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a b s t r a c t

An (h, s, t)-representation of a graphG consists of a collection of subtrees of a tree T , where
each subtree corresponds to a vertex of G such that (i) the maximum degree of T is at most
h, (ii) every subtree has maximum degree at most s, (iii) there is an edge between two
vertices in the graph G if and only if the corresponding subtrees have at least t vertices in
common in T . The class of graphs that has an (h, s, t)-representation is denoted by [h, s, t].

An undirected graph G is called a VPT graph if it is the vertex intersection graph of a
family of paths in a tree. Thus, [h, 2, 1] graphs are the VPT graphs that can be represented
in a tree with maximum degree at most h. In this paper we characterize [h, 2, 1] graphs
using chromatic number. We show that the problem of deciding whether a given VPT
graph belongs to [h, 2, 1] is NP-complete, while the problem of decidingwhether the graph
belongs to [h, 2, 1] − [h − 1, 2, 1] is NP-hard. Both problems remain hard even when
restricted to VPT ∩ Split . Additionally, we present a non-trivial subclass of VPT ∩ Split in
which these problems are polynomial time solvable.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The intersection graph of a set family is a graphwhose vertices are themembers of the family, and the adjacency between
them is defined by a non-empty intersection of the corresponding sets. Classic examples are interval graphs and chordal
graphs.

An interval graph is the intersection graph of a family of intervals of the real line, or, equivalently, the vertex intersection
graph of a family of subpaths of a path. A chordal graph is a graph without chordless cycles of length at least four. Gavril [6]
proved that a graph is chordal if and only if it is the vertex intersection graph of a family of subtrees of a tree. Both classes
have been widely studied [2].

In order to allow larger families of graphs to be represented by subtrees, several graph classes are defined imposing
conditions on trees, subtrees and intersection sizes [14,15]. Let h, s and t be positive integers; an (h, s, t)-representation
of a graph G consists in a host tree T and a collection (Tv)v∈V (G) of subtrees of T , such that (i) the maximum degree of T
is at most h, (ii) every subtree Tv has maximum degree at most s, (iii) two vertices v and v′ are adjacent in G if and only
if the corresponding subtrees Tv and Tv′ have at least t vertices in common in T . The class of graphs that has an (h, s, t)-
representation is denoted by [h, s, t]. When there is no restriction on the maximum degree of T or on the maximum degree
of the subtrees, we use h = ∞ and s = ∞ respectively. Therefore, [∞, ∞, 1] is the class of chordal graphs and [2, 2, 1] is
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the class of interval graphs. The classes [∞, 2, 1] and [∞, 2, 2] are called VPT and EPT respectively in [8]; and UV and UE,
respectively in [17].

In recent years, the study of the classes [h, s, t] has merited several publications in the literature. In [5], the minimum
t such that a given graph belongs to [3, 3, t] is studied. In [18], it is shown that [3, 3, 1] is exactly the class of chordal
graphs. In [12], [4, 4, 2] graphs are characterized and a polynomial time algorithm for their recognition is given. In [11,4]
respectively, the classes [4, 2, 2] and [4, 3, 2] are studied. Recognition, coloring and some other classic problems on the class
[∞, 2, t] are treated in [9]. The relation between different classes is analyzed in [10]. In [7,19], it is shown that the problem
of recognizing VPT graphs is polynomial time solvable. On the other hand, the recognition of EPT graphs is an NP-complete
problem [8].

In this work, we focus on the classes [h, 2, 1] for any fixed h ≥ 3; they are all subclasses of VPT . We characterize [h, 2, 1]
graphs using chromatic number. We show that the problem of deciding whether a given VPT graph belongs to [h, 2, 1] is
NP-complete, while the problem of deciding whether the given graph belongs to [h, 2, 1] − [h − 1, 2, 1] is NP-hard. Both
problems remain hard even when restricted to VPT ∩ Split . Additionally, we present a non-trivial subclass of VPT ∩ Split
in which these problems are polynomial time solvable. The case h = 2 is not considered because [2, 2, 1] = Interval.
Our results apply for any h ≥ 3, they can be seen as a generalization of the case h = 3 which leads with the class
[3, 2, 1] = [3, 2, 2] = EPT ∩ Chordal considered in [8,20].

