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ABSTRACT 

A model for studying the mechanical internal stresses into dielectric materials is developed in 
the present work. The model takes into account the formalism of inclusions in continuous 
media. The dielectric material is assumed to be partitioned in different cubes which form a 
sizeable bulk material in such a way that a given cube can be of the dipolar phase and its 
neighbor can be of the same phase or the matrix. The behavior of the internal stresses 
promoted by the electrostriction phenomenon can be monitored by studying the behavior of 
both the misfit coefficient related to the strain misfit and the transfer of elastic energy process. 
The equations obtained through the here presented model are calculable using magnitudes 
from mechanical tests, in particular dynamic mechanical analysis, which is very sensitive to 
changes in the microstructure. Dynamic mechanical analysis as a function of the electric field 
is reported, perhaps for the first time in literature, for the study of dielectric materials, giving 
rise to a useful tool for studying the behavior of internal stresses in dielectric materials. 

   Index Terms - Dielectric materials, electrostriction, modeling, polymers, rubbers, dynamic 
mechanical analysis 

 
1   INTRODUCTION 

THE application of an electric field to a dielectric material 
causes small displacements of the positive and negative 
charges which give induced dipole moments. The field then 
interacts with these dipole moments to produce a distortion 
which is proportional to the square of the field strength. The 
relation between the strain and the electric field is called 
electrostriction [1, 2]. From an appropriate reciprocity relation, 
it follows that the application of a mechanical stress may 
produce a change in the dielectric properties [2, 3]. In fact, the 
interaction between the electrical and mechanical fields has 
been proposed as a critical point to be considered for the study 
of the lifetime of insulating materials. For instance, electrical 

forces acting on the polymer chains were proposed as the 
driving force for controlling the crystalline state in ethylene-
propylene-diene M-class rubber (EPDM) insulators, which 
leads to the modification of the mechanical and dielectric 
properties [4]. In addition, the mechanical internal stresses and 
the empty space were reported as the responsible for 
controlling the behavior of the dielectric strength [5]. Besides 
this, there exists also works, where the influence of the 
internal stresses, either thermal or mechanical, on the dielectric 
behavior have been reported [6-10]. 

A general and formal treatment of the coupling of the 
mechanical and electrical properties in materials can be done 
by resolving the stress state from a general thermodynamic 
potential equation involving both contributions [2]. However, 
the mathematical handling of the resulting equations applied 
to engineering calculations in technological materials is 
always complicated.  
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On the other hand, the internal stresses in materials have 
been studied widely in literature from the point of view of the 
elasticity theory [11, 12]. In the theory of elasticity one 
inclusion is a region whose shape is different from the 
surrounding bulk matrix or where the elastic constant is 
different from that of the bulk matrix. The formalism of the 
inclusions into elastic matrix has been used widely for 
studying the behavior of the internal stresses in materials [11, 
13-15]. However, in many cases the resulting equations are 
also complicated for being used in engineering calculations of 
materials in service. In contrast, more recently, a model based 
in a mean field treatment applied to the formalism of the 
inclusion [15, 16] has been reported, which allows easy 
calculations of the behavior of the mechanical internal stresses 
[17, 18]. This model has been applied to study the behavior of 
the internal stresses when the size and volume fraction of the 
crystalline zones in EPDM are modified [17, 18]. 

It should be noticed that, to our knowledge, a model which 
allows to describe the behavior of the mechanical internal 
stresses arisen from an electrostriction phenomenon, useful for 
engineering calculations, was not yet reported.  

In the present work, the basic ideas of the model involving 
the mean field treatment applied to the formalism of the 
inclusion [17, 18] will be used for describing the behavior of 
the (mechanical) internal stresses into dielectric materials as a 
consequence of the electrostriction phenomena, promoted by 
the appearance of an electric field. The new model allows the 
calculus of the internal stresses in dielectric materials 
promoted by the application of an electric field, from 
electromechanical tests. Results of the model here developed, 
are successfully applied to dynamic mechanical analysis 
(DMA) [19] studies under the application of an electric field. 
Indeed, this work is a very useful tool which brings both the 
theoretical equations and also an experimental setup, which 
allow the study of the internal stresses behavior in dielectric 
materials which arise from the application of an electric field. 
Moreover, it has to be highlighted that, to our knowledge, it is 
the first report of DMA studies performed under the 
application of an electric field for the study of dielectric 
materials. 

 
2  THEORETICAL BACKGROUND 

For better understanding of the work presented here, the 
essential concepts of the previously reported model based 
in a mean field treatment applied to the formalism of the 
inclusion will be summarized. Only the one-dimensional 
case will be presented in this paper; for more details see 
[17]. The model takes the idea of partitioning the volume of 
the sample in small elementary cubes in such a way that 
each partitioned element is composed by a single phase [17, 
18, 20] either inclusion or matrix, in the polymer material 
we are dealing with. 

