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Estimation of Effectiveness Factor for Arbitrary Particle Shape and Non-Linear

Kinetics
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(CINDECA) CONICET- Universidad Nacional de La Plata, calle 47 No. 257, CP BI900AJK, La Plata, Argentina

A one-dimensional model, called generalized cylinder (GC), is employed to analyze the diffusion—reaction
problem in catalytic pellets of different shapes and nonlinear kinetics. The fitting parameter (o) of the GC
model was adjusted by matching the behavior of the actual pellet at high reaction rates. The errors of the GC
model, considering five different kinetic expressions (isothermal zero and second order, isothermal
Langmuir—Hinshelwood—Hougen—Watson type, first order exothermic, and first order endothermic) and
four different catalytic pellet shapes turned out to be less than 3.5%.

1. Introduction

The analysis of the diffusion—reaction problem in catalytic
pellets should be carried out by considering three spatial
coordinates (3D) in the general case. 2D geometries are also
frequent, due to axial symmetry and in the case of noncircular
channels in monoliths."* Numerical simulation of a catalytic
reactor involves the repeated evaluation of reaction rate up to
thousands of times and even higher orders will be needed for
reactor optimization or a plant simulation as a whole. The
occurrence of multiple reactions will further increase the amount
of numerical calculations. Moreover, the numerical approach
for solving 3D or 2D problems does not warrant getting a final
solution, because convergence problems often arise.

Thus, numerical procedures on multiple (3D or 2D) spatial
coordinates turn out to be a nonpractical option. In this context,
a feasible alternative is to employ models that reduce the spatial
dimension of the problem. A very simple approach to reduce
3D or 2D problems into a 1D problem was provided many years
ago by several authors [e.g., ref 3] by showing that at large
values of the Thiele modulus the effectiveness factor for a single
reaction does not depend on the pellet shape but just on the
ratio of pellet volume to external surface area, /. To perform
approximate evaluations at low and intermediate values of Thiele
modulus, any geometry satisfying the actual value of / could
be adopted, as a simple slab of half-width /. The expected
precision with this approximation is on the order of 20% for
relatively simple kinetics. However, for more complex kinetics
expressions like Langmuir—Hinshelwood—Hougen—Watson
(LHHW) type, the errors can rise up to approximately 40%.

A more convenient 1D model was formerly proposed by
Burghardt and Kubaczka.* This model, hereafter called the
generalized cylinder (GC) model, is based on a hypothetical
body in which mass and heat transfer take place along a single
coordinate 7' with variable cross section according to (z'/L)°,
where 7' = L defines the external surface and z' = 0 the
symmetry center. The value of L (effective diffusion length)
will result from matching the value of / of the actual pellet,
while o (shape factor) can be obtained by matching a geo-
metrical feature of the actual pellet. Therefore, the main
challenge is to formulate an adequate criterion for the model to
properly predict the catalytic behavior of the actual pellet.

*To whom correspondence may be addressed. E-mail: barreto@
quimica.unlp.edu.ar.

10.1021/ie800578p CCC: $40.75

Series expressions for the effective reaction rate can be
obtained from the limit of either slow or fast reactions. Second
terms of those series contain pellet-shape related parameters,
identified as y and I', respectively, that can be straightforwardly
employed to evaluate 0. Both criteria have been employed >°
with success for a large variety of pellet geometries and
isothermal linear kinetics, but the final formulation for parameter
I" of the fast kinetic regime is considerably simpler, as only
basic geometric quantities of the pellet are needed. On the
contrary, obtaining the value of parameter y of the slow kinetic
regime requires the solution of a Poisson’s type differential
equation in the actual pellet.

The main objective of this contribution is to validate the
predictive capacity of the GC model when o is evaluated by
matching the parameter I of the actual pellet. To this end, four
typical pellet shapes with some nonlinear kinetics expressions
(isothermal zero and second order, isothermal Langmuir—
Hinshelwood—Hougen—Watson type, first order exothermic,
and first order endothermic) were considered. The type of
kinetics tested in this work corresponds to those behaving in a
normal way (i.e., effectiveness factor is always equal to or less
than 1).

