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Influence of riparian quality on macroinvertebrate assemblages in
subtropical mountain streams

L. M. Mesa*

Instituto Nacional de Limnología (INALI-CONICET-UNL). Ciudad Universitaria, Pje. El
5Pozo, Santa Fe C.P. 3000, Argentina

(Received 25 January 2013; accepted 30 October 2013)

The type and extent of the riparian vegetation is known to have a significant
influence on macroinvertebrate communities. The objective of this work was to
assess the influence of the quality of a subtropical riparian forest on the structure

10and composition of macroinvertebrate assemblages. Lower diversity and richness
of invertebrates has been found in degraded reaches in comparison with native
forested sites. Richness, diversity and density of collector-gatherers are sensitive to
the quality of the riparian vegetation. Native riparian species at sites of good
riparian quality contribute to greater habitat complexity and higher quantities of

15palatable food, determining the differences in the structure of macroinvertebrate
assemblages between sites. This work suggests the use of the IBY-4 index in future
management studies of Yungas streams©because of its sensitivity to changes in
riparian conditions.

Keywords: biotic index; ecological condition; macroinvertebrate diversity;
20northwestern Argentina; subtropical forest

Introduction

The structure and functioning of stream macroinvertebrate communities©are inti-
mately linked with riparian vegetation and land use (Hynes 1975; Allan 2004). The
type and extent of riparian vegetation regulates the supply of food resources, can

25affect adult population dynamics and determine habitat structure and quality (water
temperature, light levels, channel form, stream hydrology). It is not surprising, there-
fore, that anthropogenic impacts on the riparian zone©have had a dramatic effect on
macroinvertebrate structure and composition (Jansen and Robertson 2001;
Townsend et al. 2004), producing declines in macroinvertebrate diversity and a shift

30in relative abundance among functional feeding groups (Dudgeon 2006; Wantzen and
Wagner 2006).

Tropical forests are increasingly threatened by accelerating rates of forest
conversion and degradation (Kasangaki et al. 2008; Lorion and Kennedy 2009). In
northwestern Argentina, subtropical forests of the Yungas phytogeographical

35province have been significantly degraded by years of land-use practices (Brown
et al. 2002,©2006). Pasture conversion, agriculture, urbanization, exotic plantations
and deforestation are some threats that affect the ecological integrity of this zone
(Grau and Aragón 2000; Brown et al. 2006; Sirombra and Mesa 2012). Unrestricted
stream access of livestock has degraded native riparian vegetation, reducing
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40vegetation cover, increasing bare ground, depleting highly palatable or disturbance-
sensitive species and allowing the introduction of exotic species (Grau and Aragón
2000; Grau et al. 2008; Sirombra and Mesa 2010).©To assess the effect of these
anthropogenic changes and gain knowledge for the management of the riparian
zone of Yungas streams, an adaptation of the original QBR (©qualitat del bosc de

45ribera©, Munné et al. 2003) had been proposed (QBRy index, Sirombra and Mesa
2012). The QBRy index represents a useful tool to identify sites where riparian
vegetation is severely impaired or pristine, and those where conservation effort should
be directed (Sirombra and Mesa 2012).

Although degradation of the riparian zone has significantly increased in tro-
50pical streams in the last few decades (Kasangaki et al. 2008), the consequences of

these changes on the structure of macroinvertebrate assemblages are scarcely
known (Nessimian et al. 2008). Some studies have demonstrated changes in
macroinvertebrate composition as a result of changes in riparian vegetation
(Kasangaki et al. 2008; Arnaiz et al. 2011), and modifications in the riparian

55zone produced by cattle (Herbst et al. 2012), but studies in subtropical streams are

©scarce (Lorion and Kennedy 2009). Consequently, the aim of this work was to
assess the influence of the quality of the riparian forest at the reach level on
macroinvertebrate assemblages of subtropical streams of northwestern Argentina.
The hypothesis of this work was that richness and diversity are greater at reaches

60with good riparian quality, and that sites of higher riparian quality have higher-
value biotic indices based on macroinvertebrates.