Figure 1 summarizes the main concepts to take into 
account. It shows a (z, y) plane of the partitioned sample at  
x = v, where the size of the partitioned matrix, over each 
axis, was chosen equal to lop. The model for calculating the 

degree of the strain misfit starts with the following 
considerations: 

a) The volume element located at (v, m, j) of the whole 
partitioned matrix (for more details see [17]), which is 
plotted by means of full fine lines in Figure 1, is cut and 
removed out of the matrix; leading to a cubic hole of edge 
lop. In other words, a cubic volume is cut from the 
nondistortioned initial cubic lattice. 

b) An inclusion of size lop +  lop, with 0 ≤  ≤ 1, 
plotted by means of broken lines, will be firstly compressed 
to fit into the hole of the matrix and subsequently placed in. 

c) The inclusion is mechanically released and then the 
boundaries of the hole, in the x, y and z axis, displace to a 
position lop + β  lop, with 0 ≤ β ≤ 1, where the equilibrium 
of stresses is achieved. The wide lines in Figure 1 represent 
this state. 

 The movement of each boundary is considered in each 
axis as a plane front, which moves until the equilibrium of 
stresses in each axis is reached. 

The movement of the boundary in the z-axis, produced 
by the inclusion located at (v, m, j), and its effects over the 
neighbor matrix element (v, m, k), will be considered now, 
see Figure 1. The displacement of the boundary of the 
element (v, m, j) from the initial position (cube in dashed 
line in Figure 1) after the inclusion is forced into the hole 
and released mechanically achieving the mechanical 
equilibrium, leads to the movement of the front from the 
solid line to the wider line, Figure 1. 

It is considered that the inclusion and the matrix are 
homogeneous and isotropic media, and due to the 
symmetry of the problem the centre of the inclusion will 

Figure 1. Accommodation of the misfit strain by the appearance of an 
inclusion into the material matrix, case: inclusion larger in size than the 
size of the hole. Fine full line: Initial size of the base of the cube of the 
partitioned material. Broken line: Size of the inclusion free of stresses. 
Wider full line: Equilibrium position of the boundary between the inclusion 
and the matrix, after location of the inclusion into the matrix hole (see 
details in the text). Arrows in the Figure indicate the compression effect of 
the inclusion on the matrix. Taken from 17. 
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not change its position during the deformation process and 
the reaching of the stresses equilibrium [17]. Then any 
point inside the inclusion between the initial state (original 
size, free of stresses, state represented by the dashed line in 
Figure 1) and after forcing the inclusion into matrix and 
subsequent achievement of the mechanical equilibrium, 
moves from    (z + z) to (z + zβz), where βz means the 
misfit coefficient along the z-axis. This leads to a 
displacement in the z-axis, ui(z), that is 

   ( ) . . . (1)z

iu z z z z z      

  ( ) 1 (2)z

iu z z   

 
Consequently the mean strain inside the inclusion 

(averaged by the mean field approximation) in the z-axis, 
εi

z, results,
 

   1 (3)z zi
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Hereafter, the magnitudes corresponding to the inclusion 
or to the matrix, will be noted with a subscript i or m; 
respectively. In addition, in order to keep the same style of 
the mathematical notation used in the work of [17], either 
the direction for the strain misfit coefficient, β, and for the 
number of inclusions or matrix elements (N) will be 
denoted through a supra-subscript.

 On the other hand, we obtain now the resulting mean 
strain inside the matrix element. Let consider that there 
exists an inclusion concentration lying in the z-axis Ni

z/Nm
z 

(where Ni
z and Nm

z are the number of inclusions and the 
number of matrix elements, respectively, which satisfy the 
condition Ni

z + Nm
z = Nz), the Ni

z inclusions move the 
boundaries of the Nm

z partitions, in such a way that to the 
partition (v, m, k) the following displacement corresponds: 
z + z  βz Ni

z/Nm
z. Then, the displacement in the z-axis for 

the matrix elements can be written, 
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 Therefore, the strain inside the matrix element in the z-axis, 
εm

z, results, 
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  By working equation (5) we obtain,
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where fri
z and frm

z are the volume fraction for the inclusions 
and matrix element in the z-axis, respectively; which satisfy  
fri

z + frm
z = 1. 

From the mechanical equilibrium conditions at the 
boundary between the adjacent elements (v, m, j) and      (v, 
m, k), according to the Reuss approximation [11, 17], and 
by applying the Hooke’s law; the misfitting coefficient in 
the z-axis, βz, can be otained as a function of the Young 
moduli, M, and volume fractions of both, inclusions and 
matrix, 

1
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Moreover, considering that the distribution of inclusions 
is random in the bulk (homogeneous and isotropic) matrix, 
it can be demonstrated easily that [17] 

 

(8)z x y     

 
Indeed, β is the misfit coefficient, which relates the 

inclusion strain caused by the matrix or vice versa, i.e. the 
matrix strain caused by the inclusion. 

