in those systems. One only has to evaluate the weight of

individual NPs on each normal mode and, based on that,

increases selectively the damping factors of certain NPs to

achieve the desired asymptotic state.

Conclusions

In this work, we have shown a simple way of controlling

phase and frequency locking of the self-sustained oscillation

of NP’s LSPs by tuning the damping factors of individual

NPs. Furthermore, we have shown that it should be possible

to keep the system oscillating with constant amplitude by

including optically active media properly tuned. We inter-

pret this as a new example of synchronization as we are

in the presence of self-sustained oscillating objects, clearly

separable, that depict phase, frequency, as well as ampli-

tude locking, consequence of their mutual interaction. Since

it is possible to control the asymptotic state of these NP

arrays with self-sustained LSP, our approach is a general

way of designing the interference patterns of sources of

optical fields in the subwavelength scale. This can surely

find applications in optoelectronic, nanoscale lithography,

and probing microscopy. In addition, the proposed method

can naturally be combined with other alternatives, such as

using the frequency dependence of the active medium or

controlling its spatial distribution.
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Appendix: Dissipative Couplings and Dynamical Phase

Transitions

Wementioned that in the case of coupled piano strings, there

is a dissipative coupling between the strings which can be

modeled by an imaginary coupling term in the dynamical

matrix M. Pure imaginary, or at least complex, couplings

have interesting effects on the properties of the eigenvalues

of M. At some critical values of the system’s parameters,

there can be a collapse of the real part of the eigenvalues

of M and a bifurcation of their imaginary part at points

called “exceptional points.” There, among other effects,

M becomes singular and the system’s eigenvectors behave

oddly in their surroundings [39, 40]. Since the dynamical

observables have a nonanalytic dependence on the system’s

parameters, this results in what is called a dynamical phase

transition, DPT [28, 29, 39, 41].

In the case of plasmonics systems, as those showed in

this work, the complex coupling can be seen as just the con-

sequence of the effective interaction between two parts of a

system connected through a bridging dissipative subsystem.

For example, if we have three NPs aligned, one can always

calculate an effective coupling between the NPs at the ends

[43]. The result of this is a complex effective coupling, con-

sequence of the damping term of the NP in the middle [28,

29].

Figure 5 shows that the eigenvalues of M present a col-

lapse of their real part accompanied by a splitting of their

imaginary part. Just as in the example of the coupled piano

strings. This case corresponds to a very large value of the

damping term of the middle NP and a mistuning parame-

ter, δ, below a critical value. Here, it should be mentioned

that what really sets the decay rates are the imaginary part

of the poles, Im
(
ωpole

)
, of the response function χ(ω), and

not the imaginary part of the eigenvalues ofM. In the wide

band approximation, these last coincides with Im
(
ω2pole

)
.

This distinction can be quite irrelevant in some situations

but becomes fundamental in others. In Fig. 6, we consider

the case of two interacting NPs. We can see that although

the eigenvalues of M have exactly the same imaginary

part, which would preclude the synchronization mechanism

depicted in the main section of the article, there is a differ-

ence in the imaginary part of ωpole. Although this difference

is very small, as compared with the case shown in Fig. 5, it is

enough to give rise to a characteristic asymptotic state and,
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Fig. 5 Panels a, b are,

respectively, the real and

imaginary part of ω2pole, the

eigenvalues ofM; while panels

b, d are, respectively, the real

and imaginary part of ωpole, the

poles of χ . The system consists

of three aligned NPs with

δ = ω2
SP1

− ω3
SP3
, where 1 and 3

stand for the NPs of the edges.

Only nearest neighbor couplings

are considered, ω2X = 0.2,

ω2SP = 1 (for δ = 0), and

Ŵ = 0.03 for all NPs except for

the middle one where Ŵ = 0.7

(Color online)

a b

c d

thus, it can be used to induce a phase and frequency lock-

ing. In this example, the mode with the longest lifetime will

be the antisymmetric one. This, at sufficiently long times,

implies that the LSPs of both NPs will end oscillating in

anti-phase.

In general, systems with dynamical phase transitions are

expected to have large differences in the imaginary parts

of the eigenfrequencies, as in the case of coupled piano

strings or in the example shown in Fig. 5. However, phase

and frequency locking is not an exclusive phenomenon of

this situation. For the particular case of metallic nanoparti-

cle arrays, the value of the damping terms needed to achieve

the DPT described here are far from the realistic situation,

at least for metallic NPs. Thus, the cases discussed in the

main section of the article correspond to systems that do not

present a DPT.

Fig. 6 The same as Fig. 5 but

for a system of two NPs with

equal damping, Ŵ = 0.03.

Notice that in spite of the small

differences in decay rates as

compared to those in Fig. 5, they

can be enough to produce an

observable phase locking

through the use of an active

medium (Color online)

a b

c d
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