Material and methods

Study area

This study was conducted in the Lules river basin, and Andean basin located in
65Tucumán province in northwestern Argentina (Figure 1). The maximum altitude of

this basin is around 4488 m above sea level©(a.s.l.), decreasing toward the piedmont
(408 m©a.s.l) (Figure 1). The region is characterized by a humid climate, with
annual rainfall exceeding 1500 mm, concentrated mostly in the summer period
(November–March).

70The Yungas phytogeographical province extends through©Argentina between
22° and 28° S with an area of 3,©900,©000 hectares. This phytogeographical province
represents less than 2% of Argentina, but includes 50% of its biodiversity (Brown
et al. 2006). Some common native riparian species included in the Lules river
basin are Solanum riparium, Tipuana tipu, Carica quercifolia, Celtis iguanaea,

75Juglans australis, Pisoniella arborescens, Baccharis salicifolia, Cinnamomum por-
phyrium, Eugenia uniflora trees© and Cestrum parqui, Baccharis salicifolia and
Phenax laevigatus shrubs (Sirombra and Mesa 2010). Fifteen exotic species
occurred in the riparian zone of degraded sites, seven of which are extremely
invasive (Morus alba, Gleditsia triacanthos, Ligustrim lucidum, Psidium guayaba,

80Acacia macracantha trees, Pyracantha angustifolia shrubs©and Arundo donax reed),
representing a real threat for native riparian species (Sirombra and Mesa 2010,
2012).

The QBRy index has proved to be sensitive to changes in the composition of
riparian vegetation and changes in stream channel due to anthropogenic alterations,

2 L.M. Mesa
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85decreasing the values of each section in accordance with these factors (Sirombra and
Mesa 2012). This index includes four sections: total riparian cover, cover structure,
cover quality and channel alteration. Sites of good riparian quality (QBRy = 75–90)
have good vegetation cover, good cover structure, high cover quality composed
only by native species and minimum alterations in their channels. Riparian forest at©

90sites of poor quality (QBRy = 30–50) and bad quality (QBRy ≤ 25) has been
degraded by anthropogenic impacts, reducing vegetation cover, decreasing the
quality of the structure and cover of the riparian vegetation by introduction of
exotic species, and showing significant modifications in their channels (Sirombra
and Mesa 2012).

95Sampling design

Eleven sampling reaches of the Lules River basin were selected in accordance with
their different riparian conditions: five sites of good quality (1©–5, QBRy = 90), three
poor (6©–8, QBRy ≤ 50) and three of bad quality (9©–11; QBRy < 30) of their
riparian zone in accordance with the values of the QBRy index (Sirombra and

100Mesa 2012) (Figure 1). The stream order of the studied streams varied from five to
six, and the altitudinal difference between reaches of different riparian conditions
was ≤ 400. In addition, physical characteristics were similar between streams
(Table 1).

The selected sites were sampled during September 2005 and September 2006 in
105spring (low-©water season). Three Surber samples (mesh size 300 μm, 0.09-©m

2 area)
were taken in each riffle to collect the benthic fauna and particulate organic
matter. In the field, samples were preserved immediately in 4% formaldehyde

Figure 1. Localization of the study area and distribution of reaches of good (white dots, 1–5),
poor (grey dots, 6–8) and bad©(black dots, 9–11) quality of their riparian zone.
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and packed for examination in the laboratory. Invertebrates were identified to the
lowest possible taxonomic level (mostly genus) using the available keys (Fernández

110and Domínguez 2001; Domínguez and Fernández 2009).
Water chemistry and physical measures were assessed on each sampling date©at

each site. These measures included temperature, pH, oxygen concentration, con-
ductivity, NO3, PO4©

and benthic organic matter. Water samples were placed
on ice and taken to the laboratory for immediate analyses using standard

115methods (APHA 1992). Current velocities were measured at a cross-©section
using a flow meter (Global Water Flow meter). Organic matter was separated
from benthic samples, cleaned of sediment and divided into fine (300 μm to©1 mm)
and coarse (> 1 mm) particulate fractions [fine (FPOM) and coarse (CPOM)
particulate organic matter, respectively). CPOM was separated into wood, leaves©

120and “others” (seeds, fragments of roots, fruits and flowers). All fractions
were dried (100°©C for 24 h) and weighed on an electronic balance to ± 0.01 mg.

