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Abstract: Despite the remarkable theoretical accomplishments and successful applications of adaptive control, this field is
not mature enough to solve challenging problems where strict performance and robustness guarantees are required. The
needs of an approach that explicitly accounts for robust performance and stability specifications is a critical to the design
of practical adaptive control systems. Towards this goal, this study extends the robust adaptive controller using multiple
models, switching and tuning to multiple input multiple output and non-linear systems. The use of ‘extended superstability’,
instead of superstability, allows us to establish overall performance guarantees and reduce the conservativeness of the resulting
closed-loop system. The authors show that under the proposed framework, the output and states remain bounded for bounded
disturbances, as a direct consequence of the passivation properties of superstability. The effectiveness of the proposed algorithm
is demonstrated in numerical simulations of a non-linear continuous stirred tank reactor.

1 Introduction

When model uncertainty is ‘small’, robust linear time invari-
ant (LTI) theories, for example, H∞, l1 and μ-synthesis,
ensures, when it is possible, the satisfaction of closed-loop
objectives specified through meaningful engineering terms
(frequency weights on relevant transfer functions, constraints
on system time-domain response, constraints on parameters
of control law, and so on). However, changes in operating
conditions, system dynamics and/or degradation in compo-
nents may lead to systems with fast time-varying uncertain
coefficients, which cannot be stabilised by a single LTI
controller [1] or conventional adaptive controllers [2].

Adaptive control copes with large parametric uncertainty
by tunning the control law in response to estimated changes
in the model. In conventional adaptive control [3] the con-
troller parameters are computed in real time, based on
the estimated plant model. The complicated relationship
between plant parameters and robust controller gains has
been the main obstacle to use conventional adaptive ver-
sions of modern robust compensator or the inclusion of
any a priori information available. One way of avoiding
these issues is through the use of multiple model adaptive
control (MMAC) architecture. The MMAC architecture pro-
vides an attractive framework for combining adaptive and
robust control tools and easily incorporates any informa-
tion available a priori. It comprises two level of control:
(i) an inner loop C(S(k)), called ‘multicontroller’, that is
able to generate finely tuned controls u(k) and (ii) an
outer-loop S, called ‘supervisor’, that adjusts the multicon-
troller C(S(k)) (see Fig. 1a). This task is typically done by

selecting, weighting or blending the candidate controllers
Cl ∈ C (cover set C) based on system input/output data.
Depending on the mechanism of adjustment employed by
the supervisor S, two families of MMAC controllers emerge:
(i) switching-based MMAC where the adjustment is per-
formed by switching among the controllers of C [4] and (ii)
mixing-based MMAC where the adjustment is performed by
continuously interpolating the controllers of C [5, 6].

In switching-based MMAC the multicontroller is only
able to generate the candidate control laws since the super-
visor can only select one of the controllers of C (C(S(k)) ∈
C ∀k). Switching is based on the ‘certainty equivalence prin-
ciple’, the implementation and analysis of MMAC control
is simplified by considering a ‘finite cover’ set Cm = {Cl l ∈
L = [1, . . . , m]} [7]. The compromise between robustness
and performance is made off-line when Cm is designed. The
controller selection is made by continuously comparing in
real time suitably defined norm of estimation error, known
as ‘performance signals’ μl(k), and the controller Cl with
the smallest μl(k) is placed in the loop according to an
appropriate switching logic [8]. Alternative approaches to
supervisory control use Kalman filters and information mea-
sure [5], calibrate forecasts [9], set-valued observers [10],
robust observers [11], state-dependent switching functions
[12] and ν-gap metric combined with robust design tech-
niques [13]. Stability results for these schemes show that all
closed-loop signals are bounded and ‘robust performance is
only recovered in steady state’ (see e.g. [13–15]).

In mixing-based MMAC the multicontroller generates, by
continuous interpolation, a stable mixed of the candidate
control laws [5, 6]. Hence, mixing-based MMAC generates
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Fig. 1 Structure of the supervisory controller

a Multiple model adaptive control architecture
b Switching and tuning control supervisor

an infinite cover set C∞ (m → ∞) such that the multicon-
troller C(S(k)) evolves from one controller to another in a
continuous way, avoiding the switching and its undesirable
behaviours. Robust MMAC (RMMAC) uses the conditional
probability of each model of Cm, computed by the super-
visor S through a set of Kalman filters, as mixing weights
of the controllers outputs [5]. The accurate knowledge of
disturbances and noise models, as well as the satisfaction
of standard Kalman filter assumptions, are essential require-
ments to achieve good performance. To overcome this limi-
tation, the RMMAC supervisor has been modified, replacing
the Kalman filters by robust observers and employing the
output prediction error energy to compute the weights [11].
On the other hand, ‘multiple model adaptive control with
mixing’ uses a supervisor S based on robust parameter esti-
mation to interpolate the adaptive controller parameters [6].
As the discontinuous switching logic has been replaced with
a smooth and stable interpolation, mixing-based schemes
may not be able to respond to dramatic changes in plant
as fast as switching-based schemes can.

From a practical point of view, these methods suffer from
the following drawbacks: (i) the number of models m needed
to assure that at least one of the models Pl of the set of
admissible models PL is sufficiently close to the plant P
in parameter space is large and grows exponentially with
the dimension of the unknown parameter vector, (ii) the

information provided by every model is not used efficiently
since it is only used to locate a model close to the plant,
(iii) the switching results in discontinuous control signals
that affect the closed-loop stability and (iv) the identifica-
tion and control are coupled, since the model chosen dictates
the choice of the controller, leaving little freedom for new
designs to emerge. In spite of these shortcomings, the meth-
ods are found to perform satisfactorily when the plant is
time-invariant and the number of models is sufficiently large.

To address the first two problems, Narendra and Han [16,
17] proposed a new way of using multiple models for
the identification of an unknown LTI plant. The proposed
approach provides an estimate which depends on the col-
lective outputs of all the models, and can be viewed as
a time-varying convex combination of the estimates. It
decomposes the identification problem into two levels: the
adaptation of a finite number of individual models (first level
of adaptation), using conventional adaptive identifiers, which
are used to built a polytopic model that is re-parameterise at
each sample, using the information generated by the individ-
ual identifiers, to identify the unknown plant (second level
of adaptation). This procedure result in an improved stabil-
ity and faster convergence in the control of time-invariant
plants.

