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Abstract

Theoretical estimates are given for the overall dissipative response of two-
phase ferroelectric composites with complex particulate microstructures under
arbitrary loading histories. The ferroelectric behavior of the constituent
phases is described via a stored energy density and a dissipation potential in
accordance with the theory of generalized standard materials. An implicit
time-discretization scheme is used to generate a variational representation of
the overall response in terms of a single incremental potential. Estimates
are then generated by constructing sequentially laminated microgeometries of
particulate type whose overall incremental potential can be computed exactly.
Because they are realizable, by construction, these estimates are guaranteed to
conform with any material constraints, to satisfy all pertinent bounds and to
exhibit the required convexity properties with no duality gap. Predictions for
representative composite and porous systems are reported and discussed in the
light of existing experimental data.

Keywords: ferroelectrics, composites, homogenization methods, hysteresis

(Some figures may appear in colour only in the online journal)

1. Introduction

Ferroelectricity refers to the capacity of certain polar dielectrics to sustain a spontaneous
electrical polarization that can be altered by application of an external electric field (Lines
and Glass 1977). Since this change in polarization is usually accompanied by a mechanical
deformation, ferroelectrics are electro-deformable materials which find applications as sensors
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and actuators (e.g. Xu (1991), Capsal er al (2012)), energy harvesters (e.g. van den Ende
et al 2012), material damping enhancers (e.g. Asare et al 2012) and other microdevices.
Ferroelectric ceramics such as barium titanate and lead zirconate titanate are probably the
most prominent examples among this class of materials.

The search for electro-deformable materials with specific combinations of properties not
found in monolithic ferroelectrics has recently motivated the development of an increasing
variety of two-phase ferroelectric composites. Composites with different purposes have been
produced, for instance, by dispersing ferroelectric ceramic particles in a nonpolar polymeric
matrix (e.g. Lam er al 2005, Capsal et al 2012, Olmos et al 2012), by dispersing metallic
particles in a ferroelectric ceramic matrix (e.g. Duan er al 2000, Zhang et al 2010, Ning et al
2012) and by dispersing ferroelectric ceramic inclusions in a ferroelectric polymeric matrix
(e.g. Mao et al 2010, Petchsuk 2011). Ferroelectric ceramics with controlled porosity have also
been produced for certain acoustic applications (e.g. Piazza et al 2010). Now, under sufficiently
high electric fields, all these composites exhibit significant electrical hysteresis and dissipation.
The main contribution to that overall dissipation comes from the change of spontaneous
polarization in the ferroelectric phase—which is the result of certain irreversible processes
occuring at the atomic scale (e.g. Damjanovic 2006)—, and its precise amount depends on the
dielectric response of each of the constituents and their geometrical arrangement. The purpose
of this work is to theoretically estimate such dependence.

The problem calls for a methodology to estimate the overall response of two-phase
dielectric composites with complex microstructures and with constituent phases that can
simultaneously store and dissipate electrostatic energy. While full-field simulations are
certainly an option, the focus here is on semi-analytical estimates requiring low computational
power. Following Bassiouny et al (1988), we treat the spontaneous—or irreversible—
polarization as an internal state variable and describe its evolution via the formalism of
generalized standard materials (GSMs). There are several methods already available to
homogenize multi-phase GSMs, mostly derived in the context of elasto-viscoplasticity. One of
the first rational approaches in that context is due to Hill (1965), who proposed a rate version of
the linear self-consistent approximation to improve on the elementary approximations of Taylor
(1938) and Sachs (1928). This work spawned a large number of ad hoc linearization schemes
which were applied to diverse material systems such as polycrystalline materials and reinforced
solids, and it even inspired micromechanical models for polycrystalline ferroelectrics (Huber
etal 1999). Unfortunately, the estimates produced by these simple methods become inaccurate
when the material system exhibits strong constitutive nonlinearities and large heterogeneity
contrasts (see, for instance, Chaboche ef al 2005 and references therein). The main obstacle to
deriving accurate estimates for this class of materials was probably the lack of a suitable
variational representation of the overall response. Such representation was given a few
years ago by Miehe (2002) building on previous work by Ortiz and Stainier (1999). In this
incremental variational representation, the field equations are discretized in time in such a way
that the constitutive relations can be expressed in terms of a single incremental potential in
line with standard variational formulations for purely energetic—or purely dissipative—solids.
This fact lead Lahellec and Suquet (2004, 2007a, 2007b) to realize that rigorous estimates could
be derived by making judicious use of linear-comparison techniques akin to well-established
techniques for purely energetic solids. This promising strategy paved the way for generating
a multitude of approximations whose accuracy is progressively being assessed (Lahellec and
Suquet 2007a, 2007b, 2013, Brassart et al 2011).