Data analyses

Macroinvertebrates were assigned to functional feeding groups according to Reynaga
(2009), Reynaga and Rueda Martín (2010), Reynaga and Dos Santos (2012).

125Environmental variables, assemblage structure measures and relative density (%) of
each functional feeding group were compared among reaches of different riparian
quality (good, poor, bad) with simple analysis of variance (ANOVA)©. Assemblage
structure measures included taxon richness, Shannon diversity and total density
(individuals.©m

–

©
2). The values of taxon richness were first corrected using the rarefac-

130tion method (Krebs 1989).

Table 1. Altitude, and mean (± SD) of environmental variables relative to reaches of good,
poor and bad riparian quality.

Variables Good Poor Bad

Altitude (m) 1145 (160) 898 (170) 740 (92)
Depth (m) 0.3 (0.1) 0.3 (0.1) 0.2 (0.1)
Discharge (m3.s−1) 0.53 (0.45) 0.31 (0.4) 0.11 (0.1)
Wet channel width (m) 6.9 (4.5) 6.1 (5.0) 6.0 (2.6)
Dry c©hannel width (m)* 24.6 (10.1) 17.5 (9.4) 9.6 (5.4)
Bank-full height (m) 1.4 (0.3) 1.7 (0.3) 2.0 (0.6)
Nitrate (mg.l−1) 2.5 (0.3) 2.8 (0.5) 3.2 (0.9)
Conductivity (μS.cm−1)*** 124 (26) 321 (174) 601 (252)
pH 7.1 (0.9) 7.7 (1.0) 7.9 (1.1)
Dissolved oxygen (mg.l−1) 8.9 (0.2) 8.7 (0.4) 8.7 (0.3)
Water temperature (°C)* 17.2 (1.9) 18.8 (0.7) 19.3 (1.7)
Algae (g.m−2) 0.3 (0.5) 0.4 (0.6) 0.4 (0.3)
FPOM (g.m−2) 0.2 (0.2) 0.2 (0.1) 0.3 (0.6)
CPOM (g.m−2) 0.3 (0.3) 0.2 (0.2) 0.8 (1.7)

Note: *©p < 0.05; **©p < 0.01; ***©p < 0.001.
CPOM, coarse particulate organic matter; FPOM, fine particulate organic matter.
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The sum of the tolerance scores of all families recognized in a sample adapted
for the region [©biological monitoring working party (BMWAQ1 P) index, Armitage
et al. 1983 modified by Dominguez and Fernández 1998]©and the number of
species/morpho-species included in Ephemeroptera, Plecoptera and Trichoptera

135orders (EPT index, Klemm et al. 1990) are widely used indices in the bioassess-
ment of Yungas streams (Fernández et al. 2002; Von Ellenrieder 2007; Dos
Santos et al. 2011). Recent work (Dos Santos et al. 2011) proposed a new index
for Yungas streams based on the occurrence of Elmidae, Plecoptera, Trichoptera
and Megaloptera (IBYAQ2 -4 index, Dos Santos et al. 2011). These indic©es were

140selected©to evaluate their sensitivity to different riparian conditions of the studied
reaches.

©Analysis of©similarities (ANOSIM, R program, package Vegan) was used to
determine differences in macroinvertebrate assemblages between reaches of differ-
ent riparian quality. Redundancy analysis (RDA) was used to assess the relation-

145ship between the riparian quality, the environmental characteristics and
macroinvertebrate data. This analysis was performed using R program, package
Vegan (Oksanen et al. 2006).©Before running the RDA, taxon densities were
Hellinger-transformed, as suggested by Legendre and Gallagher (2001). The
Hellinger transformation preserves the Euclidean distance among the rows, and

150therefore allows the use of Euclidean-based ordination methods. It also offers the
advantage of under-©weighting the rare taxa (Legendre and Gallagher 2001). The
environmental variables were standardized (Legendre and Legendre 1998, R pro-
gram, package pls).

Results

155A total of 112 taxa was identified in this survey. Sites of good riparian quality were
dominated by Orthocladiinae (32%), followed by Austrelmis sp. (larvae) (15%),
whereas Oligochaeta (> 39%) followed by Orthocladiinae (> 20%) were common in
sites of bad and poor quality (Appendix 1).