The other two problems (the discontinuity of control sig-
nals and the coupled of identification and control) have been
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addressed by Giovanini [18]. The architecture proposed,
called ‘adaptive switching and tuning control’ (see Fig. 1b),
was introduced and analysed only for SISO systems using
transfer functions. It differs from previous developments in
the following ways:

1. The multicontroller C(S(k)) is designed on-line using
a linear optimisation problem and a time-varying set of
models PL(k) such that the resulting closed-loop systems is
dissipative.
2. The set PL(k) is built by excluding from PL those models
Pl ∈ PL that cannot explain the time evolution of the inputs
and outputs of the plant P.
3. The switching takes places in the constraints of the
optimisation problem and
4. The objective function is built through a time-varying
convex combination of the objective function corresponding
to PL(k).

In this way, this architecture can generate an infinite num-
ber of controllers (C(S(k)) ∈ C∞) with different degrees of
robustness, according with the system information avail-
able at each sample, combining the advantages of both
MMAC architectures: the fast adaptations of switching-
based MMAC and the continuous evolution of mixing-based
MMAC with the addition of robust stability and perfor-
mance guarantees for all time. The properties of the resulting
closed-loop system are a direct result of the identification
process that is able to find a time-varying combination of
models that are close to the plant (PL(k)) and the proper-
ties of superstable systems that guaranteed the closed-loop
performance.

The immediate motivation of this work is the extension
of the adaptive switching and tuning control scheme to
MIMO and non-linear systems. This paper is structured as
follow: the class of superstable system is recalled for state-
space models and its main properties are analysed at the
beginning of Section 2. Then, the class of linear parameter
varying (LPV) superstable systems is introduced and anal-
ysed. These results are extended to the more general class of
‘extended superstable systems’. These results will allow us
to formulate a linear optimisation problem for LPV systems
passivation at the end of this section. The use of extended
superstability, instead of superstability, allows us to reduce
the conservativeness of the results. In Section 3, the mul-
tiple models switching and tuning scheme is revisited and
reformulated for state-space models. Stability of the result-
ing closed-loop system is analysed in Section 4 using the
results developed in Section 2. Section 5 presents numerical
simulations of an irreversible exothermic reaction that is car-
ried out in a constant volume continuous stirred tank reactor.
Concluding remarks and possible extensions of the proposed
adaptive control algorithm are presented in Section 6.

2 Preliminaries

2.1 Notation

In the sequel A ∈ R
n×m is n × m matrix and its transpose is

denoted by AT. For a vector x ∈ R
n, ‖x‖2 is the Euclidean

norm (xTx)1/2 and the corresponding induced matrix norm of
A is denoted as ‖A‖2. The index set {1, 2, . . . , n} is denoted
by In, the ∞-norm of x is denoted by ‖x‖∞ = maxi∈In |xi|
and the corresponding induced matrix norm of A, denoted

as ‖A‖1 = maxj∈Im

∑
i∈In

|aij|. Finally, and l∞ stands for
‖x(k)‖∞ ≤ 1 ∀k ≥ 0.

2.2 Superstable systems

System superstability play a key role in the development of
the adaptive switching and tuning control algorithm since it
provides a simple framework for solving the ‘passive control
problem’ using bounded realness. The aim of this problem
is to design a controller such that the resulting closed-
loop system satisfied a certain passivity performance index,
guaranteeing the closed-loop stability [19]. Since there is a
one-to-one relationship between positive realness and pas-
sivity [20] and superstability and positive realness, passivity
analysis can be converted into a superstability analysis. This
relationship was exploited to design the passivation adaptive
controller at each sample [18].

For a LTI state-space discrete system

x(k + 1) = Ax(k) + BW w(k) x(0) = x0 (1)

where x(k) ∈ R
nx is the state vector, w(k) ∈ R

nw is an
exogenous input such that w(k) ∈ l∞ and A and BW are
matrices of proper size, superstability is defined as q =
‖A‖1 < 1 [21]. The main property of a superstable system is
the non-asymptotic estimates for arbitrary initial conditions
(‖x0‖∞ ≤ μ) and bounded inputs (w(k) ∈ l∞)

‖x(k)‖∞ ≤ η + qk max{0, μ − η} ∀k ≥ 0 (2)

where η = ‖BW ‖1/(1 − q). If system (1) becomes autono-
mous (w(k) ≡ 0), the estimates (2) is transformed into

‖x(k)‖∞ ≤ qkμ ∀k ≥ 0 (3)

which describes the system behaviour with respect to initial
conditions.

In the particular case of ‖x0‖∞ ≤ η, the estimate (2)
becomes ‖x(k)‖∞ ≤ η. This fact implies the existence of
an invariant set Q = {‖x(k)‖∞ ≤ η ∀k , ∀w(k) ∈ l∞} and
a Lyapunov function V (x) = ‖x(k)‖∞ with the following
properties: (i) It is piecewise-linear, (ii) it grows linearly
V (δx) = δV (x) ∀δ ≥ 0 and (iii) its time estimate is given
by V (x(k)) ≤ qkV (x0).

Remark 1: System superstability implies the positive
realness of system (1) since ρ(A) = maxi∈In |λi(A)| ≤
‖A‖1 < 1.

The results derived for LTI systems can be extended to
LPV systems of the form

x(k + 1) = A(S(k))x(k) + BW (S(k))w(k) (4)

where

A(S(k)) =
∑
l∈L

sl(k)Al , BW (S(k)) =
∑
l∈L

sl(k)BW l (5)

S(k) = [sl(k)] ∈ S is the time-varying parameter, S ⊂ R
m

is a compact set, L is a finite index set and Pl = (Al , BW l)
l ∈ L are the models of polytope PL.