The paper is organized as follows. The GC model is
introduced in section 2. The criterion proposed in this paper to
evaluate its free parameter o is presented in section 2.1. In
section 3, we first describe the 3D pellets employed to test the
GC model and the different kinetic expressions used to that end.
A brief description of the numerical procedures follows, and
we finally present and analyze the comparison between values
of effectiveness factor estimated by the GC model and calculated
for the actual 3D pellets.

v Region S2

Figure 1. Sketch showing the intersecting angle 6.
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2. 1D Model Formulation

The generalized cylinder (GC) 1D model can be envisaged
by means of a solid body that allows material and heat transport
in only one spatial coordinate z' and presents a variable cross-
section ¢ according to

G_ ! —_—
SO=5,(2IL) =5,z

where S}, is the permeable external area of the actual pellet and
L (diffusion length) and o (shape factor) are the model
parameters.

The external surface is at z = 1 and the geometric center of
the body is at z = 0, where symmetry conditions apply for the
state variables. The model cross section exactly coincides with
the external surface area of the actual pellet at z = 1 [SCCS(1) =
Spl.

In addition, the volume V<€ of the model body,

' SL
C_ (Lo (Z)\ 40— P
=l SP(L) =T
is made equal to the actual pellet volume V). Hence, the
diffusion length becomes defined by

L=(oc+ 1) (D

where [ = V,/S, is the characteristic length of the actual pellet.

The conservation balance of the GC model for a single
reaction, uniform activity (¢ = 1), and uniform diffusion
coefficient (Da) of the key species A (usually the limiting
reactant), using variable Y as a dimensionless concentration,
leads to

’”d%(z”i—:) = (14 0)’®*HY) (2a)
Y=1 a z=1 (2b)
dY/dz=0 at z=0 (2¢)
where
Y=(Cy— Co)Cr— C,0) (2d)
=TT\ T (2e)

Ca and mp are the concentration and the net consumption rate
of the A species, respectively; the subscript “s” denotes that
the variable should be evaluated on the pellet surface S,, and
likewise “e” refers to equilibrium conditions.

The Thiele modulus @ is defined as

nAs

Q=P
DA(CAs - CAe)

3)

Values of o are restrained by eq 1 to be greater than (—1). In
addition, it is worth noting that the model exactly encompasses
the classical 1D problems in a slab (o = 0), an infinitely long
circular cylinder (0 = 1), and a sphere (0 = 2). The effectiveness
factor is expressed as

=1 +0) [ N de 4)

Extending the procedure proposed by Wedel and Luss’ for a
sphere to any value of o, the effectiveness factor can be
approximated for large values of @ with the first two terms of
a series in powers of (1/®):

Ly 1
oc _naf, T o
”high_cb[l cp(1+o)] (5a)

where
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IY)= 2f0Yr(Y' ) dy' (5b)
1,=[1(1)]"* (5¢)
L= [ ueni™ ay (5
1
L
I,== (Se)
1

2.1. Criterion for Adjusting o. As can be appreciated in
the expansion eq 5a, the second order term contains the factor
o/(1 + o) that just depends on the shape exponent 0. Provided
that a similar expansion as eq 5a is available for the actual
catalyst shape, the matching of the second order term will
provide the value of ¢. Keegan et al.®” recently developed a
general formulation for the second order term, as follows.
Assume that the surface S, of a catalyst pellet can be composed
of Ny smooth regions, that is, pieces with continuous curvature
radii, separated by N,, edges. In the cited works,*® Keegan et
al. expressed the second term by adding the contributions of
each region and each edge. The formulation for ;g is presented
here for the specific case of uniform catalytic activity:

_h Iy

Thigh = D 1- Er (6)
where

} N, Ny
r= STP ) wS, + ) EﬂWM] 7

v=1 u=1

_ fywds f%w dw
! SV ' w,u B Wu

The contribution of each smooth region v of area S, is given
by the curvature parameter W, which is the average on S, of
the sum W of principal curvatures of the region. In terms of
the local principal radii of curvature R, and R,

1 1
Y= R, + R,

The sign of a radius of curvature is positive if the center of
curvature is oriented toward the inside of the catalyst, and it is
negative for the opposite sense.