Among the environmental variables measured, water temperature and conduc-
160tivity differed significantly among reach types, being higher in sites of bad riparian

quality (ANOVA, P < 0.05, Table 1). In addition, dry channel width was sig-
nificantly higher in sites of good riparian quality (ANOVA, P < 0.05, Table 1).
No significant differences were observed between types of particulate organic
matter among reach types (Table 1). In addition, significant differences in taxa

165richness and diversity of macroinvertebrates were©found among reach types, being
higher in sites of good riparian quality and lower in those of poor quality
(Table 2).

Among the biotic indices analy©ced, only IBY-4 differed significantly among
reaches of different riparian quality, being significantly higher in sites of good

170riparian quality (Table 2). Percentage density of scrapers and predators, richness
and diversity of collector-gatherers were significantly higher in reaches of good
riparian quality, whereas the density of collector-gatherers increased in sites of bad
quality (Table 2).

ANOSIM revealed that assemblage composition differed significantly among
175reaches of different riparian quality (R = 0.23, P < 0.006). This pattern was also

shown by RDA, determining the separation of sites in the ordination space in
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accordance with the quality of their riparian zone. The first two axes of the RDA
accounted for 42% of the total variance in the species data and 64% of the
cumulative percentage variance of the species–environment relationship. The first

180RDA axis (explained variation = 30%) described a gradient from reaches of good
riparian quality to sites of bad riparian quality (Figure 2). Sites of bad riparian
quality generally had higher nitrate, conductivity and water temperature, whereas
those with native riparian composition had higher dry channel width. The second
axis (explained variation = 13%) represented a gradient of biomass of fine parti-

185culate organic matter and leaves, and differences in bank-full height among sites.
Within the first axis, Tricorythodes popayanicus, Caenis sp. (ephemeropteran),
Hydrodroma sp. (acarina), Heterelmis sp. (larvae), Lutrochidae (coleopteran) and
Oligochaeta were associated with sites of bad riparian quality o©n the positive side
of this axis, whereas Anacroneuria sp. (plecopteran), Americabaetis sp.,

190Camelobaetidius penai (ephemeropteran), Austrelmis sp. (adult) (coleopteran),
Atopsyche sp. Hydrobiosidae, glossossomatidae Mortoniella sp. (trichopteran),
Empididae and Tipulidae (dipteran) were related©to sites of good riparian quality
o©n the negative side of this axis. Staphilinidae (adult) (coleopteran), Pyralidae
(megalopteran), Leptohyphes eximius (ephemeropteran) and Orthocladiinae (dip-

195teran) were positively related to axis 2, whereas Ceratopogonidae (dipteran) was
negatively related to this axis.

Table 2. Mean (±SD) of assemblage metrics, values of ecological indexes, and relative density
(%), richness and diversity of each functional feeding group of reaches of good, poor and bad
riparian condition.

Parameters Good Poor Bad ©p

Taxa richness 23.5 (2.4) 15.5 (2.4) 18.2 (4.7) 0.0003
Shannon d©iversity 1.0 (0.1) 0.7 (0.1) 0.8 (0.2) 0.004
Total density (individuals.m−2

©) 14,115 (7310) 34,699 (30,732) 33,444 (32,701) n.s.

©Ecological condition
IBY-4 4.0 (0.3) 3.5 (0.5) 3.0 (0.9) 0.01
EPT 17.3 (2.6) 14.8 (3.5) 15.5 (2.1) n.s.
BMWP 210 (16.1) 197.5 (38.8) 197.7 (33.4) n.s.

©Functional feeding groups
Collector-©gatherers (%) 85.9 (2.5) 90.0 (8.8) 93.4 (3.7) 0.01
Collector-filterers (%) 4.3 (3.8) 3.0 (4.4) 2.4 (2.5) n.s.
Scrapers (%) 1.5 (1.2) 0.4 (0.6) 0.2 (0.1) 0.01
Predators (%) 8.3 (2.5) 6.6 (9.7) 3.9 (2.2) 0.01
Shredders (%) 0.01 (0.01) 0.02 (0.04) 0.01 (0.01) n.s.

