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Abstract. Petri nets are a mathematical modelling tool suitable for describing
dynamic computational systems. In this work we present a formalization of ab-
stract argumentation frameworks using Petri nets, where arguments and attacks
are represented as places and transitions. This provides a formalism to study the
semantic consequences of a procedural evaluation of argument attacks. The rela-
tion between markings of the net and argument extensions is analysed.

1 Introduction

Roughly speaking, argumentation is the study of arguments and their relationships. It
is a form of reasoning suitable to deal with incomplete and contradictory information in
dynamic domains. Although several proposals of argumentation systems are available,
it is possible to study pure semantic notions in a general framework with a high level
of abstraction. In abstract argumentation formalisms some components remain unspec-
ified, being the structure of an argument the main abstraction. In this kind of systems,
the emphasis is put on the semantic notion of finding the set of accepted arguments.
Most of these abstract argumentation frameworks are based on the single concept of
information conflict called attack, represented as an abstract relation, and extensions are
defined as sets of possibly accepted arguments. The study of dynamics of argumentation
has been an important topic in this area. An initial proposal of dynamic argumentation
is presented in [3] using situation calculus. In recent formalisms [5,4,2,11] the seman-
tic study of arguments and attacks is addressed under a temporal perspective, where
arguments and attacks are progressively considered as the framework evolves through
time. This is important since argumentation is intrinsically tied to dialectic activities,
like dialogues, debates and even introspection.

Then it is possible to study how the process of argumentation advances while argu-
ments and attacks are selected or provided in a sequential manner, which is relevant in
systems with a large amounts of arguments. For instance, a DeLP program [7] of few
defasible rules may produce hundreds of defeasible arguments. Even more, in some
contexts it is not necessary to consider all of these arguments as a whole while rea-
soning. Gradual consideration of arguments and attacks is interesting. However, the
fact that some controversies between arguments may be addressed in a sequential, dis-
tributed and concurrent operation with different semantic consequences was not previ-
ously studied under a suitable mathematical model in the argumentation community.
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Argumentation processes can be naturally complex. For instance, when a set of topics
is discussed by several participants, some of the debates may occur at the same time.
This is how many legislative corps works, such as in the United Nations or several state
Congresses around the world. A formal model for the study of a procedural, timed in-
terpretation of the act of attacking an argument is novel and interesting in the context
of timed argumentation, where it is uncertain what arguments are going to be addressed
next. In this work we are not interested in the logical aspects of argumentation as in
[3], but in the abstract characterization of potentially distributed, asynchronous
argumentation.

Petri nets are a mathematical modelling tool suitable for describing concurrent, asyn-
chronous, non-deterministic computational systems [1,10,8]. The basic formalism is
simple and it provides a sound framework for the study of properties of discrete events
systems, yet in the last years several extensions were proposed in order to provide mod-
els for different characterizations of dynamic systems. Petri nets provide a description
of independence and causal relations between system actions, which allows to reason
about partially ordered sets of actions without having to consider their interleavings [8].
Properties of Petri nets were studied for half a century around the globe and it is widely
considered a mature discipline.

In this work we propose a Petri net representation of an abstract argumentation
framework. This provides a formalism to study the semantic consequences of a pro-
cedural evaluation of individual argument attacks. Being a classic engineering-oriented
formalism, Petri nets are appropriate for argumentation process analysis which is an
important direction of this line of research. In this paper we introduce the formalism
and we show there is a correspondence between the evolution of the net and the under-
lying argumentation semantics.

This paper is organized as follows. In Section 2 we recall the basic notions of classi-
cal abstract argumentation frameworks. In Section 3 a brief, general description of Petri
nets is included. In Section 4 we present a Petri net model for abstract argumentation
and related semantic notions are introduced in Section 5. In Section 6 the dialectical in-
terpretation of the argumentation net is discussed. Finally, conclusions and future work
is discussed.

2 Classic Abstract Argumentation

Dung defines several argument extensions that are used as a reference for many authors.
The formal definition of the classic argumentation framework follows.

Definition 1 [6] An argumentation framework is a pair AF = 〈AR, attacks〉 where
AR is a set of arguments, and attacks is a binary relation on AR, i.e. attacks ⊆
AR×AR.