Similarly, the contribution of each edge « of length W, is
given by @,, which is the average along W, of a coefficient w
fully formulated in ref 9.

The coefficient w depends very weakly on the type of reaction
rate expression but strongly on the intersecting angle 0 that a
pair of smooth regions defines when they meet at the edge. The
angle 6 can be visualized in Figure 1, where the pair of smooth

I
0,
r 61
11 i
O=5/3TC
Q=12 ; 0=21

Figure 2. Sketch of a trilobe particle
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Table 1. Contributions to I for a Trilobe Particle (Figure 2) Considering r(Y) = Y?

regions Sy v, ¥ S], dimensions
lateral surface (3) (5/3)taH 1/a (5/3)nH = 13.1
flat base (2) Sp 0.0 0.0 a=1,b=1.155 H=25
(cross section area)
edge W, . (0) [0 Wl derived quantities
1(6) (573)ma w(7l2) = 2.46 SB3)maw(w2) = 12.9 S, = 58.4,V, =240, = 0410,
01 = 77,'/2, 02 =2
11 (3) H w(2m) = —2.06 Hw(2m) = —5.15
sum 101
r 0.71 (0 =245)

regions is denoted by S1 and S2. For curved regions 6 will in
general vary with the position on the edge; in Figure 1 the angle
6 corresponds to the point O of the edge and Z is the plane
normal to the edge at O.

The coefficient @w can be precisely evaluated from the
following approximation:’

b J‘[Z 0 .
§1—«Q)w} if 0<f=<x
7T
w(0)= 2 (®)
il 1_9] if w<6<27
(1 —A)0 + m(2A — ) al
where

by=5.21,"/1,""

A=—wQm)=1.91,/1,)""

An expression for I' more general than eq 7, allowing
nonuniform catalytic activity and a general transport model, has
been formulated by Keegan et al.*?

It is clear from eqs 5a and 6 that the same asymptote  —
I,/® will be obtained as ® — o (i.e., for the limiting regime)
for both the GC model and the actual pellet.

In turn, if we wish to match the behavior up to the second
term in the series of eqs 5a and 6, the parameter o should be
defined as

I
O=1_T ©)]

Equation 9 states the criterion proposed in this work to
approximate the behavior of a given pellet by means of the 1D
GC model. By construction, the criterion guarantees that the
GC model will be highly accurate at relatively large values of
®. Also, differences will tend to zero if ® — 0 as » — 1 for
both the GC model and the actual pellet. The expectation, to
be assessed in the next section, is that eq 9 imposed to the GC
model will allow it to reproduce the behavior of the actual pellet
at intermediate values of ®.

Example of Evaluation of I'. Let us consider a trilobe pellet
depicted in Figure 2. We can identify five smooth regions
corresponding to the two flat bases and the three lateral surfaces
(cylindrical envelopes of the lobes). The curvature is uniform
on each of the five regions: zero for the flat bases and (1/a) for
the lateral surfaces.

There are nine edges: six curved edges, denoted by I in Figure
2, corresponding to the intersection of each lateral surface with
each flat base, and three straight edges (II) from the intersection
of each pair of lateral surfaces. The intersecting angle 6 of each
of the nine edges is uniform: 6; = 7/2 for the I edges and 6,
= 2 for the II edges (see Figure 2).

The contributions to I" (eq 7) from the geometrical elements
from the five smooth regions and nine edges just described are
displayed in Table 1 for second order kinetics, r(¥) = ¥>. For

Table 2. Cross Section of the Analyzed Particles”

Particle Cylinder Trilobe Wagon wheel Toroid
©
b i
. WV
Cross section <
ud © QY
b b
y=0.866 e=0.2b
Dimensions x=0.286 y=0.5
x=0.684 x=0.477

“y =alb, x = HI(H + b); H is the pellet length.

this kinetic expression /; = 0.8165 and I, = 0.400 from eqs 5c
and 5d; these parameters are needed to evaluate w (eq 8).