©R Collector-gatherers 15.0 (2.1) 10.1 (1.9) 12.2 (2.3) 0.002
H’ Collector-gatherers 0.8 (0.1) 0.6 (0.1) 0.7 (0.2) 0.016

©R Predators 6.4 (1.3) 6.3 (1.8) 6.9 (1.3) n.s.
H’ Predators 0.8 (0.1) 0.8 (0.3) 0.9 (0.1) n.s.

©R Scrapers 0.2 (0.2) 0.1 (0.1) 0.03 (0.07) n.s.
H’ Scrapers 0.4 (0.8) 0.1 (0.2) 0.1 (0.3) n.s.

©R Collector-filterers 0.7 (0.5) 0.8 (0.4) 0.7 (0.5) n.s.

Note: R = richness, H’ = Shannon diversity, n.s. = not significant.
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Figure 2. Redundancy analysis (RDA) of macroinvertebrate density in sites of good (white
dots), poor (grey dots)©and bad©(black dots) riparian quality according with the QBRy index.
References: DO =©dissolved oxygen; Bh =©bank-full height; DW =©dry channel width;
Temp = water temperature; Cond = conductivity; FPOM = fine particulate organic matter.
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Discussion

This study has found significant relationships between the quality of the riparian forest
and macroinvertebrate metrics. Degraded reaches had lower diversity and richness of

200invertebrates in comparison with native forested sites. This finding was consistent with
other©studies related to tropical streams (Kasangaki et al. 2008; Arnaiz et al. 2011) and
neotropical streams (Roque and Trivinho-Strixino 2000; Roque et al. 2003; Couceiro
et al. 2007). Arnaiz et al. (2011) studied©12 reaches of©south©eastern Australia finding that
those sites of better riparian condition had higher taxonomic richness. Kasangaki et al.

205(2008) found that the removal of riparian vegetation in a high-altitude equatorial rain-
forest negatively affects benthicmacroinvertebrate assemblages through a reduction in the
number of sensitive taxa and dominance by the intolerant taxa. Roque and Trivinho-
Strixino (2000) and Roque et al. (2003) compared forested and non-forested streams of
Brazil, finding the highest values for taxonomic richness in stream sections with intact

210riparian zones. Harrison and Harris (2002) associated reductions in macroinvertebrate
abundance and richness with reductions in available bank and littoral habitats caused by
livestock activity. Native riparian species at sites of good quality would contribute to
greater habitat complexity (Robertson and Rowling 2000; Arnaiz et al. 2011) and higher
quantities of palatable food (Bunn et al. 1999; Robertson andMilner 2001) in comparison

215with those species structuring degraded sites. Accordingly, the lower richness and diversity
of degraded sites could be related to the lower cover of vegetation and the replacement of
native vegetation by exotic plants, resulting in a reduction of allochthonous material from
native species and the input of organic matter from exotic species in the stream. Whole
leave©s and woody debris of exotic species such as Citrus and Acacia observed in benthic

220samples of these sites confirm this statement (Correa pers. comm.©), determining a change
in the type of resource available for macroinvertebrates (Robertson and Rowling 2000).

As was shown©in the ordination analysis, degraded sites had significantly different
assemblage composition in comparison with native forested sites, and this was in
agreement with reports from similar studies (Thompson and Towsend 2004; Compin

225and Céréghino 2007; Encalada et al. 2010; Miserendino and Masi 2010; Arnaiz et al.
2011). The crane flies (Tipulidae) are shredders and are known to be important in
organic matter breakdown in streams. Their occurrence in high numbers at native
forested sites may be attributed to the availability of the plant material on which they
feed. Several studies have documented large increases in generalist taxa such as

230Trichorythidae and Caenidae in streams affected by canopy removal (Benstead et al.
2003; Kasangaki et al. 2008). Degraded environmental conditions would facilitate the
dominance of some tolerant groups such as Oligochaeta (Karr and Morishita-Rossano
2001; Couceiro et al. 2007). In addition, many works have reported the sensitivity of
Elmidae to anthropogenic changes and the necessity of its inclusion in biological indices

235(Fossati et al. 2001; Von Ellenrieder 2007; Encalada et al. 2010).
Water temperature was generally higher in sites of poor and bad quality conditions.