Definition 1: A LPV system is superstable if ‖A(S(k))‖1 < 1
∀S(k) ∈ S.
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Lemma 1: If the LPV system (4) is superstable and the initial
conditions ‖x0‖∞ ≤ μ, then the following facts hold for all
admissible trajectories of S(k) ∈ S

• for w(k) ∈ l∞ the norm of the LPV system states is
bounded by

‖x(k)‖∞ ≤ η̄ + γ̄ k max{0, μ − η̄} (6)

where

η̄ = β̄

1 − γ̄
, β̄ = sup

∀k
sup

∀S(k)∈S
‖BW (S(k))‖1,

γ̄ = sup
∀k

sup
∀S(k)∈S

‖A(S(k))‖1 (7)

• for w(k) ≡ 0 the norm of the LPV system states is
bounded by

‖x(k)‖∞ ≤ γ̄ kμ (8)

Proof: See Appendix 1. �

Similarly to LTI systems, the superstability of LPV
system implies the existence of an invariant set Q =
{‖x(k)‖∞ ≤ η̄ ∀k , ∀w(k) ∈ l∞} and a common Lyapunov
function V̄ (x) = ‖x(k)‖∞∀Pl ∈ PL with similar properties
of V (x): it is piecewise-linear and its time estimate is given
by V̄ (x(k)) ≤ γ̄ k V̄ (x0).

LPV models were introduced as an approximate descrip-
tion of non-linear dynamical systems for the benefit of
system analysis and controller design. Under appropriate
conditions, and through an analysis of the parametrisation
it is possible to establish relevant system properties and for-
mulate control design tools that aim at stability, optimality
and robustness. For this class of models two possible cases
for S(k) can be considered:

• Systems in which A(S(k)) and BW (S(k)) can attain any
value inside PL

S =
{

S(k) :
∑
l∈L

sl(k) = 1, sl(k) ≥ 0

}
∀k (9)

known as polytopic linear systems (PLM).
• Systems in which A(S(k)) and BW (S(k)) can attain only
on the models of PL

S = {
S(k) : sj(k) = 1, si(k) = 0 ∀i �= j i, j ∈ L

} ∀k
(10)

known as ‘switching systems’.

It is clear from Lemma 1 that switching or scheduling
superstable LTI systems leads to superstable LPV systems.
It is well known that this does not hold for the more general
class of stable systems [22–24]. Furthermore, the analysis
and design tools for these classes of LPV systems are domi-
nated by Lyapunov stability theory and its generalisations
(see [19, 25–29] and the references therein). In general,
piecewise [26] or parameter-dependent [27] Lyapunov func-
tions for all subsystems are required to guarantee system
stability. Other approaches employ multiple storage func-
tions to obtain passivity conditions [29], which are employed
to design the passive controller. The construction of such

Lyapunov functions and the derivation of passivity condi-
tions involve the solution of linear matrix inequalities whose
feasibility needs to be checked for each case.

Superstability is too rigid because a fixed Lyapunov
function V (x) = ‖x(k)‖∞ is specified and therefore is very
difficult to attain, which is reflected in the difficulties to
design the passive adaptive controller [18]. A more flexible
approach based on a diagonal transformation to a super-
stable form can be used. In this way, the set of ‘extended
superstable matrices’ ES can be defined.

Definition 2: The system (1) belongs to the class of
‘extended superstable systems’ ES if there is a diagonal
matrix D = diag di > 0 i ∈ In such that ‖D−1AD‖1 < 1 [30].

All the facts established for superstable systems can
be extended to the class of extended superstable systems
ES , and the Lyapunov function results from the com-
pilation of piecewise-linear Lyapunov functions V (x) =
maxi∈In |xi/di|.

2.3 Superstability-based controller design

Stability is invariant to linear transformation of coordinates
while superstability can be lost or acquired upon passing to
other coordinates, since it is formulated only in terms of
the entries of matrix A. Therefore a system can be supersta-
bilised by means of state feedback. In this work, we consider
two design problems: (i) the optimal rejection of bounded
disturbances and (ii) the minimisation of performance index.

2.3.1 Rejection of bounded disturbances: Let us
consider an LTI system with control and bounded distur-
bances

x(k + 1) = Ax(k) + BU u(k) + BW w(k) (11)

where u(k) ∈ R
nu and w(k) ∈ l∞. We are interested on deter-

mine a control law u(k) = Kcx(k) that superstabilises the
closed-loop system and minimises the performance index

JC = sup
w(k)∈l∞

sup
∀k

‖x(k)‖∞ (12)

Theorem 1: The control law Kc that minimises (11) and
guarantees A + BU Kc ∈ ES is obtained by solving this opti-
misation problem

min
q∈[0,1)

min
ω,Zc ,D

ω

1 − q
‖BW ‖1

st.

∑
j

∣∣∣∣∣aijdj +
∑

s

bisz
c
sj

∣∣∣∣∣ ≤ qdi i, j, s ∈ Inx (13)

1 ≤ di ≤ ω

ω ≥ 1

where Kc = ZcD−1.

Proof: See Appendix 2. �
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2.3.2 Minimisation of performance index: Now, let
us consider the optimal control problem with a linear
performance functional

JC =
∞∑

k=0

‖x(k)‖∞ + α‖u(k)‖∞ (14)

which is known as linear linear regulator problem. If we
require A + BU Kc ∈ ES and we use the estimate (3), then
(see Appendix 3)

JC ≤ 1 + α‖Kc‖1

1 − ‖Ãc‖1

μ (15)

where Ãc = D−1(A + BU Kc)D. In turn, the minimisation of
(13) becomes the parametric problem

min
q∈[0,1)

min
ω,Zc ,D

1

1 − q
(1 + α‖Zc‖1)

st.

∑
j

∣∣∣∣∣aijdj +
∑

s

bisz
c
sj

∣∣∣∣∣ ≤ qdi, i, j, s ∈ Inx (16)

1 ≤ di ≤ ω

ω ≥ 1

2.3.3 Robust design: The effect of uncertainty on
the controller design can be easily included into prob-
lems (12) and (15). The structure of the resulting problems
will depend on the uncertainty description adopted. If the
additive description is adopted

Ā = A + �, |�ij| ≤ mij, i, j ∈ Inx (17)

the superstability constraints of problems (12) and (15)
become

∑
j

∣∣∣∣∣aijdj +
∑

s

bisz
c
sj

∣∣∣∣∣ + mijdj ≤ qdi, i, j, s ∈ Inx (18)

If PLM model (5) and (9) is employed to represent the
uncertain system, the robust disturbance attenuation problem
becomes a multi-objective optimisation problem

min
q∈[0,1)

min
ω,Zc ,D

ω

1 − q

∑
l∈L

sl(k)‖BW l‖1

st.