An alternative strategy consists in the construction of so-called solvable microgeometries.
These are special classes of microgeometries that reproduce the essential geometrical features
of the actual composite microstructure while at the same time allowing the exact computation
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of the overall potential. The main advantage of this strategy over the aforementioned methods
is that the resulting predictions are guaranteed to conform with material constraints, to satisfy
all pertinent bounds and to exhibit the required convexity with no duality gap. The strategy
was initially pursued by Maxwell (1873) to estimate the overall ohmic resistance of stratified
media, and it has developed greatly since then for materials with linear responses characterized
by a single potential (see, for instance, Milton 2002 and references therein). Central to
this approach was the observation by Maxwell (1873) and Bruggeman (1935) that the set
of solvable microgeometries could be enlarged by following iterative procedures whereby
the constituent phases in a solvable microgeometry are themselves identified with solvable
microgeometries at a lower length scale, thus producing hierarchical microgeometries of
increasing complexity whose overall potential can be determined iteratively. For instance,
Maxwell (1873) constructed particulate composites with an isotropic response by iterating
anisotropic laminated microgeometries; the resulting microgeometries are known as sequential
laminates. Bruggeman (1935), in turn, constructed particulate composites with arbitrary
volume fractions of particles by iterating microgeometries with dilute volume fractions
of particles; this approach is known as the differential scheme. These iterative schemes
considerably widened the range of microstructures that could be modeled, and proved very
useful in estimating the overall response of two-phase linear dielectrics and other linear media
characterized by a single potential.

Now, the use of similar iterative schemes in the context of nonlinear GSMs characterized
by two potentials has been encumbered by the facts that: (i) the overall response of a nonlinear
composite does not exhibit, in general, the same functional dependence on the external fields
as the local responses and (ii) the overall response depends, in general, on an infinite number
of internal variables'. This study reports on a first attempt to use solvable microgeometries to
generate relatively simple—yet representative—models for ferroelectric composites in terms
of a finite number of internal variables. We begin in section 2 by formulating the problem of a
heterogeneous dielectric body whose constituent phases are modeled as generalized standard
materials. The overall reponse of the composite system is then defined in section 3 by invoking
the notion of representative volume element of Hill (1963). Making use of the variational
representation of Miehe (2002), the overall response of sequentially laminated microgeometries
isderived in section 4. The choice of this specific class of solvable microgeometries is motivated
by recent works on nonlinear GSMs characterized by a single potential, where sequential
laminates have been successfully used to model particulate systems such as viscoplastic
composites and porous media (e.g. deBotton and Hariton 2002, Idiart 2006, 2008, Danas
et al 2008a, 2008b) and non-ohmic composite conductors (Hariton and deBotton 2003).
Furthermore, a rigorous geometrical characterization of these microgeometries is now available
from the work of Idiart and Ponte Castafieda (2013). Finally, sample results are reported and
discussed in section 5 and some concluding remarks are given in section 6.

2. The composite material model

2.1. The material system and field equations

The material system under study is idealized here as a heterogeneous body occupying a domain
2 and made up of a continuous matrix containing a uniform dispersion of inclusions. The
matrix phase will be identified with the index » = 1 while the inclusions will be collectively
identified with the index r = 2. Each phase occupies a domain Q") C Q (r = 1, 2) such that

! This conflicts with one of the practical purposes of homogenization procedures, which is to generate a simple
description of the overall response in terms of a reduced number of macroscopic variables.
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Q = U?_, Q") The domains " can be described by a set of characteristic functions x " (z),
which take the value 1 if the position vector z is in ) and 0 otherwise.

We restrict attention to isothermal processes produced by electrostatic interactions only.
These interactions are represented by a fixed electrostatic potential é applied via a surface
electrode occupying the portion 92, of the body boundary 9<2. For simplicity, we disregard
the possible presence of free charges within the material and the effects of electromechanical
coupling on the ferroelectric response®. The governing field equations are then given by—see,
for instance, Kovetz (2000)—

V.-D=0 and E=-V¢ in R, e
d=¢ ondQ, and [D-n]=0 ondQ\IQ,, )
with
_|eoE in R\ Q, 3)
eFE+ P in Q.

In these expressions, ¢ is the electrostatic potential, D, E and P are the electric displacement,
the electric field and the material polarization, respectively, [-] denotes the jump across 02,
is the outward normal vector to 9$2 and €; denotes the electric permittivity of vacuum. Along
internal surfaces of discontinuity, the various fields must satisfy the jump conditions

[¢] =0, [D-n]=0, “)
where n denotes the normal vector to the discontinuity surface. In addition, the electrostatic
potential must vanish at infinity, i.e. ¢ — 0 as |x| — oo.

The above field equations must be supplemented with constitutive relations describing
the dielectric response of each phase. Given our interest on ferroelectric composites, we
follow the thermodynamic approach of Bassiouny ef al (1988) wherein dissipative processes
are characterized by an irreversible polarization p playing the role of an internal variable. This
framework is general enough to characterize simple responses such as linear polarizability as
well as complex responses such as rate-dependent ferroelectricity—see, for instance, Kamlah
(2001) and Miehe and Rosato (2011).

The total energy of the material system and its surroundings is thus written as

1
5:/ E(x, P,p) dV+/ —eE*dV, 5)
Q RS 2

where the first term corresponds to the energy stored in the composite material while the second
term is the electrostatic energy associated with the electric field in the entire space. The energy
density E is assumed to be convex in P and p; it is also taken to depend explicitly on position
due to the heterogeneity of the body. In turn, the dissipation of the system is assumed to be of
the form

e
D= /Q o@.p)-pav. ©)

where ¢ is a convex, positive function of the irreversible polarization rate p such that
¢(-,0) = 0, which can be used to characterize dissipative processes such as microscopic
domain switching in ferroelectrics. The form (6) guarantees positive dissipation.