This finding was consistent with other works performed in tropical streams (Reinthal
et al. 2003; Kasangaki et al. 2008). The higher temperature in degraded streams is a
result of the reduction of the total cover and poor cover structure of the riparian

240vegetation in these reaches in comparison with native forested sites. In addition, the
higher values of conductivity in degraded sites could not be attributed to anthropogenic
impacts. The main factor influencing the conductivity at these sites is the nature of the
underlying geology.
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Density, richness©and diversity of collector-gatherers differed significantly among
245sites of different riparian quality, and this result was in accordance with other studies

(Danger and Robson 2004; Thompson and Towsend 2004; Compin and Céréghino
2007; Miserendino and Masi 2010) showing the sensitivity of this functional feeding
group to anthropogenic changes. Degraded sites are situated at lower altitude,
determining a higher deposition of detritus and, consequently, higher food source

250for this group, increasing its density. Furthermore, leaves and woody debris of exotic
species can provide shelter (habitat/refuge) for this group.

The density of scrapers was higher in sites of good riparian quality. This result
could be related©to the higher dry channel width in these sites, that would determin©e a
higher insolation of the stream and an increase in primary production. Channel width

255was also higher in these sites, despite©the lack of a significant difference as a
consequence of the inclusion of site 1, a tributary with a narrow channel in compar-
ison with those including in the main channel of the studied basin. In addition,
shredders did not show significant differences in relation to the quality of riparian
vegetation, and this could be related to the scarcity of this group in these streams, in

260accordance with other reports of tropical streams (Dobson et al. 2002; Mathuriau and
Chauvet 2002; Wantzen and Wagner 2006).

In contrast with other studies (Rios and Bailey 2006; Walsh et al. 2007; Raymond
and Vondracek 2011), the EPT index was not sensitive to anthropogenic changes in
riparian conditions.©This study found a higher sensitivity of the IBY-4 index in

265comparison with the EPT and BMWP indic©es to changes in riparian quality of
Yungas streams. In accordance with others studies (Domínguez and Fernández
1998; Baptista et al. 2001; Dos Santos et al. 2011), the presence of some tolerant
families of Ephemeroptera such as Baetidae and Caenidae, would determine the
lower sensitivity of the EPT index to anthropogenic changes in Yungas streams.

270In this study, riparian degradation has been linked to a decrease of macroinverte-
brate richness and diversity, supporting the use of invertebrates as indicators of
riparian condition of Yungas streams. In addition, this work highlights the impor-
tance of riparian vegetation in the maintenance of functional organization of macro-
invertebrates in subtropical streams. The higher sensitivity of the IBY-4 index to

275changes in riparian characteristics suggests its usefulness in future management
studies in Yungas streams. The conservation of good riparian quality conditions
will sustain the ecological integrity of stream communities.
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Appendix 1

List and mean density (±SD) of macroinvertebrate taxa of sites of different riparian quality.
Abbreviations of taxa relative to the RDA were also shown.

Taxa Abbreviation Good Bad Poor

Aegla sp. Ae 0 0.6 (1.5) 11.1 (22)
Anacroneuria sp. An 99.6 (81) 97.5 (117) 8.6 (9.6)
Americabaetis alphus Am 349.4 (262) 41.4 (59) 235.2 (392)
Baetodes sp. Ba 123.5 (190) 49.4 (67) 60.5 (137)
Baetodes huaico Bah 1264 (983) 1025.3 (1358) 2018 (3295)
Caenis sp. Ca 0.74 (2.3) 25.9 (34) 492.3 (652)
Camelobaetidius penai Cam 474.1 (353) 8 (10.3) 12.7 (14)
Farrodes sp. Fa 0.4 (1.2) 0 4.3 (4.9)
Haplohyphes baritu Ha 19.1 (20.0) 9.9 (12.5) 0.6 (1.5)
Leptohyphes eximius Lep 55 (48) 158.6 (187) 622.8 (878)
Nanomis galera Na 147.2 (145) 57.4 (60.1) 373.5 (495)
Thaulodes sp. Th 168.7 (208) 96.9 (112) 141.7 (134)
Thraulodes
cochunaensis

Tco 23.1 (71) 1.9 (4.5) 0.6 (1.5)

Thraulodes consortis Tc 12.9 (30) 0 0.6 (1.5)
Tricorythodes
popayanicus

Tr 0.7 (1.6) 9.9 (9.8) 380.6 (576)