∑
j

∣∣∣∣∣al
ijdj +

∑
s

∑
bl

isz
c
sj

∣∣∣∣∣ ≤ qdi, i, j, s ∈ Inx , l ∈ L (19)

1 ≤ di ≤ ω

ω ≥ 1

This optimisation problem corresponds to a hybrid charac-
terisation of the robust design problem where closed-loop
performance is measured through a weighted-norm objective
function

ω

1 − q

∑
l∈L

sl(k)‖BW l‖1

that includes the closed-loop performances of each model
Pl ∈ PL, whereas the superstability is guaranteed through

constraints that enforce the superstability of each model
Pl ∈ PL.

In the case of the robust optimal control problem, the
optimisation becomes the simultaneous stabilisation problem

min
q∈[0,1)

min
ω,Zc ,D

1

1 − q
(1 + α‖Zc‖1)

st.

∑
j

∣∣∣∣∣al
ijdj +

∑
s

bl
isz

c
sj

∣∣∣∣∣ ≤ qdi, i, j, s ∈ Inx , l ∈ L, (20)

1 ≤ di ≤ ω

ω ≥ 1

Remark 2: The solutions of problems (19) and (20) guaran-
tee the existence of a piecewise-linear Lyapunov function
that is common to all models PL, ensuring the positive
realness of the PLM model and its dissipativity.

Finally, these approaches to robust design can be com-
bined to tackle the uncertainty of individual models adding
the extra terms mijdij in the constraints of problems (19) and
(20).

2.4 State estimation

Given the discrete-time LTI system

x(k + 1) = Ax(k) + BW w(k), x(0) = x0, w(k), v(k) ∈ l∞
y(k) = Cx(k) + DV v(k) (21)

we will consider the dual problem of rejection of bounded
disturbances: estimate the state x(k) using the output y(k). In
this case we are interested on determine the observer gain
Ko such that the observer matrix Ao = A + KoC ∈ ES and
minimises the performance index

JE = max
w(k)∈l∞

max
∀k

‖x(k)‖∞ (22)

This index provides the maximal reduction of the effect of
bounded disturbances on the estimate x̂(k). Under these con-
ditions, it is possible to estimate an invariant box B whose
size is given by

η = dmax(‖BW + KoDV ‖1)

dmin(1 − ‖Ão‖1)
(23)

where Ão = D−1(A + KoC)D. In this context, best box is
meant that having the minimum greatest side among the fea-
sible ones. Again, the minimisation of (22) is transformed
into the parametric linear optimisation problem

min
q∈[0,1)

min
ω,Zo ,D

ω

1 − q
(‖BW ‖1 + ‖ZoDV ‖1)

st.

∑
j

∣∣∣∣∣aijdj +
∑

s

zo
iscsj

∣∣∣∣∣ ≤ qdi i, j, s ∈ Inx (24)

1 ≤ di ≤ ω

ω ≥ 1

where Ko = ZoD−1. The proof of these results follows the
same lines of Theorem 1.
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Following the same lines like in Robust design subsec-
tion, it is possible to derive similar results on robust state
estimation. The structure of the resulting optimisation prob-
lem for a polytopic description is the same of (19), but only
differ in the cost function minimised:

∑
l∈L sl(k)(‖BW l‖1 +

‖ZoDV l‖1) instead of
∑

l∈L sl(k)‖BW l‖1. Finally, the uncer-
tainty of individual models can be considered by adding the
extra terms mijdij in the constraints of the problem, like in
the controller design subsection.

3 Adaptive control using multiple models,
switching and tuning

The objective of MMAC schemes is to control an unknown
plant P that is subject to an exogenous unknown disturbance
w(k) ∈ l∞. MMAC controllers use information obtained on-
line to construct the compensator C(S(k)) by switching or
blending the candidates robust non-adaptive compensator
Cl ∈ Cm. The nature of signal S(k) will depend on the type
of MMAC considered:

• S(k): [0, ∞) → L is admissible if it is piecewise constant
with a dwell-time τ > 0 such that consecutive switching
times ta < tb satisfy tb − ta ≥ τ for switching-based MMAC
schemes,
• S(k): [0, ∞) → sl(k) ∈ [0, 1] ∀l ∈ L is admissible if it is
piecewise constant and

∑
l sl(k) = 1, sl(k) ≥ 0 for mixing-

based MMAC schemes.

In this work, we adopt the same approach like in [18]:
a soft-variable compensator CL(k)(K(k)) is designed using
superstability concepts and a time-varying PLM PL(k). The
structure of the adaptive controller is shown in Fig. 1b. At
every sample, the monitoring block M selects, using infor-
mation generated by estimation block E. Only those models
Pl ∈ PL that explain the input–output trajectory of the plant
P such that P ∈ PL(k). Polytopes PL and PL(k) are char-
acterised by the set of indexes L and L(k) respectively.
Then, L(k) and the covariance matrix of each observer of
E (Pl(k|k)) are used by the supervisor block S to generate
the switching signal S(k)

sl(k) =
{

1 ∀l ∈ L(k)

0 ∀l /∈ L(k)
(25)

and the optimisation weights (k)

θl(k) =
⎧⎨
⎩1 − tr(Pl(k|k))∑

l∈L(k) tr(Pl(k|k))
∀l ∈ L(k)

0 ∀l /∈ L(k)

(26)

Remark 3: The switching signals S(k) are used to built
the polytope PL(k), selecting the corresponding models of
PL and the optimisation weights (k) are used to re
parametrised the objective function used to measure the
closed-loop performance in the optimisation problem.