  

3   EXPERIMENTAL 

3.1 SAMPLES 

Rubber samples were prepared with raw SBR (styrene-
butadiene rubber, cold emulsion polymerization, 23.5% 
bound styrene). Two different grades of SBR were used: 
SBR 1502 (typical Mn 140000 Da, Mw 500000 Da) and 
SBR 1712 (typical Mn 210000 Da, Mw 710000 Da, 
27.5% added extender oil). The latter contains a highly 
aromatic oil from the type DEA (distilled aromatic 
extract), with typical composition: 38% aromatic carbons, 
26% naphtenic carbons, 36% paraffinic carbons 
(according to ASTM D2140), and viscosity value of 32 
cSt (at 373 K). 

Rubber compounds were prepared in an open mill with 
roll temperature at 323 K (± 5 K), according to ASTM 
D3182. Compound formulae were taken from ASTM 
D3185 (see Table 1). To obtain vulcanized rubber sheets, 
the massed compounds were passed through the mill to 
give a thickness of about 2.2 mm, and were cooled on a 
flat metal plate. After conditioning at 296 K (± 3 K) for 4 
h each sheet was cut in squared pieces of 150 mm side, 
and the direction of the milling was marked. Pieces were 
placed in a mold and vulcanized in a press (35 min, 418 
K), after which they were immediately cooled on a water 
bath and conditioned for 18 h at 296 K (± 3 K). This 
procedure provided the rubber vulcanized sheets ready for 
mechanical measurements [21]. 
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Samples of vulcanized SBR 1502 and 1712 were cut 
with a bistoury in a single pass. The direction for 
sample extraction from the whole sheet was parallel to 
the rolling direction. Samples after the cut were 
exanimate with magnifying glass (X100) in order to 
check the sharp of the resulting cut. Sample dimensions 
for DMA studies were 40mm length, 9mm width and 2 
mm thickness. 

3.2 MEASUREMENTS 

DMA test, loss tangent (damping or internal friction), 
tan(), and dynamic shear modulus, G’, were measured as 
a function of the applied electrical field, E, in a 
mechanical spectrometer working in torsion at 
temperature of  318 K (± 0.25 K), in air. The resonance 
frequency was around 1.5 Hz. Damping was determined 
by measuring the relative half width of the squared 
resonance peak for a specimen driven into forced 
vibration using equation (9) [22]: 

2 1

0

 - 
tan( )  (9)

 




where ω0 is the resonance frequency, and ω1 and ω2 are the 
frequencies at which the amplitude of oscillation has fallen 
to 1/√2 of the maximum value. The errors of tan() and G’, 
being proportional to the squared oscillating frequency, are 
less than 1%. The maximum oscillating strain on the 
surface of the sample was 2x10-4.

 The electric field was produced by two electrodes placed 
at the sample position, lying in parallel direction to the 
torsion axis of the spectrometer, i.e. the resulting electric 
field is perpendicular to the torsion axis, Figure 2. 
Electrodes were connected to a variable DC high voltage 
power supply, giving rise to E values up to 430 kV/m, at 
the sample location. Details of the assembled of this novel 
device are reported elsewhere [23]. 

Samples usually employed for DMA testing could have a 
large variety of sizes. Some equipment allow measurements 
in samples of size as small as around 10 m of thickness. 
Nevertheless, to measure thinner samples of only a few 
microns of thickness could be also possible in composite 

samples, where the sample of interest is deposited on the 
surface of a substrate with a comfortable thickness for the 
equipment operation 24, 25. Deposition can be done by 
means of the usual procedures, e.g. reaction synthesis or 
cathode vapor deposition, etc. 

4 RESULTS AND DISCUSSION 

4.1 THE MODEL 

The dielectric material will be partitioned in different 
cubes which form a sizeable bulk material, similarly to 
the procedure described in Section 2, in such a way that a 
given cube can be of the dipolar phase and its neighbor 
can be of the same phase or the matrix. 