Arguments are denoted by labels starting with an upper-case letter, leaving the un-
derlying logic unspecified. A set of accepted arguments is characterized in [6] using
the concept of acceptability, which is a central notion in argumentation, formalized by
Dung in the following definition.
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Definition 2 [6] An argument A ∈ AR is acceptable with respect to a set of arguments
S if and only if every argument B attacking A is attacked by an argument in S.

If an argument A is acceptable with respect to a set of arguments S then it is also
said that S defends A. Also, the attackers of the attackers of A are called defenders of
A. We will use these terms throughout this paper.

Acceptability is the main property of Dung’s semantic notions, some of them sum-
marized in the following definition.

Definition 3 A set of arguments S is said to be
– conflict-free if there are no arguments A,B in S such that A attacks B.
– admissible if it is conflict-free and defends all its elements.
– a preferred extension if S is a maximal (for set inclusion) admissible set.

In [6], theorems stating conditions of existence and equivalence between these and
other extensions are also introduced.

Example 1 Consider the argumentation framework AF1 = 〈AR, attacks〉, where
AR = {A,B, C,D, E ,F ,G,H} and attacks = {(B,A), (C,B), (D,A), (E ,D),
(G,H), (H,G)}. Then
– {A, C, E} is an admissible set of arguments.
– {A, C, E ,F ,G} is a preferred extension.

In the following section we recall the basic definitions of Petri nets, as needed later.
For a more detailed introduction to Petri nets, the reader may refer to [10].

3 Petri Nets

A Petri net is a directed, weighted, bipartite graph consisting of two kind of nodes
called places and transitions. Usually places are represented as circles and transitions
are represented as boxes or bars. Arcs connect transitions and places and have a weight
(positive integers). A marking M of the net assigns a nonnegative integer to each place
in the net. If a marking M assigns to place p an integer k, it is said that p has (or is
marked with) k tokens. This tokens are graphically represented as dots inside a place,
or just simply a number.

Definition 4 A Petri net is a 5-tuple PN = (P, T, F,W,M0) where

– P = {p1, p2, . . . , pn} is a finite set of places and T = {t1, t2, . . . , tn} is a finite
set of transitions, with P ∩ T = ∅ and P ∪ T = ∅,

– F ⊆ (P × T ) ∪ (T × P ) is a set of arcs,
– W : F → {1, 2, 3, . . .} is a weight function,
– M0 : P → {1, 2, 3, . . .} is the initial marking.
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A transition t is said to be enabled at marking M if each input place p of t is such that
M(p) ≥ W (p, t). Enabled transitions may be fired. A firing of a transition t removes
W (p, T ) tokens from each input place p and adds W (t, p) tokens to each output place.
A sequence of firings leads to a sequence of markings. A marking Mi is said to be
reachable from marking Mj if there exists a sequence of firings that transforms Mj

to Mi. The set of all reachable markings of a net P is called the reachability space of
P . A vanishing state of the net is a marking that can be changed since it enable some
transitions. A tangible state is a marking in which no transition is enabled. The number
of tokens in a place p at marking Mk is denoted as Mk(p). A Petri net is said to be
k-bounded if the number of tokens in each place does not exceed a finite number k for
any marking reachable from M0. A Petri net is said to be safe if it is 1-bounded. A self
loop is a transition with an output and an input from the same place. Two transitions
that output to the same place are said to be in backward conflict. Two transitions are in
forward conflict if, being both of them enabled by a common place, only one can be
fired.

Fig. 1. A simple Petri net

In Figure 1 a simple Petri net is depicted, where places are circles and transitions are
black bars. The marking is represented by black dots inside places, showing M(P0) =
1, M(P1) = 0 and M(P2) = 1. Transitions T 0 and T 2 are enabled and can be fired. If
transition T 0 is fired, it consumes the only token of place P0 and produces two tokens
in place P1. After that, transition T 1 is enabled and can be fired twice, each one con-
suming one token of P1. Some firing sequences on this net are {T 0, T 1, T 1, T 2, T1}
and {T 2, T 1, T 0, T 1, T1}. Both of them lead to the only tangible state of the net, with
all the places free of tokens. Between the initial state and this tangible state, it is possible
to generate eight vanishing states. This is because the firing order of some transitions
is interchangeable, as T 0 and T 2. Transition T 1 consumes all the tokens produced by
these two transitions and can only be fired after them.