Thermodynamic arguments then imply that the constitutive relations of the material are
given by (see Bassiouny et al 1988)

E=Luprp  ad 0L e Pp)+ 2@ p) =0 %)
_8P x, ’p 8]) x, ,P 8]) va — Y,

2 For typical ferroelectric composites, the overall dielectric response under stress-free conditions is not expected to
be greatly affected by the local electromechanical coupling.
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where the first expression gives the relation between the electric field and the polarization
and the last expression provides the evolution law for the irreversible polarization p. These
constitutive relations conform to the so-called generalized standard material model of Rice
(1971) and Halphen and Nguyen (1975). In the case of nonsmooth potentials, the derivatives
in (7) should be understood in the sense of the subdifferential of convex analysis.

Now, electrostatic problems are more conveniently formulated in terms of a free energy
density defined as

Y (z, E,p) =sup[E - P — E(z, P,p)] + 16 E*, (®)
P

where the first term corresponds to a partial Legendre transformation of E with respect to P.
Note that the function ¥ is thus convex in E but concave in p. The constitutive relations (7)
can then be written as

Iy Iy do .
D=_—(z,E, d —— (@, E,p)— —(z,p) =0, 9
o & E.P) an op (z, E,p) op (z,p) &)
where the polarization P has been eliminated in favor of the electric field E. Making use of

the characteristic functions x ”, the potentials v and ¢ are finally expressed as

2 2
Y@ Ep) =) x"@ v (E,p), o@ p) =) x7@ o), (10)

r=1 r=1

where ¥ and ¢ denote, respectively, the free energy densities and dissipation potentials
of each phase r.

The field equations and boundary conditions (1)—(4), together with the constitutive
relations (9)—(10) and appropriate initial conditions, completely define the electrostatic
response of the system under consideration.

2.2. Some material responses

Even though the approach considered in this work allows for general stored energy densities
E and dissipation potentals ¢, it proves useful to record at this point some specific forms
of common use.

Many nonpolar solids can be characterized as ideal isotropic dielectrics with a non-
dissipative linear response; in this case, the potentials are of the form

EV(P,p) = L P? and o () =0, (11)

where k") is a positive material parameter characterizing the polarizability of the material; the
corresponding free energy density is given by

v (B, p) = 1V E?, (12)

where € = ¢y + k" represents the permittivity of the material. A perfect conductor where
the electric field must vanish is characterized by the limiting case ¥’ — 0 (¢ — o0).

On the other hand, polycrystalline polar solids exhibiting isotropic ferroelectricity are
commonly characterized by potentials of the form—see, for instance, Kamlah (2001) and
Miehe and Rosato (2011)—

(r) = (r)

1+m®
, 1, , RN 1
EQP,p) = kOP—p?+EL®), o) =ellpl+ 0(,)(.'(’,))
+m po

13)
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. " e Pl Ipl
EQ () = —hg pl”" {ln (1 - p'fr)) * p'fn} , (14)
S S

where Eb(f ) and @) represent the energy stored and dissipated via microdomain switching.
In the dissipation potential (13),, el is the coercive field strength of the material—i.e. the
electric field level above which domain switching is triggered—, e(()r) and p(()") are the reference
electric field and polarization rate-characterizing the rate dependence of the switching process
and m") is a rate-sensitivity exponent. In the stored energy density (14), in turn, pﬁr) is the
saturation polarization and h(()r) is a material parameter characterizing the hysteresis slope. The

corresponding free energy density is given by

yO(E,p) = LeVE*+E-p— E (p), (15)

with

where, again, € = otk represents the permittivity of the material. In the limit el — o0,

this model reduces to the ideal dielectric described previously.

3. The overall response

The focus of this work is on material systems where the characteristic size of the microstructural
heterogeneities—e.g. particles—is much smaller than the characteristic size of the composite
body and the scale of variation of the boundary conditions. In this case, we can define an overall
response of the composite material as the relation between conjugate fields averaged over a
‘representative volume element’ (RVE) E which contains a sufficient number of heterogeneities
for the overall response to be effectively independent of the prevalent conditions on its boundary
08, so long as the conditions are macroscopically uniform. This notion of RVE was made
precise by Hill (1963) in the context of linearly elastic composites, and its range of validity
in the broader context of generalized standard materials has been discussed by Germain et al
(1983).

The determination of the overall response thus requires the solution to the above field
equations for some choice of macroscopically uniform boundary conditions on the surface of
the RVE. Also following the work of Hill (1963) in this regard, we choose the affine boundary
conditions

¢=—E-m onogE. (16)

Application of Gauss’ theorem then shows that the volume average of the field E over the
domain E occupied by the RVE is precisely E. An additional consequence of the condition
(16) is that the solution to the field equations within E becomes independent of the electric
field external to E.

We now make use of the variational representation for the overall response of Miehe
(2002). In this representation the field equations (1)—(16) defined over the RVE are discretized

in time (f) = 0,1, ..., ty, tys1, - .., ty = T) following an implicit Euler scheme, so that the
fields ¢,+1 and p,,, at time #,,; are solution to
E, 1 = =V, V-Dpy =0 in g, (17)
oy oy dg | -
Dl’l+l = ﬁ(m’ El’l+]7pn+1)7 %(maE}’l+]7pn+]) - 5 x, HT :0 m =,
(13)
Gui1 = —Epu - x ond &, (19)
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where ¢, and p, are the known values of the fields at the previous instant #, and At is the
time step, which has been assumed to be fixed—i.e. independent of n—for simplicity. The
key observation in the context of these equations is that the constitutive relations (18) can be
written as

ow
Dn+l = ﬁ(ma En+l; Pn), (20)
where w is an incremental potential defined by
w(z, B p,) = sup [w(m, E.p)—Arg <$ P ;tp”ﬂ . @1
p