The paper is organized as follows: in Section 2,we provide basic definitions and basic results. In Section 3,we characterize
[h, 2, 1] graphs for h ≥ 3. In Section 4, we present the time complexity analysis for the recognition problem. Finally, in
Section 5 we pose some open questions.

2. Preliminaries

Throughout this paper, graphs are connected, finite and simple. The vertex set and the edge set of a graph G are denoted
by V (G) and E(G) respectively. The open neighborhood of a vertex v, represented by NG(v), is the set of vertices adjacent to
v. The closed neighborhood NG[v] is NG(v) ∪ {v}. The degree of v, denoted by dG(v), is the cardinality of NG(v). For simplicity,
when no confusion can arise, we omit the subindex G and write N(v),N[v] or d(v).

A complete set is a subset of mutually adjacent vertices. A clique is a maximal complete set. The family of cliques of G is
denoted by C(G). A stable set is a subset of vertices no two of which are adjacent.

An (∞, 2, 1)-representation of G, also called a VPT representation, is a pair ⟨P , T ⟩, where T is a host tree and P is a family
(Pv)v∈V (G) of subpaths of T satisfying that two vertices v and v′ of G are adjacent if and only if Pv and Pv′ have at least one
vertex in common.

Since a family of paths in a tree satisfies the Helly property [1], if C is a clique of G then there exists a vertex q of T such
that C = {v ∈ V (G) : q ∈ V (Pv)}.

On the other hand, if q is any vertex of the host tree T , the set {v ∈ V (G) : q ∈ V (Pv)}, denoted by Cq, is a complete set of
G, but not necessarily a clique. In order to avoid this drawback we introduce the notion of full representation.

If q is a vertex of T , the connected components of T − q are called the branches of T at q. A path is contained in a branch
if all its vertices are vertices of the branch. Notice that if NT (q) = {q1, q2, . . . , qh} then T has exactly h branches at q. The
branch containing qi is denoted by Ti; we say that qi is the root of Ti. Two branches Ti and Tj are linked by a path Pv ∈ P if
both vertices qi and qj belong to V (Pv).

Definition 1. A VPT representation ⟨P , T ⟩ is full at a vertex q of T if, for every two branches Ti and Tj of T at q, there exist
paths Pv, Pw, Pu ∈ P such that: (i) the branches Ti and Tj are linked by Pv; (ii) Pw is contained in Ti and intersects Pv in at
least one vertex; and (iii) Pu is contained in Tj and intersects Pv in at least one vertex. A representation ⟨P , T ⟩ is full if it is
full at every q ∈ V (T ) with dT (q) ≥ 4.

The following theorem and its Corollary 3 show that a VPT representation which is not full can be modified to obtain a full
VPT representation without increasing the maximum degree of the host tree; and, even more, decreasing the degree of the
vertices of T at which the representation is not full.

Theorem 2. Let ⟨P , T ⟩ be a VPT representation of G. Assume there exists a vertex q ∈ V (T ) with dT (q) = h ≥ 4
and two branches of T at q which are linked by no path of P . Then there exists a VPT representation ⟨P ′, T ′

⟩ of G with
V (T ′) = V (T ) ∪ {q′

}, q′
∉ V (T ), and

dT ′(x) =

3, if x = q′

h − 1, if x = q
dT (x), if x ∈ V (T ′) \ {q, q′

}.

Proof. Let q1 and q2 be the neighbors of q that are roots of two non linked branches. We obtain the ⟨P ′, T ′
⟩ representation

of G as follows (see Fig. 1): the set of vertices of T ′ is V (T ) ∪ {q′
}, where q′ is a new vertex not in V (T ). The set of edges is

(E(T )\{qq1, qq2})∪{q′q1, q′q2, q′q}. Observe that the degree of each vertex x ∈ V (T ′) is the required in the statement of the
present theorem. Nowwe define the paths P ′

v for v ∈ V (G): if q1 and q or q2 and q belong to V (Pv) then V (P ′
v) = V (Pv)∪{q′

}.
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Fig. 1. The degree of q in the tree T on the left is h. The degree of q in the tree T ′ on the right is h − 1.