An extension of Petri nets distinguishes a special kind of arcs called inhibitor arcs.
This set of arcs appears as a new component in the formal definition of the Petri net,
being then a 6-tuple. An inhibitor arc connects a place to a transition and it is graphically
represented as a line with a white circle in its end. This kind of arc disables the transition
when the input place has a token, and enables the transition when the input place has
no token and any other normal input has the required tokens. This extension allows the
test for absence of tokens and this simple fact makes Petri nets as expressive as Turing
Machines.
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In Petri nets there are several definitions of fairness. Two transitions t1 and t2 are said
to be in a bounded-fair relation if the maximum number of times that either
one can fire while the other is not firing is bounded. Hence, one transition cannot block
the other by firing infinitely. A Petri net is said to be a bounded-fair net if every pair of
transitions in the net are in a bounded-fair relation. A firing sequence T is said to be
unconditionally fair if it is finite or every transition in the net appears infinitely often in
T . A Petri net is said to be an unconditionally fair net if every firing sequence from the
initial state is unconditionally fair.

In the following section we present a formalization of argumentation frameworks us-
ing Petri nets with inhibitor arcs. Semantic notions are discussed in subsequent sections.

4 Argumentation Nets

An abstract argumentation framework as in Definition 1 induces a Petri net where places
are arguments and transitions represent the conflict between arguments. This is formal-
ized in the following definition.

Definition 5 Let Φ = 〈AR, attacks〉 be an argumentation framework. The argumen-
tation net of Φ, or simply argnet, is a Petri net VΦ = (AR, T, F,H,W,M) where

– AR is the set of places
– T = {t1, t2, . . . , tn} is a finite set of transitions.
– F ⊆ (AR× T ) ∪ (T ×AR) is a set of arcs.
– H ⊆ (AR × T ) ∪ (T ×AR) is a set of inhibitors arcs.
– W : F → {1, 2, 3 . . .} is the weight function.
– M : AR → {0, 1, 2, 3 . . .} is the initial marking.

such that

– for any attack (A,B) ∈ attacks, there exist a transition tAB and the arcs
(A, tAB),(tAB,A),(B, tAB) ⊆ F . This transition is called an attack transition.

– for any argument A with attackers X1,X2, . . . ,Xn there exists the transition tA
with the inhibitor arcs (A, tA) and (Xi, tA) for 1 ≤ i ≤ n, and the arc (tA,A).
This transition is called a restoring transition.

– M(X ) = 1 for any argument X ∈ AR.

Tokens represent potential strength of arguments for attacking each other. There is
an attack transition whenever an argument A attacks another argument B. Sometimes
in this text arguments and places are treated as equivalents. In this paper the weight of
every transition is 1, and then transitions remove or add only one token at a time. When
referring to attack transitions, the corresponding place for A will be called the attacking
or input place and the corresponding place for B will be called the attacked or output
place. Such a transition can be fired when a token is available in both the attacking and
attacked place. The attack transition consumes the tokens of both places, and restores
the consumed token in the attacking place. Restoring transitions links attacked argu-
ments with all of its attackers. Such a transition places a token in an empty attacked
place X whenever all the attacker places are empty. This models the fact that, since
every attacker of X has no strength, then the strength of X can be reinstated.
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Fig. 2. Arguments B and C attack argument A

Example 2 Let Φ = ({A,B, C}, {(B,A), (C,A)}) be an argumentation framework.
The corresponding argnet VΦ is depicted in Figure 2. Arguments are represented as
places and the attacks are represented by transitions tBA and tCA. The restoring tran-
sition tA adds a token to the place A only when A and its attackers have no tokens.

Petri nets are mainly a model of computation. In this argumentation net our units
of computation are the transitions, either attacking or restoring ones. Therefore, we are
interested in the evolution of the strength of arguments as transitions are fired, i.e. when
tokens are consumed and restored in argument places. In the initial marking M0 every
place has a token, since no attack is considered yet and then every argument has the
potential strength of affecting other arguments. Note that transitions can put tokens in
a place whenever (a) a token is removed from the same place as in attacking transitions
or (b) when there is no token in the place as in restoring transitions. Hence no place can
hold more than one token, as stated in the following Proposition.

Proposition 1 For any argumentation framework Φ, the argnet VΦ is safe (1-bounded).