3.1 Robust adaptive compensator

The plant to be considered is represented by

x(k + 1) = Ax(k) + BU u(k) + BW w(k)

y(k) = Cx(k) + DV v(k)
(27)

which satisfies the standard assumptions ((A, BU ) is sta-
bilisable and (A, C) is detectable) and w(k), v(k) ∈ l∞. A

dynamic observer-based controller is chosen to achieve the
desired control performance

x̂(k + 1) = Ax̂(k) + BU u(k) + χ(k)

ŷ(k) = Cx̂(k)

ξ(k + 1) = Aoξ(k) + Bo(y(k) − ŷ(k))

χ(k) = Coξ(k) + Ko(y(k) − ŷ(k))

u(k) = Kcx̂(k)

(28)

where Ao, Bo, Co, Ko and Kc are real matrices of appropriate
dimensions to be designed, χ(k) ∈ R

nx is the correction sig-
nal and ξ(k) is the auxiliary state. A dynamic observer can
be regarded as an extension of the Luenberger observer that
allows the inclusion of an additional dynamics (third and
fourth equations of (28)) into the classical observer [first
fourth equations of (28)] to achieve the desired closed-loop
properties [31].

Remark 4: When Ao = 0, Bo = 0 and Co = 0, the dynamic
observer (28) is equivalent to the Luenberger observer.

Denoting ε(k) = x(k) − x̂(k), x̃(k) = [x(k)Tε(k)Tξ(k)T]T

and d(k) = [w(k)Tv(k)T]T, the augmented system is given
by

x̃(k + 1) = Ãx(k) + B̃Dd(k)

y(k) = C̃x̃(k) + DV v(k)
(29)

where

Ã =
[

A + BU Kc −BU Kc 0
0 A + KoC −Co

0 BoC Ao

]

B̃D =
[

BW 0
BW −KoDV

0 BoDV

]
, C̃ = [

C 0 0
]

(30)

In the following we will assume, without loose of generality,
a disturbance attenuation problem as a control and esti-
mation objectives, which leads to the following combined
performance index

J = α sup
∀k

‖x(k)‖∞ + (1 − α) sup
∀k

‖ε(k)‖∞ α ∈ [0, 1)

= α‖BU Zc‖1 + (1 − α)‖ZoDV + Co‖1 + (1 − α)‖BoDV ‖1

(31)

where α is the parameter that allows to control the signifi-
cance of each problem. The first term of (31) corresponds to
control objective, which quantifies the effect of estimation
error ε(k) on the control signal. The effect of disturbance
w(k) was removed because it only offset J with a constant
(‖BW ‖1). The second term corresponds to the estimation
objective measuring the effects of external disturbance v(k)
and observer states ξ(k) on estimation error ε(k). Finally,
the third term corresponds to the effect of the residual ε(k)
and disturbance v(k) on the states of the dynamic observer
ξ(k). These couplings can be clearly seen in the augmented
system matrices (30).

The adaptive compensator CL(k)(K(k)) is obtained solv-
ing a modified version of optimisation problem (19) that
includes the signals S(k) and (k), to select and weight

6 IET Control Theory Appl., pp. 1–13
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the models Pl ∈ PL(k). The resulting optimisation problem
is given by

min
q∈[0,1)

min
ω,Zc ,Zo ,D,
Ao ,Bo ,Co

ω

1 − q

∑
l∈L

θl(k)Jl

st.

sl(k)
∑

j

∣∣∣∣∣al
ijdj +

∑
s

bl
isz

c
sj

∣∣∣∣∣ ≤ qdi, i, j, s ∈ Inx , l ∈ L (32)

sl(k)
∑

j

∣∣∣∣∣al
ijdj +

∑
s

zo
isc

l
sj

∣∣∣∣∣ ≤ qdi

∑
j

∑
|ao

ij| ≤ qdi, i, j ∈ Ino

1 ≤ di ≤ ω

ω ≥ 1

where Jl is the performance index for robust simultaneous
design of the controller and observer (31).

If the desired closed-loop performance is defined through
constraints on the closed-loop variables, the feasibility of
optimisation problem (32) will depend on these constraints.
One way of ensuring the feasibility of the optimisation
problem is by softening performance constrains with slack
variables and then penalised their deviation by including the
slack variables in the objective function (32).

Remark 5: The use of an infinite number of controllers
increase the flexibility in term of the control objectives,
robustness and performance, since the values of the eigen-
values can continuously change and the regulation rate will
thus be greater, than would be in the case of using a
‘switching-based’ controller.

Remark 6: The mechanism employed to built PL(k) allows
a quick and robust adaptation to track system’s changes, in
comparison with ‘mixing-based’ controllers.

3.2 Supervisory algorithm

The role of the supervisory algorithm is to built PL(k)

by excluding those models Pl ∈ PL that do not explain
the time evolution of the input–output trajectories of plant
P. PL(k) is build using the switching signal S(k), which
defines the models Pl that will be employed by the opti-
misation problem (32). The problem of ‘disqualifying’
models is addressed using set-valued observers [10]. This
type of observers assume that the initial conditions of
the plant is uncertain, there are bounded disturbances act-
ing upon the plant and the measurements are corrupted
with noise. Therefore the estimate is a set (‘confidence
set’) instead of a single point. In this work, we use the
robust set-valued observer proposed by El Ghaoui and
Calafiore [33] that provides the minimal size ellipsoid of
confidence El(x̂l(k), El(k)), defined by the central estimated
x̂l(k) and shape matrix El(k) and its size is measured
by means of the sum of squared semi-axes lengths given
by tr(El(k|k)ET

l (k|k)) = tr(Pl(k|k)), computed recursively
through two convex optimisation problems: (i) Problem 1
computes the minimal size ellipsoid of confidence for the
estimate prediction El(x̂l(k), El(k|k − 1)) and (ii) Problem
2 computes the minimal size ellipsoid of confidence for the

Fig. 2 Supervisory algorithm

measurement update El(x̂l(k), El(k|k)). If tr(Pl(k|k)) �
0, then El(x̂l(k), El(k|k − 1))

⋂
El(x̂l(k|k), El(k|k)) = ∅ and

the measurements are not compatible with model l, thus the
model can be discarded. Based upon this fact, the algorithm
to construct P(k) is described in the Supervisory Algorithm
showed in Fig. 2.