In any other case, V (P ′
v) = V (Pv). Since no path of P contains both vertices q1 and q2, each V (P ′

v) effectively induces a path
in T ′. Moreover, since all the paths where vertex q′ was added had vertex q in common, it is clear that, for any pair of vertices
v, w ∈ V (G), V (Pv) ∩ V (Pw) ≠ ∅ if and only if V (P ′

v) ∩ V (P ′
w) ≠ ∅. It follows that ⟨P ′, T ′

⟩ is a VPT representation of G and
the proof is completed. �

Corollary 3. Any [h, 2, 1] graph admits a full (h, 2, 1)-representation.

Proof. Let ⟨P , T ⟩ be an (h, 2, 1)-representation of G. We can assume, without loss of generality, that if x is an end vertex of
a path Pv ∈ P then there exists a path Pu ∈ P intersecting Pv only in x, in other case the vertex x can be removed from Pv .
This implies that any path of P linking two branches intersects paths contained in those branches. Now, the proof proceeds
inductively applying Theorem 2 in a vertex q of T of degree at least four at which ⟨P , T ⟩ is not full. �

A graph G is split if V (G) can be partitioned into a stable set S and a clique K [2]. The pair (S, K) is a split partition of G. The
vertices in S are called stable vertices, and K is called the central clique of G. A vertex s is a dominated stable vertex if s ∈ S and
there exists s′ ∈ S such that N(s) ⊆ N(s′). Notice that if G is split then C(G) = {K ,N[s] for s ∈ S}.

Lemma 4. Let G ∈ VPT ∩ Split with split partition (S, K) and let ⟨P , T ⟩ be a full VPT representation of G. If q ∈ V (T ) and
Cq ≠ K, then dT (q) ≤ 3.

Proof. Assume, for a contradiction, that there exists q ∈ V (T ) such that Cq ≠ K and dT (q) ≥ 4. Since, ⟨P , T ⟩ is full and
dT (q) ≥ 4, Cq is a clique of G, thus there exists s ∈ S such that Cq = N[s]. Since in Cq there exist at least three vertices which
do not belong to K , then s has at least two neighbors which are not in K . This contradicts the fact that G ∈ Split . �

A graph is k-colorable if its vertices can be colored with at most k colors in such a way that no two adjacent vertices share
the same color. The chromatic number of G, denoted by χ(G), is the smallest k such that G is k-colorable.

Theorem 5 ([16]). For any fixed k ≥ 3, the problem of deciding whether a given graph G is k-colorable is NP-complete.

A graph is perfect if and only if it contains no odd cycle of length at least 5, or its complement, as induced subgraphs [3].

Theorem 6 ([13]). For any fixed k ≥ 3, the problem of deciding whether a given perfect graph G is k-colorable is polynomial time
solvable.

3. Characterization of [h, 2, 1], for h ≥ 3

In this section, we present a characterization of VPT graphs which are representable in a host tree withmaximum degree
at most h. The characterization is given in terms of the chromatic number of the branch graphs.

Definition 7 ([8]). Let C ∈ C(G). The branch graph of G for the clique C , denoted by B(G/C), is defined as follows: its vertices
are the vertices of V (G) \ C which are adjacent to some vertex of C . Two vertices v and w are adjacent in B(G/C) if and only
if

(1) vw ∉ E(G);
(2) there exists a vertex x ∈ C such that xv ∈ E(G) and xw ∈ E(G);
(3) there exists a vertex y ∈ C such that yv ∈ E(G) and yw ∉ E(G); and
(4) there exists a vertex z ∈ C such that zv ∉ E(G) and zw ∈ E(G).

As will be seen in what follows, branch graphs of VPT graphs can be used to describe intrinsic properties of representations.
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Lemma 8. Let C be a clique of a VPT graph G, ⟨(Pv)v∈V (G), T ⟩ be a VPT representation of G and q be a vertex of T such that
C = Cq. If v is a vertex of B(G/C) then Pv is contained in some branch of T at q. If two vertices v and w are adjacent in B(G/C)
then Pv and Pw are not contained in a same branch of T at q.