If the Petri net is k-bounded, then the reachability space is finite. In this work we are
interested in the connection between the firing of transitions, the evolution of markings
and the underlying argumentation semantics. Consider the net of Figure 2. The enabled
transitions are tBA and tCA. Restoring transition tA is not enabled since places A,
B and C are not free of tokens. There are two possible firing sequences in this net:
{tBA} and {tCA}. Since the firing of an attacking transition removes the token in the
attacker argument, then the firing of tCA inhibits the firing of tBA and viceversa. This
happens with attacking transitions for the same arguments, as stated in the following
Proposition.

Proposition 2 Let A be an argument attacked by arguments D1,D2 . . .Dn,. The tran-
sitions tD1A, tD2A . . . tDnA are all in forward conflict.
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However, whether tBA or tCA are fired in the net of Figure 2 the final marking M
of VΦ is the same: M(A) = 0, M(B) = 1 and M(C) = 1. In other words, any of
these attacks can be applied and the final outcome is the same, but only one of them is
firable since these transitions are not independent of each other. Note that the maximal
admissible set of Φ is {B, C}, the only places with a token in the tangible state.

Fig. 3. Argument A attacks B. Argument B attacks C.

Consider the net of Figure 3 where a situation of argument defense is presented. The
initial enabled transitions are tAB and tBC. This means that both attacks are fireable at
the beginning. If transition tAB is fired first, then no transition is later enabled, leading
to a tangible state. If transition tBC is fired first, transition tAB is still enabled. After
firing transition tAB, the restoring transition tC becomes enabled, since neither B nor
C have tokens. After firing transition tC, place (argument) C gains a token and then no
transition is enabled after that. Thus, a tangible state can be reached by firing tAB or
by firing the sequence {tBC, tAB, tC}. Moreover, there is only one tangible state with
marking M(A) = 1, M(B) = 0 and M(C) = 1. Note that the maximal admissible set
of the corresponding abstract framework is {A, C}.

In the following section we present semantic notions for argumentation Petri nets,
based on markings and sequence of transitions.

5 Argumentation Semantics

As stated before, Petri nets are a model of computation for concurrent and distributed
systems, where the emphasis is put in the firing of transitions and how the marking of
the net evolves as a consequence. Argnets provide an interesting model for procedural
argumentation semantics. In this section we consider nets without isolated parts. As
shown in the example of Figure 3 a sequence of firing of transitions leads to a sequence
of markings, which can be interpreted as an evolution of the strength of arguments as
attacks take place. As long as there are enabled transitions, an attack or a restoration
can occur and then there are still arguments able to loose or gain strength. There is,
however, a set of arguments that never loose its tokens. A trap of a Petri net is a set of
places S such that any transition with an input in S has also an output in S and if S is
marked under some marking M , it is still marked under any succesor marking of M .
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Proposition 3 Let Φ = 〈AR, attacks〉 be an argumentation framework with corre-
sponding argnet VΦ and let Df ⊆ AR be the set of all defeater-free arguments in AF .
Then Df is a trap of VΦ.

Proof: Defeater-free arguments can only attack other arguments and then every outgo-
ing transition of the corresponding place is an attack transition, conforming a self-loop.
These are the only transitions that will be enabled and then the token is never lost. In
some formalisms, this kind of loop if represented as a single transition called read-
transition. �

Hence, defeater-free arguments always have a token in the corresponding place. Be-
cause of this, any attack transition from a defeater-free argument is enabled at M0 and
it will be enabled as long as the attacked argument still possesses its token. That means
that the attack is enabled while it has an actual impact on the attacked argument (other-
wise the attack is not necessary). In the net of Figure 2, places B and C never loose their
tokens, yet only one attack is enough to suppress argument A. Under the interpretation
of attacks as actions, in this example only one attack is sufficient to reach a tangible
state.

An admissible extension is basically a set of arguments defending each other. In the
Petri net this is interpreted as a distribution of tokens over the net, with a particular con-
dition. This marking can be reached by firing transitions until no transition is enabled,
as stated in the following proposition.

Proposition 4 Let Φ = 〈AR, attacks〉 be an argumentation framework with argnet
VΦ = (P, T, F,H,W,M). Let T be a sequence of firing transitions {t1, t2, . . . , tn}
that transforms M to Mn such that every transition in VΦ after Mn is not enabled.
Then the set of arguments S = {A ∈ AR|Mn(A) = 1} is an admissible set of Φ.