This follows from the facts that i is concave in p and ¢ is convex in p, and that the

Euler-Lagrange equations associated with the supremum in (21) at E,;; are precisely the

relations (18), for p,,;. That the derivative of w with respect to the electric field yields the

electric displacement D,,,; follows immediately from (18); and the stationarity of (21) with

respect to p. It is simple to show that the incremental potential w is a convex function of E.
Of course, the incremental potential admits the form

2
w(x, B;p,) =Y xV@w”(E;p,), (22)
r=1
where w'") are incremental phase potentials defined similarly in terms of the potentials y "
and ¢, In particular, when the phase potential 1 is of the form (15), the incremental phase
potential is given by

1 _
w®(B:p,) = 3¢ B+ sup [E p—ED(p) — At o (u)} , 23)
P At

which is a strictly convex function of E. Note that the second term in this expression is the
Legendre transform of the function (E{’ + At ¢) with respect to p. When the function E ]’
is strictly convex, the optimal p is unique.

Given (20), the equations (17)—(19) adopt the form
0
E=-Vé, V.-D=0, D:%(m,E;pn) in &, (24)
¢o=—E x ondE, (25)

where the subscript 7 + 1 has been dropped to ease notation. For given p, and prescribed E,
these equations provide the electrostatic fields at time f,,,;. Strict convexity of w implies the
field FE is unique and locally bounded, and when the local potentials are of the form (23), the
field p is also unique and locally bounded. Now, the system (24)—(25) are the Euler-Lagrange
equations of the variational problem (Miehe 2002)

W(E;p,) = min (w(z, E;p,)), (26)
Eek(E)

where (-) denotes volume average over Z, and K(E) denotes the set of fields E : & — R?
such that there exists a continuous field ¢ : E — R satisfying (24); in E and (25) on 0 E. It
then follows from Hill’s lemma that

D="2Ep,. 27)
oF

where D = (D) and E = (E). Thus, this expression relates the averages of the electric
displacement and electric fields over E, and therefore constitutes the overall response of
the composite material in the sense of Hill (1963). The overall potential @ represents the
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(a)

Figure 1. Two-phase laminates: (a) simple or rank 1 laminate, (b) rank 2 laminate
(62> &1).

volume average of the local potential w, and completely characterizes the overall instantaneous
response attime 7,,,1. It can be shown that (strict) convexity of the local potential w in E implies
(strict) convexity of the overall potential i in E (Ponte Castafieda and Willis 1988). Note that
despite appearances, equations (22)—(24) do not correspond strictly to a two-phase composite
but rather to a composite with an infinite number of phases. This is because the field p,, is, in
general, heterogeneous even within each constituent phase. However, a key observation for
the iterative scheme of the next section is that expression (26) is actually valid for any material
response of the form (24);, which, in view of (27), includes the overall response.

Finally, the macroscopic fields associated with the problem (1)—(4) attime #,,,. are given by

V-D=0 and E=-V¢ in R?, (28)
d=¢ oniQ, and [D-n]=0 on IQ\9L,, (29)

with the constitutive relation (27).

4. A sequentially laminated model for particulate composites

We now derive an expression for the overall potential w of a special class of sequentially
laminated microgeometries representing particulate composites. A sequential laminate is
an iterative construction obtained by layering laminated materials (which in turn have been
obtained from lower-order lamination procedures) with other laminated materials, or directly
with the homogeneous phases that make up the composite (see, for example, Milton 2002).
The rank of the laminate refers to the number of layering operations required to reach the
final sequential laminate. It will turn out that the number of internal variables appearing in the
overall potential is finite and dictated by its rank. Throughout this section a subscript & is used
to denote quantities corresponding to the rank-k laminate.

Given our interest in two-phase composites comprising a continuous matrix containing a
random dispersion of inclusions, we follow the work of Idiart (2006, 2008). Thus, a sequence
is formed by layering a laminate with the matrix material at every step, here identified with
r = 1. In this sequence, a rank-1 laminate corresponds to a simple laminate with a given
layering direction n|, with phases 1 and 2 in proportions (1 — f;) and f;, as shown in
figure 1(a). The characteristic functions describing these microgeometries depend on x only
through the combination « - n;. Now, the mathematical structure of the minimization problem
(26) is analogous to that of non-dissipative two-phase dielectrics. It then follows that the exact
electric field in a simple laminate, subjected to affine boundary conditions (16), is uniform per

8
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phase. The overall potential w; of the rank-1 laminate has been given by Ponte Castafieda
(1992) and can be written as

@1(B: p,.) )
=min{ iw® (B - (1 = fo@mn:p?) + (1 = ) w® (B+ frmispll)}. GO

In this expression, the arguments of the potentials w” represent the local electric fields in
each phase r, and the minimization with respect to the scalar a; enforces continuity of electric
displacement accross the internal material interfaces. Note that the irreversible polarization
field will also be uniform per phase provided it is initially so. Under this assumption, the
tensors pil,l and p(z) represent the values at time ¢, of the irreversible polarization in phases 1
and 2, respectively. Thus, the overall response depends on the macroscopic electric field and
two internal variables.

A rank-2 laminate is constructed by layering the rank-1 laminate with phase 1, along a
layering direction n,, in proportions f, and 1 — f>, as shown schematically in figure 1(b). The
key assumption in this construction process is that the length scale of the embedded laminate
is taken to be much smaller than the length scale of the embedding laminate, i.e., §; < &, in
figure 1(b). According to the iterated homogenization theorem (e.g. Braides and Lukkassen
2000), the overall potential w, of the rank-2 laminate is then given by the formula (30) for a
simple laminate, with the potential w® replaced by w;, and the potential w'" evaluated at
a different irreversible polarization pfll)z Note that the total concentration of material r = 2
in the two-scale rank-2 laminate is fj f>. The resulting expression for the overall response
depends on three internal variables.