Varipes sp. Va 0 0 0
Atopsyche sp. Ato 44.8 (44) 3.7 (6.2) 1.9 (4.5)
Atopsyche maxi Atm 0 0.6 (1.5) 0
Atopsyche spinosa Atpi 14.2 (12) 0 0
Chimarra sp. Chi 0 0 1.2 (3)
Halipidae (adult) Haa 0.4 (1.2) 0 0
Helicopsyche sp. Hel 103.9 (171) 32.7 (49) 8.6 (19)
Hydroptila sp. Hy 0.55 (1.7) 56.2 (87) 41.4 (30)
Marilia sp. (larvae) Marl 0 1.9 (4.5) 0
Metrichia sp. (larvae) Metr 45.2 (49.5) 636.4 (554) 376 (286)
Mortoniella sp. (larvae) Mo 113.7 (163) 208.6 (378) 25.6 (37)
Nectopsyche sp. Ne 2.0 (3.7) 0 0.6 (1.5)
Neotrichia sp. Neot 0.4 (1.2) 0 0
Mexitrichia sp. Mex 1.1 (3.5) 0 0
Oecetis sp. Oe 1.5 (2.5) 4.3 (11) 2.8 (6.8)
Oxyethira sp. Ox 1.1 (3.5) 0.6 (1.5) 16.7 (21)
Polycentropus
joergenseni

Pojl 0.4 (1.2) 0 4.9 (12)

Protoptila sp. Prti 0 0 0
Smicridea sp. Sm 196.3 (236) 383.3 (309) 197.8 (313)
Chironominae Ch 1216.8 (783) 2739 (2198) 4356 (6500)
Orthocladiinae Ort 4570 (3677) 8481.5 (6534) 7058 (3865)
Tanypodinae Ta 235 (209) 111.7 (78) 1405 (2107)
Blephaceridae Bl 2.2 (3.1) 0 0
Ceratopogonidae Ce 56.5 (63.1) 55.6 (46) 191.4 (256)
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(Continued).

Taxa Abbreviation Good Bad Poor

Psychodidae Psy 399.4 (601) 2.5 (3) 2.5 (6)
Simulium sp. Si 592 (474) 1825.3 (3806) 1094.4 (2087)
Stratyomidae St 0.7 (1.5) 1.2 (2.0) 3.1 (4.3)
Tipulidae Ti 313.3 (297) 9.3 (9.3) 9.9 (22)
Dolychopodidae Dol 0.4 (1.2) 0 0
Empididae Em 76.1 (62.3) 35.8 (35) 15.7 (22)
Oligochaeta Ol 314 (456) 16,421 (19121) 13,062 (16864)
Maruina sp. Mar 98.9 (266) 0.6 (1.5) 10.5 (14)
Austrelmis sp.©(adult) Aua 76.3 (62.6) 36.4 (37) 1.2 (2)
Austrelmis sp. (larvae) Aul 2139 (2920) 1616.7 (2253) 429 (725)
Chrysomelidae (adult) Chra 0.7 (2.3) 0 0
Cylloepus sp. (adult) Cyl 2.4 (4.1) 0.6 (1.5) 0
Dryops sp. (adult) Drya 1.1 (2.5) 0 0
Dyticidae (larvae) Dyl 1.1 (3.5) 1.9 (2) 4.3 (4)
Dyticidae (adult) Dya 0.4 (1.2) 0.6 (1.5) 1.2 (2)
Ephydridae (adult) Epa 0.7 (2.3) 1.9 (4.5) 0
Heterelmis sp. (adult) Hea 0 0 0
Heterelmis sp.(larvae) Het 0 1.9 (4.5) 3.4 (4)
Hydrophilidae (adult) Hyda 0 0 0.6 (1.5)
Hydrophilidae (larvae) Hydro 8 (20) 2.5 (6) 2.5 (6)
Lutrochidae Lu 0 1.9 (2) 6.8 (13)
Macrelmis sp. (adult) Maca 4.1 (7.9) 4.3 (8.9) 1.2 (3)
Macrelmis sp. (larvae) Macl 134.2 (279) 37.7 (30) 42 (85)
Neoelmis sp. (adult) Neoa 43.5 (65) 10.5 (13) 1.9 (4.5)
Staphilinidae (larvae) Stl 120.9 (283) 2.5 (1.9) 74.1 (149)
Staphilinidae (adult) Sta 66.8 (149) 3.1 (4.3) 104.9 (205)
Phanocerus sp. Ph 0.9 (2) 14.8 (23) 0.9 (2.3)
Psephenus sp. Pse 91.9 (125) 44.4 (62) 39.2 (43)
Aturus sp. Atu 0 1.9 (4.5) 6.2 (15)
Atractides sp. Atra 4.1 (6.6) 44.4 (43) 53.1 (37)
Atractides sinuatipes Ats 0 1.9 (4) 0
Atractidella sp. At 0 0.6 (1.5) 0
Clathrosperchon
punctatus