Proof: Suppose no transitions are enabled and S is not admissible. Then either (a) it is
not free of conflict or (b) at least one argument A ∈ S is not defended by S. If (a) is
the case, then at least two arguments X and Y are such that M(X ) = M(Y) = 1 are
in conflict. But then the attack transition between them is enabled, which is a contra-
diction. If (b) is the case, then at least an argument X ∈ S is attacked by an argument
Y , but not defended by an argument in S. But Y must be free of tokens, otherwise (a) is
the case. Since M(Y) = 0, then Y is not free of attackers and then there is at least one
argument attacking Y . But, since Y has no token and no transitions are enabled, then it
is not possible for all the attackers of Y to have no tokens. Then at least one argument
Z attacks Y such that M(Z) = 1. But then X is actually defended by S, which is a
contradiction. Since (a) and (b) cannot be the case, then S is admissible whenever the
transitions are not enabled. �

Hence, a tangible state in the net corresponds to a distribution of tokens signalling
arguments in an admissible extension. If no tangible state can be reached through a
sequence of firings of transitions, then there is always an enabled attack or restoring
transition, i.e. a token can be placed or removed somewhere in the net.
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Proposition 5 If at least one transition in VΦ is potentially fireable in any marking Mk

then AF is not well-formed.

Proof: If at least one transition is potentially fireable, then every state of the net is a
vanishing state. Since there is a finite set of possible states and the net is safe, then at
least one argument is gaining and loosing a token repeatedly (although not necessarily
in consecutive markings). �

Consider the net of Figure 4 where an odd cycle of attacks is present. Starting from
the initial marking, no tangible state can be produced. In fact, there is an infinite se-
quence of attacking and restoration transitions. Whenever a token is restored in a place
X , it enables an attack transition tXY from that place. There are six vanishing states
in this net and the only admissible set in the corresponding argumentation framework
is the empty set.

Fig. 4. Argument cycle between A, B and C

The converse of Proposition 5 is not true, as shown in the net of Figure 5, corre-
sponding to the argumentation framework Φ = 〈{A, B, C,D}, {(A,B), (B, C), (C,D),
(D,A)}〉 with a cycle of attacks between the four arguments. Starting from the initial
marking, it is possible to reach thirteen different states, with only two of them being
tangible. As stated in Proposition 4 these tangible states correspond to the admissible
sets S1 = {A, C} and S2 = {B,D}. The set S1 can be reached, for instance, by the se-
quence of firings T1 = {tAB, tCD} but also by T ′

1 = {tCD, tBC, tAB, tC}. The set
S2 can be reached, for instance, by T2 = {tBC, tDA} or T ′

2 = {tBC, tAB, tDA, tB}.
Note that in T ′

1 and T ′
2 a restoration transition is needed.

Consider the following sequences of transitions in the net of Figure 5:
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Fig. 5. Four arguments A, B, C and D in a cycle

– T = {tDA, tCD, tA, tBC, tD, tDA}
– T ′ = {tDA, tCD, tBC, tA, tAB, tC}

Although both sequences start firing transitions {tDA, tCD}, they lead to different
tangible states. Sequence T leaves tokens in D and B while the sequence T ′ leaves
tokens in A and C. The former decides to reinstate A (by firing tA) before triggering
an attack to C from B (by firing tBC). The sequence T ′, however, decides to attack
C before reinstate A. This shows, of course, that the choice of transitions to fire may
completely change the outcome of the process. But the most interesting aspect is that
the reinstatement of tA and the attack tBC are interchangeable, since both T and T ′

lead to a state of the net in which only tAB and tD are the enabled transitions after the
fourth transition. In other words, {tDA, tCD, tA, tBC} and {tDA, tCD, tBC, tA}
lead to the same vanishing state. After that, both sequences take different paths: T
reinstantes D to attack A later, while T ′ attacks B to later reinstate C. As expected in
argumentation, a restoring transition can be fired only after other transitions are fired.
For a given sequence of transitions, we will denote t1 � t2 if transition t1 occurs before
transition t2. In order to reinstate an argument X , all of its attackers must loose their
tokens. This is formalized in the following proposition.

Proposition 6 Let Φ be an argumentation framework with argnet VΦ. For any sequence
of firings of transitions T , then

1. tXY � tY in T and
2. for every argument Wi attacking Y , tZiWi � tY in T .