A rank-M laminate is obtained by repeating this process M times, always laminating a
rank-m laminate with material » = 1, in proportions f,, and (1 — f,), respectively, along a
layering direction n,,. Making repeated use of the formula (30) for simple laminates, it can
be shown—see Idiart (2008) for a derivation in the context of viscoplasticity—that the overall
potential wy, of the rank-M laminate is given by

M
Wy (E; pi), p¥) = min {C(z)w(z) (B%:p?) + e 0w (B Pff})}’ G
i1 M i=l
where
M M
1 —f; =i Jj
@ =1-cV=[]fi and 6 = L= S 1L Mf’ (32)
i=1 Ji 1- Hj:l fi

are microstructural variables representing, respectively, the total volume fractions of each
material r—such that ¢ + ¢® = 1—and the fraction of matrix material added at the i’
lamination—such that §; > 0 and Z,A; 0, = 1—and the vectors Efl) and EQ) are local fields
given by

M
B =E+an — Y (1— f) amn;, i=1,..,M, (33)

j=i

E? = — ) am;. (34)

uMa

Thus, the overall response (3 1) involves M + 1 internal variables; its computation requires
the solution of a convex optimization problem with respect to M scalars a;. Note that the
potential w® is evaluated at a single value of the electric field and irreversible polarization,

9
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which means that the fields in phase » = 2 are uniform. The potential w'", by contrast, is
evaluated at M different values of the fields, which means that fields are heterogeneous within
phase r = 1. This field heterogeneity can be described in terms of its statistics. In particular,
the volume average and standard deviation of the electric field in the matrix phase can be
computed as

" u 1/2
EY =Y 6E" ad SDV(E)= [Z 0.\E" | — |E“)|2] . (35)
i=1 i=1
Statistics of the polarization fields can be computed similarly.

In the above sequentially laminated constructions the discontinuous inclusion phase is
made up of material » = 2 while the continuous matrix phase is made up of material r = 1, see
figure 1(b). Their overall potential @y, depends on the total volume fractions ¢ = (x ") (x)) of
each phase r and on higher-order microstructural correlations through the set of microstructural
quantities {(f;,n;),i = 1,..., M}. Thus, in order to use these constructions as model
composites, the quantities (f;, n;) must be expressed in terms of the multi-point correlations
of the microgeometries. However, this is not feasible in general. One strategy consists then
in identifying subclasses of sequentially laminated constructions for which the dependence
of the overall potential on higher-order correlations can be made explicit (Idiart 2008, Idiart
and Ponte Castafieda 2013). Another strategy consists in identifying subclasses for which the
overall potential exhibits desirable characteristics such as a certain symmetry group (deBotton
and Hariton 2002, Danas et al 2008a, 2008b). In any event, it proves convenient to relate the
quantities (f;, n;) to the so-called H-measures of the microgeometry. These measures are
geometrical objects that depend on the two-point correlation functions (x ) (z) x ®) (x —y)) of
the microstructure; they quantify in phase space the lack of compactness of weakly converging
sequences of characteristic functions [y (a) — ¢”] and provide a partial characterization of
microstructural oscillations along different directions in physical space (Tartar 1990, Gérard
1991). Explicit expressions for periodic and random microstructures can be found in Kohn
(1991) and Smyshlyaev and Willis (1998), respectively.

The reduced H-measure of the above sequential laminates is given by—see, for instance,
Idiart and Ponte Castafieda (2013)—

1 1—f

M i
Vi (n) = levi S(n—my),  with v = ETH]J%, (36)
i= E j=

where 6(-) denotes the vector-valued Dirac delta function, and the quantities v; are such that
M
v =0 and D=1 (37)
i=1
Relations (36); can be inverted to express the f; in terms of the v; as

M
1—0(1) 1+Ui—ZVj
fi= — (38)
M
L= 1=y,
j=i
Upon replacing the f; in (31)—(34) by (38), we obtain an alternative expression for the

overall potential w,, that depends on the underlying microgeometry through the total volume
fractions ¢ of each material r and the set {(v;, n;)} subject to the constraints (37). Note that
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Table 1. Parameters for the ferroelectric material. These values roughly reproduce the
rate-dependent behavior of a polycrystalline lead zirconate titanate at low frequencies
(e.g. Zhou et al (2001), Miehe and Rosato (2011)).

Symbol  Parameter Units Value
€ Electric permittivity C(V'm™)  1800¢,
Ds Saturation polarization Cm™2 0.25
ho Hysteresis slope MVmC~! 0.1

m Rate-sensitivity exponent — 0.2

Do Reference polarization rate  C(m~'s™!) 100

e Coercive electric field MVm™! 0.35

e Reference electric field MVm~! 0.35

the reduced H-measure vy, (n) is fully determined by the set, but the set is not fully determined
by the reduced H-measure v,,. Thisis due to the fact that there is no one-to-one correspondence
between the function vy, (n) and the v; when lamination sequences involve repeated lamination
directions, and that the function v, is insensitive to the order of the elements in the set. The
overall potential wy, therefore depends, in general, on microstructural information beyond the
volume fractions and the H-measure. In any event, the quantities v; do provide a convenient
means of identifying appropriate lamination sequences, as will be seen in the next section.
That these material systems represent the essential features of two-phase composites
with particulate microstructures is supported by comparisons with full-field simulations and
approximate estimates reported in various works on purely energetic/dissipative composites
(e.g. deBotton and Hariton (2002), Idiart (2006, 2008), Danas et al (2008a, 2008b)).
Furthermore, when both phases are ideal dielectrics, the potential (31) agrees exactly with
the Maxwell-Garnett approximation—also known as the Claussius-Mossotti approximation—
for two-phase linear dielectrics with H-measure (36);. The resulting predictions are therefore
expected to be particularly relevant to composites with polydispersed particle distributions.