4 Stability analysis

The proof of robust stability of the closed-loop is based upon
the fact that the set-valued observers are non-conservative,
that is, tr(Pl(k|k)) > ε for some l ∈ L, then the system
trajectories can be explained by those models Pl that
tr(Pl(k|k)) > ε and then, the existence of the superstabil-
ising compensator CL(k)(K(k)) can be guaranteed.

Assumption 1: The optimisation problems (32) are feasible
for L(k) = L.

Assumption 2: The parameters of the set-valued observers
are chosen such that the regions of the models of PL cover
the entire uncertainty region.

Hereafter, the stability of the closed-loop system is dis-
cussed. The fact that the compensator CL(k)(K(k)) is com-
puted such that all elements of PL(k) are superstable, leads
to the first ‘local’ stability result.

Theorem 2: Supposed Assumptions 1 and 2 are satisfied and
using Algorithm 2, then the resulting closed-loop system at
time k is superstable.

IET Control Theory Appl., pp. 1–13 7
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Proof: To proof the closed-loop stability we need to
guarantee the plant P ∈ PL(k) and the optimisation prob-
lem (32) is feasible at every sample. The set PL(k)

is non-empty because of Assumption 2 and the current
output y(k) ∈ El(xl(k|k), El(k|k)) ∀l ∈ L(k), therefore the
true plant P ∈ PL(k) and the compensator CL(k)(K(k))
guarantees the superstability of the closed-loop system
such that ‖x(k + 1)‖∞ ≤ γ (k)‖x(k)‖∞ ∀k , where γ (k) =∑

l∈L(k) |sl(k)|‖Al − BlKc‖1. �

This result, valid for each individual polytope PL(k) ∀k ,
can be also applied to the switching between different poly-
topes PL(k) → PL(k+1) since PL(k) ∀k is robustly superstable
and Lemma 3. Furthermore, it is also clear from Lemma 3
that the trajectories of the closed-loop system decrease in
norm along all trajectories of PL(k).

Finally, the stability results obtained for LTI systems also
hold for non-linear systems

x(k + 1) = f (x(k), u(k)) x(0) = x0

y(k) = h(x(k))
(33)

in a compact and convex domain D = X × U , which con-
tains the origins in its interior, if the distribution of the
vertices’s of PL covers D with m balls Bl(x0l , rl) radius rl

centered at x0l such that X ⊆ {
x|x ∈ R

nx ∈ ⋃
l∈L Bl(x0 l , rl)

}
.

The accuracy ε of PL is related with the number of ver-
tices’s employed m, whose upper bound mmax for a uniform
distribution over D is [34] [The operator �·� : R → N+, that
maps a real to the nearest integer towards infinity, and eig(A)
denotes the eigenvalues of matrix A.]

mmax =
⌈

1√
2ε

√
λ(nx + nu)

√
nx

nx∏
i=1

exi

nu∏
i=1

eui

⌉
(34)

where

λ = max
i∈Inx

max
ψ∈D

∣∣∣∣eig

(
∂2fi(ψ)

∂2ψ

)∣∣∣∣ (35)

and exi > 0 and eui > 0 are the upper bound of the error
between linearisation points (x0 l , u0 l) and the operating
point (x, u)

‖x − x0 l‖2 ≤ ex l ∈ L
‖u − u0 l‖2 ≤ eu

(36)

Assumption 3: The m LTI models employed to built PL
are uniformly distributed on the operating domain D and
m ≥ mmax.

Theorem 3: Supposed Assumptions 1–3 are satisfied and
supervisory algorithm is used to control the non-linear sys-
tem (33), then the stability of any switching sequences
between PL(k) over X implies the stability of f (x, u) over
the same domain D.

Proof: The proof of this theorem follows similar steps of
Theorem 2 but it includes additional steps to show that error
between the non-linear system and the model built by the
supervisory algorithm is bounded, which allows us to extend
to the non-linear system the properties of the model built by
the supervisor.

In the first step, we need to guarantee the trajectories
of the non-linear system f (x, u) are also the trajectories

of PL(k). This result is a direct consequence of Assump-
tion 2, which guarantee the conservativeness of set–valued
observers and the trajectory of f (x(k), u(k)) is also a trajec-
tory of PL(k) ∀k [35].

Now, by Assumption 3 we can guarantee that the accuracy
of the approximation model

f̃ (x, u) =
∑

l∈L(k)

θl(k)(Alx + Blu) (37)

identified by the supervisory algorithm is bounded

sup
x∈X

‖f (x, u) − f̃ (x, u)‖2 ≤ ε ε > 0 (38)

Therefore the trajectories associated with the resulting non-
linear closed-loop system (ς(k)) and the PLMs closed-loop
model (π(k)) verify

‖ς(k)‖2 − ‖π(k)‖2 ≤ ‖ς(k) − π(k)‖2

= ‖f (ς(k − 1), u(k − 1))

− f̃ (π(k − 1), u(k − 1))‖2 ≤ ε ∀k
(39)

For small ε the properties of f̃ (x, u) ensures the properties
of f (x, u) over the same domain [34]. Now, by Assump-
tion 1 we can guarantee the existence of a superstabilising
controller Kc(k) that guarantees the superstability of f (x, u).

Finally, this result that is valid for each individual poly-
tope PL(k) ∀k , can be also applied to the switching between
different polytopes PL(k) → PL(k+1). It is a direct conse-
quence of the robust superstability of PL(k) ∀k and Lemma
3. Furthermore, it is also clear from Lemma 3 that the
trajectories of the closed-loop system decrease in norm. �

Remark 7: The stability analysis holds equally for the gen-
eral system x(k + 1) = f (x(k), u(k)) with non-zero equilib-
rium condition (xd , ud), such that f (xd , ud) = xd .

Indeed, the error dynamics satisfy

e(k + 1) = x(k + 1) − xd = f (e(k) + xd , u(k)) − xd (40)

and the control law in this case u(k) = ud + �(k),
which leads to the closed-loop error dynamics
e(k + 1) = E(e(k), �(k)) such that E(0, 0) = 0 and
E(e(k), �(k)) = f (e(k) + xd , ud + �(k)) − xd . Furthermore,
the linear models used to construct the polytopic linear
model approximation from the error dynamics, are simply
the linearised models of the original system.