Cl 8.1 (10) 3.1 (3.6) 4.9 (4.5)

Corticacarus sp. Cor 11.3 (14.4) 43.8 (51) 31.2 (23)
Diamphidaxona
yungasa

Diam 0 0 1.9 (4)

Dodecabates
dodecaporus

Do 2.6 (3.5) 42 (61) 109.3 (109)

Hygrobates sp. Hygr 2.6 (3.5) 3.1 (6) 31.2 (47)
Hygrobates plebejus Hyp 0.4 (1.2) 1.2 (1.9) 0
Hygrobatella sp. Hyb 0 0 0
Hygrobatella
multiacetabulata

Hyg 0.7 (2.3) 1.2 (3) 0

Hydrodroma sp. Hydr 1.1 (3.5) 0.6 (1.5) 13 (23)
Letaxanella
argentinensis

Let 0 0 0
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(Continued).

Taxa Abbreviation Good Bad Poor

Meramecia sp. Mer 0.4 (1.2) 0 0
Miraxonides sp. Mir 0 1.2 (3) 0
Neomamersa sp. Neo 0 0 0.6 (1.5)
Protolimnesia
interstitialis

Proi 0.4 (1.2) 0.6 (1.5) 0.6 (1.5)

Protolimnesia setifera Prose 27 (40.5) 3.1 (2.8) 44.4 (78)
Rhycholimnochares
expansiseta

Rhy 13.5 (16) 12.3 (13) 0

Sperchon neotropicus Sp 0.4 (1.2) 0 0
Stygalbiella
tucumanensis

Stt 1.1 (2.5) 1.9 (2) 4.9 (5)

Tetrahygrobatella sp. Tet 13 (17) 1.2 (2) 0.9 (2)
Tetrahygrobatella
argentinensis

Tea 2.2 (4.7) 0.6 (1.5) 0.6 (1.5)

Tetrahygrobatella
bovala

Te 0.7 (1.6) 0.6 (1.5) 0

Torrenticola
colombiana

To 153.5 (251) 101.9 (104) 85.5 (61)

Protolimnesia sp. Pro 0.4 (1.2) 0 0
Protolimnesella sp. Prts 0.7 (2.3) 0 0
Pyralidae Py 6.5 (6.2) 29 (22) 53.1 (78)
Corydalus sp. Cory 6.7 (3.8) 3.7 (5.0) 1.2 (2)
Chepuvelia sp. Che 0 0 0
Corixidae Cori 0 0 0.6 (1.5)
Darwinivelia sp. Dar 2.6 (7) 0 1.2 (3)
Guerridae Gu 0.4 (1.2) 0 0
Hebrus sp. He 1.5 (3.6) 0.6 (1.5) 0.6 (1.5)
Heterocorixa sp. Hete 0 1.9 (4.5) 2.5 (6)
Horvatinia sp. Ho 0.4 (1.2) 0 0.6 (1)
Ligomorphus sp. Lig 1.1 (2.5) 2.5 (4.5) 13.6 (26)
Mesovelia sp. Mes 6.3 (20) 3.1 (4.3) 0.6 (1.5)
Mesoveloidea Meso 0 1.2 (3) 0
Microvelia sp. Mi 2.6 (8.2) 0 0
Petrophila sp. Pe 0 0 1.5 (2.5)
Rhagovelia sp. Rh 0.4 (1.2) 9.3 (16) 0
Odonata Od 0 2.5 (3) 17.3 (12)
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