5. Sample results for representative material systems

The model presented above is used in this section to explore the effects of material heterogeneity
on the electrostatic response of ferroelectric composites with particulate microstructures. Three
material systems of particular relevance are considered: (i) an ideal dielectric containing a
random dispersion of ferroelectric particles, (ii) a ferroelectric material containing a random
dispersion of perfectly conducting particles and (iii) a ferroelectric material with porosity.
In all cases, the ferroelectric material is characterized by potentials of the form (13)—(15).
Table 1 shows the numerical values employed in the simulations for the various material
parameters; these values roughly reproduce the rate-dependent behavior of a polycrystalline
lead zirconate titanate at low frequencies (e.g. Zhou et al (2001), Miehe and Rosato (2011)).
The ideal dielectric and the perfect conductor are in turn characterized by potentials of the form
(11)—~(12) with finite (0 < € < +00) and infinite (¢"? — o0) permittivities, respectively,
while voids are assumed to be vacuous (¢ = ¢). Itis recalled that for these material systems
the local fields E and p are unique and bounded.

We focus on material systems exhibiting overall isotropic symmetry. Motivated by the
works of deBotton and Hariton (2002) and Idiart (2006) (see also Danas et al (2008b)), we
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adopt the following lamination sequence:

1
P = —, 39
Vi = o (39)
n; =sinq; sinB; e; +cosw; sinfB; ex +cosBies, i=1,..., M, (40)
where
i — 1
Biwem, = arccosh;, h;=2-2—— —1, j=1,..M, k=0, ..5—1 (41)
' M, -1
and 42)
oy =ay =0, 43)

n

mod 27, j=2,....M,—1, k=0,...,7—1.

3.6 1
Ujrm, = | Aj-1+ —F——F——
M, 2
n /1 — hj
(44)

In these expressions, the angles «; and B; determine the ith direction of lamination relative to
a reference basis {e;}, and the parameters n and M, are two integers such that the rank of the
laminate is M = nM,. The set of angles (41)—(44) corresponds to M, lamination directions
(40); uniformly distributed on the unit sphere (Saff and Kuijlaars 1997), with n laminations
for each direction. In turn, the quantities v; are set all equal and satisfy the constraints (37).
This is a sequence for which the H-measure becomes isotropic as M, — oo, for any number
of rounds 1. However, the resulting microgeometries in that limit are not isotropic. In order to
generate material systems exhibiting overall isotropic responses, the second limit  — oo must
also be taken—the reader is referred to Idiart and Ponte Castafieda (2013) for a more detailed
discussion on this point. It has been verified numerically that, for the materials considered here,
the overall response becomes progressively less sensitive to the orientation of applied electric
field E as the parameters M, and n increase; the values n = 5 and M,, = 50, which correspond
to sequential laminates of rank M = 250, have been found adequate for the purposes of this
work?.

The results reported below correspond to initially unpoled (i.e. p = 0) material systems
subjected to a triangular electric signal along the e; direction at a frequency fy of 1 Hz. For each
value of applied electric field E, the minimization in (31) with respect to the M scalars g; is
solved by means of a quasi-Newton optimization method for smooth, convex functions, while
the irreversible polarizations in the potentials w” are computed by means of a direct search
complex algorithm for nonsmooth, convex functions. In the case of conducting inclusions, the

L . . . - . =2 .
minimization with respect to the a; is subject to the vectorial linear constraint E? = 0 with
—2) . . . Lo _

E? given by (34). The time step adopted in all calculations is At = 1073 fo L

5.1. Ideal dielectric containing ferroelectric inclusions

Figure 2 shows predictions for an ideal dielectric containing a random dispersion of ferroelectric
inclusions at a volume fraction of ¢® = 0.25. Two sets of curves are presented: the first set
corresponds to a low-contrast composite where the matrix phase has the same permittivity as
the inclusions, € = €@, while the second set corresponds to a moderate-contrast composite
where €V = 0.1¢®. The peak amplitude of the applied electric signal is 40e.—e, being the
coercive electric field of the ferroelectric phase.

3 Thus, the model involves 251 internal (vector) variables.
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Figure 2. Predictions for an ideal dielectric matrix containing a random dispersion of
ferroelectric inclusions at a volume fraction of ¢® = 0.25. The composite is subjected
to a triangular electric signal with a peak amplitude of 40e. and a frequency of 1 Hz.
Normalized vector components along the direction of applied electric field (||): (a) overall
dielectric displacement, (b) average irreversible polarization in the inclusions, (c¢) and
(d) average electric field in the matrix (» = 1) and inclusion (» = 2) phases.