5 Simulations and results

In this section, we provide an illustrative numerical exam-
ple. Let us consider the problem of controlling a continuous
stirred tank reactor (CSTR) in which an irreversible exother-
mic reaction A → B occurs in a constant volume reactor.
This non-linear system was originally used by Morningred
et al. [36] for testing discrete control algorithms. It is

8 IET Control Theory Appl., pp. 1–13
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modelled by the following equations

Ċa = q

V
[Ca0 − Ca] − k0Ca exp

(−E

R T

)

Ṫ = q

V
[T0 − T ] − k0 �H

ρ cρ

Ca exp

(−E

R T

)

+ ρC cρC

ρ cρV
qC

[
1 − exp

( −hA

qC ρC cρC

)]
[TCO − T ]

(41)

The nominal values of the variables and parameters can be
found in Morningred’s paper [36]. The objective is to con-
trol the output concentration y(k) = Ca(k) using the coolant
flow rate u(k) = qC(k). The reactor has a second output, the
reactor temperature T (t), and the state vector x(k) includes
both variables (x(k) = [Ca(k) T (k)]).

The non-linear nature of the system is shown in Fig. 3,
where the T and Ca open-loop response are shown to
changes in the manipulated variable �qC = +10, −10, −10
and +10 lt min−1 around its nominal value qC0 = 100 lt
min−1. The operation of the reactor is quite difficult because
of the changes in the dynamics, the presence of complex
poles near the imaginary axis, and because of it becomes
uncontrollable when qC(k) goes to beyond of 113 lt min−1.
The operating space region D is defined by the cube

0.05 ≤ x1(k) ≤ 0.13 mol lt−1

430 ≤ x2(k) ≤ 445◦K

85 ≤ u(k) ≤ 110 lt min−1

(42)

It is possible to approximate the non-linear model of the
reactor within the specified working space using four LTI
models, leading to an estimated error ε = 7 × 10−4. The
discrete LTI models shown in Table 1 with L = {1, 2, 3, 4}
were determined from the responses shown in Fig. 3, using a
subspace identification algorithm. They define the polytopic
model PL associated with the non-linear behaviour in the
considered operating region. The sampling time period was
fixed at 0.1 min, which gives about four sampled-data points

Table 1 Vertices of PL

P1:= A1 =
[
0.222 −4.455 10−3

129.6 1.656

]
, B1 =

[
1.398 10−4

−8.272 10−2

]
, C1 = [0 1]

P2:= A2 =
[
2.879 10−2 −3.789 10−3

166.5 1.538

]
, B2 =

[
2.375 10−4

−0.1514

]
, C2 = [0 1]

P3:= A3 =
[−0.1687 −2.616 10−3

204.5 1.329

]
, B3 =

[
2.161 10−4

−0.1658

]
, C3 = [0 1]

P4:= A4 =
[
2.534 10−2 −3.774 10−3

167.2 1.536

]
, B4 =

[
1.393 10−4

−8.898 10−2

]
, C4 = [0 1]

in the dominant time constant when the reactor is operating
in the high concentration region.

The structure of the compensator is given by (28), with
the controller equation modified to include a reference signal
xr(k) and an integral action

ũ(k) = KI ũ(k − 1) + KC (x̂(k) − xr(k))

u(k) = ũ(k) + qC0

(43)

The performance of the closed-loop system is defined
through the minimisation of (13) and a settling time of 50
samples for an error of 5%

|e(k)| ≤ 0.05 xr(k) ∀k ≥ No + 50 (44)

where No is the time instant when changes happen. To guar-
antee the system controllability over the whole operational
region a hard constraint is set on qC

qC(k) ≤ 110 lt min−1 ∀k (45)

The proposed robust adaptive controller is compared with
a supervisory adaptive controller with set-valued observers
[10]. It employs robust non-adaptive controllers, designed
using mixed-μ synthesis, and set-valued observers for each
model of PL. The simulation tests are similar to Morn-
ingred’s work [36] and consists of a sequence of step

Fig. 3 Open-loop responses of the CSTR to changes in qC
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Fig. 4 Simulation results for a multiple models switching and tuning controller (MMST) and a supervisory adaptive controller (MMAC)

Fig. 5 Time evolution of

a Controller
b Observer gains

changes in the reference value. The set point was changed
in intervals of 10 min from 0.09 to 0.125, returns to 0.09,
then steps to 0.055 and finally returns to 0.09.

Figs. 4–6 show the closed-loop simulation results sus-
tained by the controller described in the previous paragraphs.
The good performance of the adaptive controller proposed
is because of the combination of a switching scheme with
the on-line design of the controller. The parameters of the

adaptive controller are modified with respect to the reac-
tor’s operating region. An initial transient behaviour appears,
after each change, before achieving their steady-state values.
This fact can be appreciated in the behaviour of the switch-
ing variables S(k), which show jitter during all reference
changes. This controller ‘hesitation’ is due to the fact that
the first and second models and the third and fourth models
are computed around nearly the same state operating point,

10 IET Control Theory Appl., pp. 1–13
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Fig. 6 Time evolution

a Switching variables (sl(k))
b Control weights (θl(k))

the only difference being the control operating point value.
Hence, when the reference changes hold the controller hes-
itates between these models as long as the control value is
not close to one of the control operating points.

The plant input (u(k)) and output (y(k)) resulting from
the simulations with the controllers described above are
shown in Fig. 4. The proposed adaptive scheme exhibits a
fast regulation and easily satisfied the performance require-
ments [constraints (44) and (45)]. The closed-loop behaviour
results from two facts: (a) all parameters of CL(k)(K(k))
are allowed to vary continuously due to its on-line design,
and (b) the supervisor quickly identify the relevant mod-
els that explain the plant behaviour (see Fig. 6). At this
point it is necessary to highlight the lack of oscillations
and abrupt changes in the control signal, generated by con-
troller switches, is because of the soft-variable nature of the
controller.

The time evolution of the parameters of the proposed
adaptive controller (Kc i(k), Ki(k) and Ko i(k)) are shown
in Fig. 5. An initial transient behaviour appears, after each
change, before achieving their steady-state values. This fact
can be appreciated in the behaviour of the switching vari-
ables (S(k)) and the models weights ((k)) in Fig. 6,
that show oscillations during the initial samples after the
reference changes.