Proof: Trivial. Place Y must loose its token in order to fire its reinstate transition. This
can only be achieved by an attack transition with input Y . The same is true for all of its
attackers. �
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Moreover, if tZiWi � tY in a sequence T then there is a sub-sequence T ′ =
[tZiWi . . . tY ] such that there are no extra occurrences of tZiWi in T ′ and tWi �
tY . In other words, although Wi loose its token after the attacking transition, it is not
reinstated before Y is. Note that in Proposition 6 there is no specific restriction about
the order of tXY and every tZiWi. This is consistent with the notion of attack and
defense in argumentation frameworks.

Another important aspect of Petri nets is the reachability problem. This is a decision
problem about deciding, for a given marking M , whether it is reachable in a particular
net. In our formalism, the reachability graph is finite since the net is safe. What is in-
teresting is to prove that certain relevant markings are in the reachability graph induced
by a net.

Proposition 7 Let Φ = 〈AR, attacks〉 be an argumentation framework with argnet
VΦ = (P, T, F,H,W,M). If S ⊆ AR is a preferred extension of Φ, S = ∅, then
there exists a sequence of firings {t1, t2, . . . , tn} that transforms M to Mn such that
Mn(A) = 1 if A ∈ S and Mn(A) = 0 if A ∈ S.

Proof: Let MS be the marking such that only arguments in the preferred extension S
have tokens. Suppose MS is not in the reachability space of the net VΦ. This means
that there exists at least one argument A, such that A cannot (a) acquire a token if
MS(A) = 1 or (b) loose a token if MS(A) = 0 in any sequence of firing transitions.
Suppose (a) is the case. Since the initial marking assigns tokens for every place, then
A looses its token and it is not able to recover it in any sequence of transitions. How-
ever, since A is in the preferred extension, then it is defended by arguments in S. But if
every defender Di is such that M(Di) = 1, then after firing the outgoing attack tran-
sitions, every attacker of A looses its token, which after the restoring transition makes
M(A) = 1. Then clearly at least one defender Dk of A has no token, otherwise A
could recover its token. Now Dk and A are two arguments that MS assigns tokens to,
but they cannot acquire them. The same analysis can be made for Dk. �

It could be the case that some controversies are present in the framework, as shown
in Example 4, where an infinite sequence of transitions can be fired. In this particular
case of a three-argument cycle, every transition leads to a vanishing state. The same
is true for longer odd cycles, when an argument attacks its own (indirect) defender.
This is sometimes called a contradictory argumentation line, since every argument in-
directly attacks itself. An argument A is said to be controversial with respect to another
argument B if B indirectly attacks and indirectly defendes A [6].

Proposition 8 Let Φ be an argumentation framework with argnet VΦ. If there exists an
infinite sequence of firings of transitions in VΦ, then Φ is controversial.

Proof: If there exists an infinite sequence of transitions, then some arguments are repeat-
edly loosing and gaining their tokens. Thus, there is a cycle of attacking and restoring
transitions. It means that at least two transitions tXY and tY are involved a bounded-
fair relation. Hence the attack of X on Y indirectly causes the restoration of Y . It means
that X attacks and indirectly defends Y , and then Φ is controversial. �
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A Petri net may have an isolated sub-graph with a cycle causing an infinite sequences
of firings of transitions. Since there is always a transition that is potentially fireable,
then the net cannot reach a tangible state. There may be, however, a subnet such that
no transition is enabled and there are no other, external transitions that can change
that fact. A subnet generated by a set of transitions T is another net formed by T and
all of its input and output places with its corresponding arcs. In argumentation nets,
every transition of a net VΦ that is not potentially fireable at a given marking M , forms
a subnet V ′

Φ such that the restriction of M to V ′
Φ is a potential admissible subset of

arguments. Although there are no tangible states in the whole net, some transitions will
be never fired and thus some places are not receiving or loosing tokens any more.

In the following section we discuss a dialectical interpretation of sequences of firings
of transitions in an argumentation net.

6 Transitions as Dialogue Acts

An argumentation system may produce thousands of arguments from a knowledge base.
In Defeasible Logic Programming [7], the addition of a simple defeasible rule may
cause new derivation trees, thus incrementing the set of arguments. The size and com-
plexity of argumentation makes procedural evaluation of arguments and its relationship
an important topic. It is interesting to evaluate the role of transitions under procedural
models of argumentation. A sequence of firings can be considered as a sequence of
moves in an argumentation game, where two participants (agents) decide what attack is
considered next. This is basically a dialogue that last until some particular condition is
reached. Several forms of dialogue games may be defined, for instance:

– Single-topic: an agent P proposes an argument A to agent O. The goal of P is
to defend A, i.e. to keep the corresponding place tokenized. The goal of O is to
de-tokenize A.