__ Plots versus the applied electric field (E) are given for the (a) overall electric displacement
(D)), the (b) average irreversible polarization in the ferroelectric inclusions (]_)|(|2)) and the (¢

and d) average electric field in the matrix (Eﬁl)) and inclusion (Fl(lz)) phases. Recall that the
predicted fields in the inclusion phase are uniform. The dielectric responses of the monolithic
phases are also included as a reference. The predictions for the low-contrast composite show a
bilinear-type of overall cyclic response with low hysteresis. The change in slope occurs when
the irreversible polarization in the inclusions reaches saturation, as expected. The predictions
for the moderate-contrast composite, on the other hand, show a linear-type overall response
because the polarization in the inclusions does not reach saturation within the range of applied
fields considered. More important, however, is the fact that the polarization at a given intensity
E decreases with decreasing permittivity ratio V) /e®. This is a consequence of the basic
fact that the electric field—which provides the driving force for the evolution of polarization—
always tends to concentrate in the phase with lowest permittivity—in this case, the matrix.
The results for € = 0.1¢® show that the polarization is far from saturation even for field
intensities E as large as forty times the coercive strength e, of the ferroelectric phase. Note
that at such intensities, the phase averages of the electric fields are already in the order of the
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dielectric strengths expected for the constituent materials typically employed in this kind of
composites*. Given that the electromechanical coupling of a ferroelectric material is roughly
proportional to the amount of spontaneous polarization, this implies that composites with low
permittivity ratios will always exhibit a very low coupling.

In practice, these kind of composites are made up of a polymeric matrix and ceramic
inclusions. In that case, the permittivity ratio €V /e® is well below 0.1, and so according to
the present theoretical model the applied field intensities required for poling the ferroelectric
particles would be exceedingly large. This seems to be at odds with the experimental
measurements of Lam et al (2005). These authors have produced composite films comprised
of a polyurethane matrix containing a random dispersion of lead zirconate titanate (PZT)
particles at volume fractions in the range 0.05-0.3. The permittivity ratio in these composites
is €M /e® ~ 0.004. Their through-thickness measurements of the overall strain versus
applied electric field show meaningful deformations—which presumably requires significant
spontaneous polarization densities in the ferroelectric inclusions—for field intensities as
low as a few MV m~'. One possible source of discrepancy between these experimental
observations and the theoretical model presented here could be attributed to the presence
of interphase regions or interface charges surrounding the inclusions and causing an elevated
electric field inside the inclusions. Interface phenomena typically result in a size-dependent
overall response. Mao et al (2010) have recently reported measurements on a family
of polyvinylidene fluoride (PVDF) composites containing monodispersed distributions of
BaTiO; particles’ at a volume fraction of 0.6 and characteristic sizes in the range 25-500 nm.
These measurements do show a well-defined size effect, but the observed effect is contrary
to the above speculation: larger particles result in larger polarizations at a given field
intensity. Thus, further work is required to clarify this point. In any event, these
observations shed caution on the use of the approach presented here—and other approaches
expected to produce similar predictions—as it stands to model polymer-matrix ferroelectric
composites.

5.2. Ferroelectric matrix containing perfectly conducting inclusions

Figure 3 shows predictions for a ferroelectric matrix containing arandom dispersion of perfectly
conducting inclusions at a volume fraction of ¢® = 0.25. The peak amplitude of the applied
electric signal is 4e..

Plots versus the applied electric field (E) are given for the (a) overall electric displacement
(5”), the (b) average irreversible polarization in the ferroelectric matrix (]3|(|])), and the (¢ and

d) standard deviations (SD") of the electric field and the irreversible polarization in the

. . . 2 .
matrix phase. Recall that in these material systems E? = 0, and therefore, by macroscopic

—() = . . o . .

balance, E( ) = E/ ¢, The dielectric response of the monolithic ferroelectric matrix is also
included for reference. The predictions for the overall cyclic response show that the addition
of conducting inclusions reduces the macroscopic coercive strength—i.e. the value of E for

L= = — -
which D = 0— as expected from the fact that |E ‘(‘ )| > | E|, but produces minimal changes
in the macroscopic residual polarization—i.e. the value of D at E = 0. This is consistent

with the experimental measurements of Duan ez al (2000) on PZT composites containing a
dispersion of Pt particles.

4 Typical polymers used as the matrix, such as polyurethane and polysterene, exhibit dielectric strengths in the range
40e.—60e.; corresponding values for typical ferroelectric ceramics, such as PZT and BaTiOs3, are in the order of
10e.—30e..

5 In these composites, both the matrix and the particles exhibit ferroelectricity.
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The predictions also show that, unlike the monolithic ferroelectric matrix, the composite
exhibits a two-stage saturation beginning at roughly half the dielectric displacement of the total
saturation. At that point, the fluctuations of the spontaneous polarization field, as measured
by the standard deviation, reaches a maximum®. This maximum is a consequence of the
pointwise bounds—as dictated by the saturation polarization p,—the field p must satisfy.
Additional results—not provided here for brevity—show that the two-stage saturation fades
out with decreasing volume fraction of particles and increasing loading rate. Incidentally, a
similar behavior can be observed in full-field simulations and experimental measurements on
ferroelectric polycrystalline ceramics under suitable stress levels (Burcsu ef al 2004, Zhang
and Bhattacharya 2005a, 2005b). These are ferroelastic materials where mechanical stress—
rather than particles—promotes a heterogeneous nucleation of spontaneous polarization.
However, the precise underlying mechanism leading to the two-stage saturation has not yet
been identified.