Proof. By the definition of branch graph, if v ∈ V (B(G/C)) then v ∉ C . It follows that q ∉ V (Pv), thus Pv is contained in
some branch of T at q.

Let w be adjacent to v in B(G/C). Suppose to the contrary that Pv and Pw are contained in the same branch of T at q. Let
x and y be the vertices of Pv and Pw respectively at minimum distance from q. Since there exists a vertex of C adjacent to v
andw, there exists a path in T containing q, x and y. Therefore, without loss of generality, we can assume that x is between q
and y or that x = y. In both cases, N(w)∩C ⊆ N(v)∩C , which contradicts the fact that v and w are adjacent in B(G/C). �

Lemma 9. Let ⟨P , T ⟩ be a VPT representation of G. Let C ∈ C(G) and q ∈ V (T ) such that C = Cq. If dT (q) = h, then B(G/C)
is h-colorable.

Proof. Let T1, T2, . . . , Th be the branches of T at q. By Lemma 8, if we color each vertex v of B(G/C) with the index i of
the branch Ti containing the path Pv , then we obtain a proper coloring of B(G/C). Since there are h branches, B(G/C) is
h-colorable. �

Theorem 10. Let G ∈ VPT and h ≥ 3. The graph G belongs to [h, 2, 1] if and only if B(G/C) is h-colorable for every C ∈ C(G).
The direct implication is true also for h = 2.

Proof. Let ⟨P , T ⟩ be an (h, 2, 1)-representation of G with h ≥ 2. If C ∈ C(G) then there exists q ∈ V (T ) such that C = Cq.
Since dT (q) ≤ h, by Lemma 9, B(G/C) is h-colorable.

The reciprocal implication for h = 3 was proven by Golumbic and Jamison in [8]; then we assume h ≥ 4. In a similar
way to [8], we will prove that if B(G/C) is h-colorable for every clique C of G, then G admits an (h, 2, 1)-representation.

Let ⟨P , T ⟩ be a full VPT representation of G. It exists by Corollary 3.
We proceed by induction on the number k of vertices of T whose degree exceeds h. If k = 0 we are done. If k > 0, there

exists a vertex q of T with degree d > h. Since the representation is full Cq is a clique of G.
Say NT (q) = {q1, q2, . . . , qd} and, for each i, let Ti be the branch of T at q containing qi. We can assume that, for each

Ti, there exists a vertex vi ∈ V (G) such that the corresponding path Pvi is contained in the branch Ti and qi ∈ V (Pvi). For
otherwise, we can contract the edge qqi to obtain a new VPT representation of G without changing the intersection of the
paths, and repeat this procedure as many times as needed until the assumption holds. Notice that during this operation
some vertices of T disappear, and that the degree of q may increase, but the number of vertices whose degree exceeds h
does not grow.

We call vi the leader of Ti for 1 ≤ i ≤ d. Observe that each leader vi is a vertex of the branch graph B(G/Cq). Let µi be the
color of vi in a proper h-coloring of B(G/Cq). We color each branch Ti with the color µi of its leader vi.

We can assume that if two branches Ti and Tj are linked then they have different colors. Indeed, suppose to the contrary
that Ti and Tj are linked by a path Pv ∈ P and have the same color. Then, their leaders vi and vj have the same color in
B(G/Cq), which implies that

vi and vj are non adjacent in B(G/Cq). (1)

By the definition of branch graph and (1), since vi and vj are non adjacent in G, v ∈ Cq and v is adjacent to vi and to vj in G;
we can assume, without loss of generality, that N(vi) ∩ Cq ⊆ N(vj) ∩ Cq. It means that the branch Ti is linked only to the
branch Tj; thus we can change the color of Ti to either of the h − 1 remaining colors. By repeating this procedure as many
times as necessary, we obtain an h coloring of the branches such that any two linked branches have different color.