3. Results and Discussion

This section is devoted to evaluating the predictive capacity
of the GC model to estimate effectiveness factors for the four
catalytic particles shown in Table 2. All the particles in Table
2, except the toroid, are cylinders with different cross sections.
Their relative dimensions were taken from manufacturer cata-
logues (e.g., Haldor Topsoe, Criterion, etc.). These shapes were
selected because of being representative of many applications;
trilobular particles are usually employed for liquid phase
reactions, wagon wheels are used for fast gas phase reactions,
and cylindrical extrudates are widely used in almost every type
of catalytic system. A variety of processes can employ those
shapes, like hydrogenations, isomerizations, oxidations, hy-
drotreatments, steam reforming, naphtha reforming, and so forth.

To our knowledge, the toroidal pellet is not presently
commercialized. Nevertheless, it was included as a case study
because the toroidal shape shows interesting features: most of
the external surface could be easily accessible to reactants in
either gas or liquid phase and a bed packed with toroids will
show a relatively high voidage and hence a low pressure drop.

It should be pointed out that the GC model has been
previously tested for a much wider collection of commercial
pellet shapes with isothermal linear kinetics.'® Effective reaction
rates were estimated with very good precision (i.e., errors less
than 3%).

The application of the GC model for particles in Table 2 was
carried out for five types of nonlinear kinetic expressions
(isothermal zero and second order, isothermal Langmuir—
Hinshelwood—Hougen—Watson type, first order exothermic,
and first order endothermic). The studied expressions can be
gathered in the following general form:

_wnosi-n( 1+ K\
=Y T

The exponential factor in eq 10 arises from the dependence

of the kinetic coefficient with temperature according to Arrhe-

(10)
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Table 3. Shape Exponents (¢) and Maximum Errors (e€max) for the Analyzed Particles

particle
cylinder trilobe wagon wheel toroid
kinetic expression o Emax Emax o Emax o Emax
isothermal zero order 1.34 3.50% 3.00 2.32% 0.55 3.02% 1.00 0.29%
_J1, ifY>0
0, ifY=0
isothermal second order 1.19 0.94% 2.44 0.29% 0.39 0.65% 1.00 0.10%
r=Yy
exothermic first order 1.28 1.75% 2.78 1.01% 0.47 0.86% 1.00 0.23%
ry) =ye!'v
endothermic first order 1.19 1.00% 2.47 0.38% 0.43 0.50% 1.00 0.15%
r(Y)=Ye
isothermal LHHW 1.30 2.00% 2.85 1.25% 0.47 1.02% 1.00 0.25%
2 \2
rY) = Y(—)
1+Y
nius law and the relation between concentration and temperature = lﬁs a1

that can be derived by combining the mass and energy
conservation balances (see, e.g., ref 11). Strictly, the exponential
factor becomes exp[d(1 — Y)/(1 + (1 — Y))], where 6 = Sy,
y is the Arrhenius number, and 3 is the Prater number.'' As in
practice, 3 is small (being a representative range 0.01 < || <
0.1; we simplified the denominator and took directly exp[d(1
— Y)] in eq 10, for the purposes of the present manuscript.

The apparent reaction order at the external surface is defined
as

= d In r(Y)
s ( olnY )Y:l

The parameters in eq 10: J, n, d, and K, have been chosen
so r(Y) shows a “normal” behavior, that is, that ng > 0 for 0 <
Y < 1 (consequently, 7 < 1). The exothermic first order reaction
tested in this work is » = Y exp(1 — Y), which corresponds to
n=1,d=0,and 60 = 1 in eq 10, renders ns = 0. The isothermal
LHHW kinetics is r = Y(2/(1 + Y))?, defined by n = 1, d= 2,
0 =0, and K = 1 in eq 10, and also renders ns = 0. The first
order endothermic expression is r = Y exp[—(1 — Y)], which
corresponds ton = 1, d = 0, and 6 = —1, and we obtain ng =
2. Strictly, the definition of the isothermal zero-order reaction,
in addition to eq 10 with n = d = 6 = 0, requires stating that
r =0 when Y = 0. Finally, the isothermal second order reaction
r = Y? arises from eq 10 by defining n =2,d = 6 = 0.