6 Conclusions

The motivation for the development of multiple models
switching and tuning adaptive control is to develop a deter-
ministic approach capable of achieving high-performance
by utilising robust LTI and switching-based adaptive tools,
whereas avoiding issues of undesirable switching behaviours
and uncertain disturbance models. In this way, in this work
we extend the results obtained in [18] to MIMO and non-
linear system, whereas the conservativeness of the resulting
closed-loop system was reduced through the use of extended

superstability. The properties of the resulting closed-loop
system and design guidelines have been discussed. Com-
parative results with others supervisory adaptive and robust
adaptive controllers, based on simulations of a non-linear
system, have been presented to illustrate the effectiveness
of the proposed controller.

The authors are currently working towards extending this
line of research in two directions: (i) addressing the lim-
tations imposed by the model selection scheme, and (ii)
developing adaptive estimation and control algorithms for
failure-robust design. For a practical implementation it is
necessary to reduce the number of LTI models m required
to represent the system in the operating space. This idea
requires an efficient use of the information available in
the supervisor S and find new ways of employing mul-
tiple models for robust system identification. The works
of Narendra and Han [16, 17] show a promising line of
research to explore. In fact, this idea has been used in
this work to reduce the conservativeness of the closed-
loop performance estimation through the reparametrisation
of the optimisation cost function. In the context of LPV
system, the framework proposed in this work is connected
to some recent works in the area of switching (see [37, 38])
and piecewise ([39]) systems where the robust estimators
and controllers are designed using passivity performance
indexes in order to ensure closed-loop performance and
stability.
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9 Appendix 1: Proof of Lemma 1

Given the LPV system (4), the norm of the states x(k) is
bounded by

‖x(k)‖∞ ≤ ‖A(S(k − 1))‖1‖x(k − 1)‖∞
+ ‖B(S(k − 1))‖1‖w(k − 1)‖∞ (46)

Using the recursion backward in time we have

‖x(k)‖∞ ≤
k∏

i=0

‖A(S(k − i))‖1‖x(k − i)‖∞

+
k∑

i=1

i−1∏
l=0

‖A(S(k − l))‖1‖B(S(k − i))‖1

× ‖w(k − i)‖∞ (47)

which is bounded by

‖x(k)‖∞ ≤ γ̄ kμ +
k∑

i=0

γ̄ iβ̄ (48)

where

γ̄ = sup
∀k

sup
∀S(k)∈S

‖A(S(k))‖1 (49)

β̄ = sup
∀k

sup
∀S(k)∈S

‖B(S(k))‖1 (50)

Then, using the formula for the sum of a geometric series
for k terms we have

‖x(k)‖∞ ≤ γ̄ kμ + α
1 − γ̄ k

1 − γ̄

≤ η̄ + qk max{0, μ − η̄}
(51)

where η̄ = β̄/(1 − γ̄ ). This estimate shows that the PLM
state trajectory is decreasing in norm until it reaches the
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invariant set Q = {‖x(k)‖∞ ≤ η̄}, that is, the trajectories
originating in this set stay in it for all admissible pertur-
bations. If a disturbance drives the state out of the invariant
set, the control law will drive it again to the invariant set.

10 Appendix 2: Proof ofTheorem 1

After a change of variables x(k) = Dν(k), the closed-loop
system becomes

ν(k + 1) = Ãcν(k) + D−1BW w(k) (52)

with Ãc = D−1(A + BU Kc)D ∈ ES . The estimate (2) for the
closed-loop system is

‖ν(k)‖∞ ≤ ‖D−1‖1‖BW ‖1

1 − ‖Ãc‖1

∀k (53)

provided that ‖ν(0)‖∞ ≤ ‖BW ‖1/(1 − ‖Ãc‖1). If this con-
dition is not satisfied, the control law Kc will enforce
this condition in few samples. For the original system the
estimate (53) becomes

‖x(k)‖∞ ≤ dmax‖BW ‖1

dmin(1 − ‖Ãc‖1)
(54)

where dmin = mini∈Inx
di and dmax = maxi∈Inx

di. The matrix
D can be scaled such that dmin = 1 and replace dmax by an
upper bound ω : di ≤ ω ∀i ∈ Inx such that

‖x(k)‖∞ ≤ η ≤ ω
‖BW ‖1

1 − ‖Ãc‖1

(55)

The minimisation of this estimate over all possible Kc, under
the condition Ac ∈ ES , can be achieved solving

min
q∈[0,1),Kc ,D

1

1 − q
‖BW ‖1

st. (56)

‖(A + BU Kc)D‖1 ≤ q‖D‖1

Given the entries of the close–loop matrix Ãc, the super-
stability constraint can be written as a set of nx linear
constraints

∑
j

∣∣∣∣∣aijdj +
∑

s

bjsz
c
sj

∣∣∣∣∣ < qdi i, j, s ∈ Inx (57)

leading to the following linear optimisation problem

min
q∈[0,1)

min
ω,Zc ,D

ω

1 − q
‖BW ‖1

st.

∑
j

∣∣∣∣∣aijdj +
∑

s

bisz
c
si

∣∣∣∣∣ ≤ qdi i, j, s ∈ Inx (58)

1 ≤ di ≤ ω

ω ≥ 1

Using standard tools, problem (12) can be reformulated as
a linear optimisation problem with respect to the parameters
of Kc, ω, Zc, D.

11 Appendix 3: upper bound of LLR

The linear performance functional (13) can be rewritten as
follows

JC =
∞∑

k=0

(1 + α‖Kc‖1)‖x(k)‖∞ (59)

If we require that the closed-loop system belongs to the
class of extended superstable matrices and make use of the
estimate (3), then

JC ≤
∞∑

k=0

(1 + α‖Kc‖1)q
kμ ≤ 1 + α‖Zc‖1‖D−1‖1

1 − ‖Ãc‖1

μ (60)

Finally, since matrix D can be scaled such that dmin = 1 the
performance index becomes

JC ≤ 1 + α‖Zc‖1

1 − ‖Ãc‖1

μ (61)
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