Now,we obtain a new VPT representation ⟨P ′, T ′
⟩ ofG as follows. The tree T ′ is obtained from T bymeans of the following

procedure (in Fig. 2 we offer an example):

for every i, 1 ≤ i ≤ d, remove the edge qqi;
for every i, 1 ≤ i ≤ d, add a vertex q′

i adjacent to qi; and
for every j, 1 ≤ j ≤ h, add the edges necessaries to obtain an induced path with end vertex q connecting the vertices q′

i
such that the corresponding branch Ti has color µj.

The rest of the tree T remains unchanged. Notice that dT ′(q) = h, dT ′(q′

i) ≤ 3 for every i, and the remaining vertices have
the same degree as vertices of T ′ than as vertices of T .

The only paths of P which are modified to obtain the paths of P ′ are those containing q. If a path Pv ∈ P has q as an
endpoint and intersect a branch Ti, thenwe obtain P ′

v by replacing in Pv the edge qqi by the unique subpath of T ′ linking q and
qi. If Pv has q as an internal vertex, and intersect two branches Ti and Tj, then, we obtain P ′

v by replacing in Pv the edges qqi
and qqj by the only subpath of T ′ linking qi, q and qj. Notice that such subpath exists because linked branches have different
colors, thus qi and qj are in different branches of T ′ at q.

It is easy to see that the construction described above leaves the intersection graph of paths unchanged,while the number
of vertices of the host tree whose degree is greater than h, decreases. Thus, by induction, the implication is proven. �
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Fig. 2. dT (q) = 7 and B(G/Cq) is 4-colorable.

Observe that the reciprocal implication of Theorem 10 is false for h = 2; consider, by instance, the graph obtained from
K1,3 by subdividing each edge with a new vertex. This graph, that we call T 3

2 , is a well known forbidden induced subgraph
for the class of interval graphs. It is easy to see that T 3

2 ∈ VPT and that B(G/C) is 2-colorable for every clique C; however,
T 3
2 ∉ [2, 2, 1].

Theorem 11. Let G ∈ VPT and h ≥ 4. The graph G belongs to [h, 2, 1]−[h−1, 2, 1] if and only if MaxC∈C(G)(χ(B(G/C))) = h.
The reciprocal implication is also true for h = 3.

Proof. By Theorem 10, G ∈ [h, 2, 1] if and only if

Max
C∈C(G)

(χ(B(G/C))) ≤ h.

And, by the same Theorem 10, G ∉ [h − 1, 2, 1] if and only if

Max
C∈C(G)

(χ(B(G/C))) > h − 1. �

4. Complexity

In this section, we prove that, for any h ≥ 3, the problem of deciding whether a given graph belongs to [h, 2, 1] is
NP-complete. We also show that recognizing [h, 2, 1] − [h − 1, 2, 1] graphs is NP-hard for any h ≥ 4. Our results prove
that both problems remain difficult evenwhen the input graphs are restricted to be VPT , split andwithout dominated stable
vertices.

First we state the following fundamental property of VPT ∩Split graphswhich is used in the proof of Theorems 15 and 16.

Lemma 12. Let G ∈ VPT ∩ Split with split partition (S, K), and let s ∈ S. Then, χ(B(G/N[s])) ≤ 3.

Proof. Let ⟨P, T ⟩ be a full VPT representation of G. There exists q ∈ V (T ) such that Cq = N[s]. Since N[s] ≠ K , by Lemma 4,
dT (q) ≤ 3. Thus, by Lemma 9, χ(B(G/N[s])) ≤ dT (q) ≤ 3. �

For the NP-completeness proof, we use a reduction from the well known chromatic number problem cited in Theorem 5.
Given a graph Gwewill construct in polynomial time a graphG ∈ VPT ∩ Split without dominated stable vertices, in such

a way that χ(G) = h if and only ifG ∈ [h, 2, 1] − [h − 1, 2, 1].
Let V (G) = {v1, v2, . . . , vn}, we define the graphG by means of its VPT representation ⟨P , T ⟩ as follows: the tree T is a

star with a central vertex q and leaves qi for 1 ≤ i ≤ n. The path family P contains:

a one vertex path Pi with V (Pi) = {qi}, for each 1 ≤ i ≤ n;
a three vertex path Pij with V (Pij) = {qi, q, qj}, for each 1 ≤ i < j ≤ n such that vivj ∈ E(G); and
a two vertex path Piq with V (Piq) = {q, qi}, for each 1 ≤ i ≤ n such that dG(vi) = 1.