Recalling that for each pellet geometry the parameter I" (eq
7) should be calculated to define the GC parameter o (eq 9), it
is convenient to remark that for the three cylinders in Table 2
the smooth regions in which S, is decomposed show uniform
curvature W. Considering that flat bases present no curvature,
the only contributions to the first summation in eq 7 correspond
to circular sectors of the cylindrical envelopes, that is, W, =
1/R,, where R, is the circle radius (the other principal curvature
radius is o). In addition, the edges for the cylindrical particles
in Table 2 always show a constant intersection angle 0, either
for the longitudinal edges or for the edges of the bases (in this
case, 0 = 71/2). Consequently, eq 7 becomes (for finite cylinders)

v A Ny
—_P
r=2 HZ @, + Z W,(0,)
p V= u=

Where ¢, is the angle sustained by the circular sector v. The
toroidal particle shows a single smooth region (without edges)
with nonuniform curvature. Then, from eq 7

From the Appendix in ref 12, Ws = 1/a (the radius a is defined
in Table 2). Besides, [ = a/2. Taking into account eqs 11 and
9, we obtain for the torus I' = 1/2 and o = 1. These are the
values corresponding to an infinitely long circular cylinder.

To validate the predictive capacity of the GC model, the errors
in 7 estimation were analyzed for every particle shape and
kinetic expression. The relative error is defined as

GC _
e=100"—1
1

where 7 stands for the effectiveness factor of any of the actual
3D pellets shown in Table 2 and % for the value obtained
from the GC model employing the corresponding values of o,
which are given in Table 3 for each shape and each kinetic
expression. It can be appreciated that the effect of kinetics on
o is weak, as already mentioned in section 2.1.

The solution of the mass conservation equation to obtain the
effectiveness factor # for the shapes in Table 2 was carried out
by means of the software Femlab v3.1 of Comsol Inc. (numerical
solution of differential equations by the finite elements method).
Instead, a routine written by us, which uses a shooting procedure
to solve an integral formulation of the 1D conservation equation,
was employed for evaluating #9C. In either case, for the
evaluation of 7 or 7°C, the size of the mesh for numerical
evaluation was adjusted to guarantee accuracy of about 0.1%.

Figure 3 shows the behavior of ¢ while varying @ for the
trilobe particle with isothermal LHHW, exothermic first order,
and isothermal first order kinetics (the latter included for
reference). It can be appreciated that for the three kinetic
expressions the maximum errors take place at values of @ of
approximately 1; these kind of curves are typical for all particles
and reaction rate expressions studied in this contribution. Hence,
hereinafter the attention will be focused on the analysis of the
maximum errors defined as

Emax — qu)tx{e}

It can be concluded from Figure 3 that the GC model leads
to greater values for epm,x for the exothermic first order and
isothermal LHHW Kkinetics than for the isothermal first order
kinetics. This trend can be generalized: the lower the apparent
reaction order, the lower precision.

Nonetheless, the level of errors arising from the use of the
GC model is most satisfactory in all cases, as becomes evident
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Figure 3. ¢ vs @ for the trilobe particle (y = 0.866, x = 0.684, Table 2).

from the complete set of results summarized in Table 3. It can
be appreciated that en,y, for all shapes and kinetic expressions
here studied, is kept below approximately 3.5%.

It is worth mentioning that the toroidal pellet behaves almost
exactly as an infinitely long circular cylinder: the maximum
error from Table 3 is lower than 0.3% (i.e., similar to the
intrinsic level of precision of the numerical evaluations).