– Set-of-beliefs: both agents propose a set of arguments S as a set of beliefs in con-
tention. The goal of the dialogue is to collaboratively analyse the acceptance of
arguments in S by highlighting attacks and restorations until some condition is
reached.

The first dialogue is competitive, while the other is collaborative. Both dialogues
may run until no transitions are enabled, or for a finite period of time, or until a max-
imal number of transitions were fired. In any case, a restriction of valid sequences of
firings can be considered. For instance, an agent that proposes tXY cannot propose tY
later. This means that an agent that causes the disqualification of an argument in the
dialogue (by deleting its token) cannot provoke the restoration of the same argument.
This restriction is probably more reasonable in single-topic dialogues. Also some tran-
sitions may be completely forbidden. This may be the case when some arguments and
some relations are previously agreed to be off-topic.

It is also possible to consider restoration transitions as an automatic consequence
of the last transition that enables such a restoration, an then restoring transitions are
not a move by itself in the dialogue. Thus, a restoration transition is not a legal single
move. It must be always preceded by an attack transition. According to this form of
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dialogue, there are only two possible moves for an agent: (tXY ) and (tXY ; tZ) for
any arguments X , Y and Z such that Y is an attacker of Z

Another interpretation may be to provide restoring transitions with special, addi-
tional conditions for firing. Here restoration is not automatic, but reserved for particular
moments in the dialogue. Then there is a priority between transitions, being attack ones
preferred over restoring ones. When no attack is possible, a restoration of a place may
be considered by any agent, even when that agent previously removed the token of the
same place. This is a sort of belief revision made by the agent, by consenting the validity
of a previously challenged argument.

In the Petri nets model of argumentation this restrictions to the dialogue can be
achieved by the notion of supervisors [9], as shown in the following Definition.

Definition 6 [9] Let VΦ = (AR, T, F,W ) be a Petri net, M the set of all markings of
VΦ and U ⊆ M. A supervisor Ξ is a function Ξ : U → 2T that maps to every marking
a set of transitions that the Petri net is allowed to fire.

The notion of supervisor is usually associated with the task of preventing deadlock in
Petri nets. However, the same formalism may be used to direct the dialogue to specific
purposes.

Consider the net of Figure 4, where there is no tangible state. A dialogue of tran-
sitions engaged in this net requires additional controls to avoid circular argumenta-
tion. A possible supervisor for this situation may be Ξ(M) = ∅ for any marking
M ⊆ {(1, 0, 0), (0, 1, 0), (0, 0, 1)} i.e. markings with only one token. This means that
no transition is enabled after removing two tokens. In other words, the last argument to
survive leads to a special kind of tangible state since no transition is legally fireable. The
notion of tangible state is now contextual to the overall state of enabled transitions and
the supervisor restrictions. Even more, it is possible to use more than one supervisor,
with priorities. One supervisor define legal attack transitions and the other define legal
restorations. The change of supervisor takes place when the net reaches a tangible state
under supervisors restriction.

7 Conclusions and Future Work

Petri nets are a model of computation for concurrent and distributed systems, where the
emphasis is put in the firing of transitions and how the marking of the net evolves as a
consequence. In this work we proposed a Petri net representation of abstract argumenta-
tion frameworks as an approach to the study of procedural interpretation of attacks, i.e.
the consideration of argument attacks as actions in an argumentation system. Given this
new Petri net model, we have proved that there is a relation between tangible states of
the net and admissible sets of the corresponding framework. We also discussed that the
procedural profile of Petri nets makes this formalism suitable to provide a framework
for the study of argumentation dialogues, under the formal regulation of a supervisor.

Future work has several directions, as intended in this seminal proposal. A Petri net
model of argumentation frameworks that allow places to have more than one token
is being studied. Tokens here are intended to represent the strength of an argument,
and a single attack weakens such an argument by removing one token. An argument
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is considered rejected if it has no tokens. In other direction, it is important to study
the relation between partial repetitive nets and the existence of admissible extensions
in the corresponding argumentation framework. Dialectical strategies to avoid cyclic
transitions in an argumentation dialogue are interesting. Finally, the addition of timed
transitions is important to model the dynamics of timed argumentation formalisms [5].
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