We call each vertex ofG as the corresponding path of P .
In Fig. 3, we offer an example of a graph G, the VPT representation ofG, and the graphG.
Notice thatG is a split graph with the vertex set partitioned into a stable set of size n = |V (G)| containing the vertices

corresponding to the one vertex paths Pi; and a central clique of size |E(G)| + |{v ∈ V (G); dG(v) = 1}| containing the
vertices corresponding to the remaining paths. Since all these paths contain the vertex q of T , the central clique is Cq. The
other cliques ofG are the cliques Cqi for 1 ≤ i ≤ n, each one containing the vertices corresponding to the paths containing
the vertex qi of T respectively. The graphG has no more cliques. In addition, every stable vertex Pi ofG is non-dominated.
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Fig. 3. A graph G, the VPT representation ofG and the graphG.
The main properties ofG are stated in the following two theorems.

Theorem 13. If G is the graph obtained from G as above, then B(G/Cq) = G.

Proof. Notice that B(G/Cq) has exactly n vertices: Pi for 1 ≤ i ≤ n.
We will see that Pi and Pj are adjacent in B(G/Cq) if and only if vi and vj are adjacent in G. If PiPj ∈ E(B(G/Cq)) then there

exists a vertex of Cq adjacent to both Pi and Pj. Thus, the path Pij ∈ P , which implies that vivj ∈ E(G).
Reciprocally, assume vivj ∈ E(G), then Pij is a vertex of Cq and it is adjacent to Pi and to Pj inG. We claim that there exists

a vertex of Cq adjacent to Pi and non adjacent to Pj. Indeed, if dG(vi) = 1 then the required vertex of Cq is Piq. If dG(vi) > 1, vi
must have a neighbor vl with l ≠ j, then the required vertex of Cq is Pil. In an analogous way, we can prove that there exists
a vertex of Cq adjacent to Pj and non adjacent to Pi. Since Pi and Pj are non adjacent inG, by the branch graph definition, we
obtain that Pi and Pj are adjacent in B(G/Cq). We conclude that B(G/Cq) = G. �

Theorem 14. Let G be the graph obtained from G as above. For any h ≥ 4,G belongs to [h, 2, 1] − [h − 1, 2, 1] if and only if
χ(G) = h.

Proof. Since h ≥ 4, by Lemma 12 and Theorem 13, MaxC∈C(G)χ(B(G/C)) = χ(B(G/Cq)) = χ(G). Hence, by Theorem 11,G
belongs to [h, 2, 1] − [h − 1, 2, 1] if and only if χ(G) = h. �

Theorem 15. For any h ≥ 4, the problem of deciding whether a given graph belongs to [h, 2, 1] − [h − 1, 2, 1] is an NP-hard,
even when restricted to the class of VPT ∩ Split graphs without dominated stable vertices.

In addition, since an (h, 2, 1)-representation is a polynomial certificate of belonging to [h, 2, 1]; using Theorem 10 and the
construction above, we have proved the following result.

Theorem 16. For any h ≥ 3, the problem of deciding whether a given graph belongs to [h, 2, 1] is NP-complete, even when
restricted to the class of VPT ∩ Split graphs without dominated stable vertices.

4.1. A polynomial time solvable subclass

We have proved that deciding whether a given VPT ∩ Split graph without dominated stable vertices admits a
representation as intersection of paths of a tree with maximum degree h is an NP-complete problem. In what follows we
describe a non-trivial subclass of VPT ∩ Split where this problem is polynomial time solvable.

For n ≥ 4, an n-sun, denoted by Sn, is a split graph with stable set {s1, s2, . . . , sn}, central clique {v1, v2, . . . , vn},N(si) =

{vi, vi+1} for 1 ≤ i ≤ n − 1, and N(sn) = {vn, v1}. See Fig. 4.
We say that G belongs to SVS (special VPT subclass) whenever

• G ∈ VPT ∩ Split ,
• for all v ∈ K , |N(v) ∩ S| ≤ 2, where (S, K) is a split partition of G,
• if Sk, with k ∈ {4, 2n+1 for n ≥ 2}, is induced in G then there exists v ∈ K such that v is adjacent to two non-consecutive

vertices of the stable set of Sk.