The cylindrical extrudates present, on average for all kinetic
expressions, the maximum values of &p,, in Table 3. These
results deserve a comment. Cylindrical extrudates are com-
mercialized in a great variety of sizes (different values of x in
Table 2), and the aspect ratio employed in this contribution (x
= (.286) corresponds to the value for which the maximum value
of emax (&= 1.5%) was detected in the estimation of the
effectiveness factor for an isothermal first order reaction.® Hence,
the ratio x = 0.286 is nearly the most awkward case to test the
GC model performance for nonlinear kinetics.

The values resulting for o (see Table 3) range from o = 0.39
(for the wagon wheel with an isothermal second order expres-
sion), that is, slightly larger than for a slab (¢ = 0), to 0 = 3
(for the trilobe particle with isothermal zero order), that is, larger
than the exponent of a sphere (o = 2).

4. Conclusions

In the present contribution the one-dimensional GC model
was employed to estimate effectiveness factors in catalytic
pellets of different shapes and nonlinear kinetics.

Some catalyst shapes employed in commercial processes were
studied to demonstrate that the GC is a useful numerical tool
for practical purposes. Specifically, trilobe pellets, typically used
in a number of hydrorefining processes, seven-hole cylinders
(wagon wheel) employed in dry/wet reforming of low hydro-
carbons/oxygenates, and the well-known cylindrical extrudates
broadly used in many processes were considered. A toroidal
pellet was also included, in spite of not being a typical
commercial shape, because it presents interesting geometrical
features for its potential application.

The GC model was applied for five types of nonlinear kinetic
expressions (isothermal zero and second order, isothermal
Langmuir—Hinshelwood—Hougen—Watson type, first order
exothermic, and first order endothermic).

The GC model-free parameter (0) is fitted so as to reproduce
the behavior of the actual pellet at high reaction rates. The shape
factor I' (eq 7) governs such behavior for a pellet of arbitrary
shape, and eq 9 provides the fitting value of o. The shape
parameter I" (eq 7) can be easily calculated for any 2D or 3D
geometry from the curvatures of the external surface S, and
the intersecting angles defining its edges.

The maximum deviation between the actual effectiveness
factors and values calculated with the GC model for the whole
set of particles and kinetic expressions was lower than 3.5%,
which can be considered completely satisfactory for any
practical application.

A number of aspects deserve further study to appraise
comprehensively the virtues of the GC model and the companion
criterion to adjust its parameter. Some other shapes of practical
interest can be included to detect eventual limitations that in
turn may prompt for developing alternative approaches. Perhaps
the most important extension of this study will concern the
analysis of simultaneous multiple reactions, as the saving in
computing efforts when using a one-dimensional approximation
will be most significant.
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Nomenclature

C, = molar concentration of species A [mol m ]

D, = diffusion coefficient of species A [m? s~ ']

H = length of a cylindrical pellet [m]

I, = coefficient defined in eq 5c [dimensionless]

I, = coefficient defined in eq 5d [dimensionless]

| = V,/S,, characteristic length [m]

L = diffusion length of the GC model [m]

Ns = number of smooth regions

Ny, = number of edges

I, = coefficient defined in eq 5e [dimensionless]

R,, R, = principal radii of curvature [m]

r(Y) = relative reaction rate defined in eq 2e [dimensionless]

S, = external surface area of the catalytic body accessible to
reactants [m?]

S, = area of the vth smooth region [m?]

§9C = cross section of the GC model body [m?]

V, = volume of the catalytic body [m?]

VS€ = volume of the GC model body [m?]

W, = length of uth edge [m]

Y = dimensionless concentration defined in eq 2d

z = dimensionless coordinate in the GC model

Greek letters

I'= coefficient defined in eq 7 [dimensionless]

W = (1/R,) + (1/Ry), sum of local principal curvatures on S, [m™ ]
Yy, = average value of W on S, [m™']

7a = specific consumption rate of A species [mol m > s~ ']

® = Thiele modulus defined in eq 3 [dimensionless]

7S = GC model effectiveness factor [dimensionless]



n = effectiveness factor [dimensionless]

o = shape factor — GC model parameter [dimensionless]
6 = intersecting angle [rad]

w = parameter defined in eq 8 [dimensionless]
Subscripts

e = chemical equilibrium

s = value at S,
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