Finally, the predictions show that the standard deviation of the electric field in the matrix
can be significant even at moderate values of the external field intensity. Of particular
importance is the effect of these fluctuations on the field-induced evolution of the initial
switching surface of the composite. This is a surface in E-space that delimits the set of
external field vectors E that do not change the spontaneous polarization within the composite.
For the unpoled composite, the behavior is isotropic and therefore the surface is circular. Now,
after the first hemicycle of the triangular loading considered in figure 3, the standard deviation
of the residual electric field is seen to be approximately equal to the coercive strength e, of
the ferroelectric matrix. Consequently, reloading the composite from this poled state along
different directions is likely to produce changes in the spontaneous polarization at some point
in the matrix at very small external field intensities, which implies, in turn, a very strong
change in the initial switching surface of the composite. Note that such small external field
intensities are accompanied by small average electric fields in the matrix in view of the relation
Y = E/c"; the evolution of the initial switching surface is thus mostly governed by the
intraphase field fluctuations. This shows that approximate methods based on linearizations of
the local constitutive laws evaluated at the phase averages of the fields, such as the method of
Huber et al (1999), can greatly overestimate initial switching surfaces in this kind of material
systems.

5.3. Ferroelectric material with porosity

Figure 4 shows predictions for a ferroelectric matrix containing a random dispersion of pores
at a volume fraction of ¢® = 0.25. The peak amplitude of the applied electric signal is 4e..

Plots versus the applied electric field (E) are given for the overall response and statistics
of the fields. The predictions for the overall cyclic response show that the addition of
porosity reduces the macroscopic residual polarization but produces minimal changes in the
macroscopic coercive strength. This is indeed observed in the experimental measurements of
Zeng et al (2007) and Nie et al (2010) on porous PZT ceramics. Thus, porosity produces the
‘opposite’ effect on the overall response to that produced by conducting particles. Note that
the overall response in this porous material does not exhibit the two-stage saturation previously
observed in composites with conducting particles. However, this feature does appear at larger
levels of porosity—the results are not shown for brevity.

In turn, the predictions for the field statistics show that the average electric fields in
each phase are roughly linear in the external field intensity, and that the fluctuations of the

6 Tt is noted in passing that, unlike first-order averages, second-order averages take several loading cycles to reach
the steady regime.
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Figure 3. Predictions for a ferroelectric matrix containing perfectly conducting
inclusions at a volume fraction ¢® = 0.25. The composite is subjected to a triangular
electric signal with a peak amplitude of 4e. and a frequency of 1Hz. Normalized
vector components along the direction of applied electric field (]|): (a) overall dielectric
displacement, (b) average irreversible polarization in the matrix. Normalized standard
deviations in the matrix phase of the magnitudes of: (c) the electric field, (d) the
irreversible polarization.

spontaneous polarization in the matrix phase during cyclic loading exhibit much smaller
variations than in the case of composites with conducting particles. In addition, the intraphase
fluctuations of the electric field do not decrease the external electric field intensity required for
poling the composite. This situation persists at larger values of porosity. On the other hand,
electric field fluctuations have been found to play a more important role in porous ferroelectrics
with electrical creep responses of the type nucleation-growth-saturation, such as PLZT (Liu
and Huber 2012). In that case, fluctuations may facilitate the poling process by reducing the
required intensities of the external electric field. Given its capability of accounting for quite
general material nonlinearities and local field fluctuations, the sequentially laminated model
derived in this work should provide a convenient theoretical tool for studying such material
systems.

6. Concluding remarks

In summary, sequentially laminated microgeometries prove a versatile tool for predicting the
overall dissipative response of two-phase ferroelectric composites with complex particulate
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Figure 4. Predictions for a ferroelectric matrix containing a random dispersion of pores
at a volume fraction ¢® = 0.25. The porous material is subjected to a triangular
electric signal with a peak amplitude of 4e. and a frequency of 1 Hz. Normalized
vector components along the direction of applied electric field (||): (a) overall dielectric
displacement, (b) average irreversible polarization in the matrix, (c¢) and (d) average
electric field in the matrix (E(ll)) and inclusion (EI(\2>) phases. Normalized standard
deviations in the matrix phase of the magnitudes of: (e) the electric field, (f) the
irreversible polarization.

microstructures under arbitrary loading histories. Statistics of the underlying field distributions
within each phase can be predicted as well. Being realizable, the resulting estimates for the
overall incremental potential always conform with material constraints, satisfy all pertinent
bounds and exhibit the required convexity. Thus, they also provide convenient benchmarks
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to test approximate methods such as those proposed by Lahellec and Suquet (2007a, 2007b,
2013) and Brassart et al (2011).

Even though the application was restricted here to material systems exhibiting overall
isotropic symmetry, anisotropic systems can be modeled equally well by suitably choosing the
lamination parameters {(v;, n;)}. Of course, the predictive capability of the estimates proposed
in this work is subordinate to the accuracy to which the phase potentials describe the dielectric
response of the constituent phases. In the case of polycrystalline ferroelectric ceramics
under complex loading histories, complicated behaviors resulting from the interplay between
crystallographic texture and domain switching (e.g. Li et al 2005) may exceed the capabilities
of the phenomenological models considered in this work, and may require ‘micromechanical’
constitutive models like those proposed by Huber ez al (1999). Any such model can be used
in the current approach provided they may be put in the incremental form (24);.

The encouraging results obtained in this work for the overall electrical response of
ferroelectric composites motivate the application of similar ideas to estimate their overall
electromechanical response. This possibility is currently being pursued.
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