The class SVS is not trivial, in the sense that it includes graphs in [h, 2, 1] for all h ≥ 4.
For example, for n ≥ 4, let An (see [10]) be the split graph with stable set S = {s1, . . . , sn}, central clique K = {vij, 1 ≤

i < j ≤ n} and N(vij) = {si, sj}, for all 1 ≤ i < j ≤ n. It is easy to see that An belongs to SVS, and B(An/K) is the complete
graph with set of vertices {s1, . . . , sn}. Hence, by Theorem 11, An ∈ [n, 2, 1] − [n − 1, 2, 1]. (As an example see Fig. 5.)

The following two lemmas are used in the proof of themain Theorem 19which proves that in the class SVS, for any h ≥ 4,
the graphs belonging to [h, 2, 1] can be recognized efficiently.
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Fig. 4. The sun graphs S4, S5 and S7 .

Fig. 5. The graph A4 belongs to SVS and A4 ∈ [4, 2, 1] − [3, 2, 1].

Lemma 17. Let G ∈ VPT ∩ Split with split partition (S, K) such that for all v ∈ K , |N(v) ∩ S| ≤ 2, and let n ≥ 4. If B(G/K) has
an induced Cn then G has an induced Sn.

Proof. Let ⟨P , T ⟩ be a VPT representation of G and q ∈ V (T ) such that K = Cq. Let Cn be an induced cycle of B(G/K) with
vertices s1, s2, . . . ,sn. It is clear that every si ∈ S. Since si is adjacent to si+1 in B(G/K), there exists vi ∈ K such that vi is
adjacent to si and to si+1 in G. Since, for all v ∈ K , |N(v) ∩ S| ≤ 2, if i ≠ i′ then vi ≠ vi′ , thus s1, s2, . . . , sn, v1, v2, . . . , vn
induce an n-sun in G and the proof is completed. �

Lemma 18. If G ∈ SVS with split partition (S, K), then B(G/K) is perfect.

Proof. Suppose to the contrary that B(G/K) is not perfect, then B(G/K) has an odd cycle or the complement of an odd cycle
as induced subgraphs. Since the complement of C5 is C5; and the complement of any odd cycle of size 7 or more has an
induced C4, it follows that B(G/K) has an induced Ck, for some k ∈ {4, 2n + 1 for n ≥ 2}. Therefore, by Lemma 17, G has an
induced Sk. Since G ∈ SVS, there exists v ∈ K such that v is adjacent to two non-consecutive vertices s and s′ of the stable
set of Sk. Notice that the existence of v implies that the vertices s and s′ are adjacent in B(G/K). This contradicts the fact that
Ck is an induced cycle of B(G/K). �

Theorem 19. For any fixed h ≥ 4, the problem of deciding whether a given graph G ∈ SVS belongs to [h, 2, 1] − [h − 1, 2, 1] is
polynomial time solvable.

Proof. Given G ∈ SVS, in order to determinate if G ∈ [h, 2, 1] − [h − 1, 2, 1], by Theorem 11 and Lemma 12, it is enough to
calculate the chromatic number of B(G/K), where K is the central clique of G. Notice that the branch graph B(G/K) can be
obtained in polynomial time. On the other hand, by Lemma 18, B(G/K) is perfect. Thus, by Theorem 6, its chromatic number
can be calculated in polynomial time. �

5. Future work

In this paper, we give, for any h ≥ 3, a characterization of [h, 2, 1] graphs, and we prove that recognizing the graphs
belonging to this class is NP-complete. In addition, we show a family, called SVS, in which this problem is polynomial time
solvable.We areworking in describing a larger subclass of VPT graphswhere this problem remains polynomial. On the other
hand, we are analyzing the possibility of extending the techniques used in the present paper to characterize the classes
[h, 2, 2].
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