Figures 3 summarize the main concepts to take into 
account for this new case of dielectric materials. It shows 
a (z,y) plane of the partitioned sample at x = v, where the 
size of the partitioned matrix, over each axis, was chosen 
equal to lop. The model now starts with the following 
considerations: 

a) The volume element corresponding to a dipolar 
phase, located at (v,m,j) of the whole partitioned matrix, 
which is plotted by means of full fine lines in Figure 3a, 
is cut and removed out of the matrix; leading to a cubic 
hole of edge lop. 

b) An electric field is applied to this extracted dipolar 
zone, then it stretches from lop to lop +  lop, with 0 ≤  ≤ 
1, see broken lines in Figure 3b. It is easy to recognize 
that the mismatch parameter  is the strain misfit 
promoted thorough an electrostrictive phenomenon. 
Indeed, the application of the electric field give rise to the 
appearance of an inclusion of larger size into the matrix, 
plotted by means of broken lines. 

c) The inclusion of size lop +  lop, with 0 ≤  ≤ 1, 
plotted by means of broken lines, will be firstly compressed 
to fit into the hole of the matrix and subsequently placed in. 

 
Figure 2. Schematic representation of the positioning of electrodes in the 
DMA equipment. 

Table 1. SBR compound formulae for vulcanized samples (ASTM 
D3185). 

Material (in phr, parts per 
hundred rubber) 

SBR 1502 
(Formula 1A) 

SBR 1712 
(Formula 2B) 

Raw SBR 100.00 137.5* 

Zinc oxide 3.00 3.00 

Sulfur 1.75 1.75 

Stearic acid 1.00 1.00 

Oil furnace black 50.00 68.75 

Accelerant (N-tBu-2-
benzothiazolesulfenamide) 

1.00 1.38 

(*) Raw SBR 1712 contains 37.5 phr of highly aromatic oil 
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d) The inclusion is mechanically released and then the 
boundaries of the hole, in the x-axis, displace to a position 
lop + β  lop, with 0 ≤ β ≤ 1, where the equilibrium of 
stresses is achieved. The wide lines in Figure 3c, represent 
this state. 

Therefore, by means of the above described procedure, 
the elastic misfit promoted by an electric dipole when an 
electric field is applied, can be studied now using the 
mathematical formalism of the inclusions theory. In fact, in 
the present study β is the misfit coefficient, which is related 
to the matrix strain caused by the stretching of the dipole 
when the electric field appears. A straightforward analysis, 

allows easily to deduce that the mathematical expression 
for β coefficient which corresponds to the elastic misfit 
promoted by the stretching of a dipole under the application 
of an electric field, is similar to equation (7) where the 
magnitudes related to the inclusion correspond to the 
dipoles. 

Nevertheless, even if the volume fraction of inclusions 
can be known, a β coefficient, equation (7), cannot yet be 
calculated from measured data in mechanical tests, due to 
the modulus of the inclusion is unknown. In fact, to know 
the elastic modulus of the inclusions requires take a relation 
between the electrical stress and the dielectric strain.  

From the general problem of the thermodynamic of 
deformations under the application of an external electric 
field 2, 3, a thermodynamic potential, FF, can be written 
in the form 26, 27, 

4
(10)

E D
FF F

o
 

 

where F is the free energy, D is the displacement electric 
field vector and 0 is the permittivity of the empty space. 
 Taking into account that in a solid FF is a function of all 
the components of the strain tensor im, the electric field and 
the absolute temperature, T, that is, 
  

( , , ) (11)imFF FF E T 
 
 Differentiating with respect to the components of the 
deformation tensor im and operating, the components of the 

 
Figure 3a. Initial size of the base of the cubes of the partitioned material
(full line), from where a dielectric inclusion (v, m, j) is removed. 
 

 
 
Figure 3b. The isolated dielectric partition (v,m,j) is subjected to electric 
field, leading to its stretching (broken line). 

 
Figure 3c. Equilibrium position of the boundary between the inclusion 
and the matrix, after location of the stretched inclusion into the matrix 
hole and release of its constriction. See explanation in the text. 
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stress due to the combined application of the electric and 
mechanic fields can be obtained, such that 
 

 0
0

0

  (2   a )     1 8

2
(    a )  (12)2 8

E Ei k
ik ik o

E ik

o

  
 


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 

   



    
where ik

(0) is the stress tensor free of electric field, which 
is determined by the elasticity modulus and a1 and a2 are the 
constants of the second rank dielectric tensor, d

ik, 
constructed of linear mode from the components of the 
strain tensor 2, 3, 27, that is  
 

(13)   a  0 1 2 ll
d aik ik ik ik       

    
Coefficient a1 and a2 are related to the physical driving 

force for coupling the electrical and the mechanical field.  

 It was previously explained that although equation (12) is 
a function of the type of the crystalline structure of the solid, 
it is always possible to find a non-vectorial relationship in the 
case of non-crystalline solids, using the mean field 
approximation [2, 3, 26, 27]. As it can be inferred, to handle 
mathematically equation (12) for obtaining the elastic 
modulus of the dipolar phase, even in an average 
approximation of a mean dependence with the square of the 
electric field, is not easy. 

In contrast, a more friendly solution for eliminating the 
appearance of the elastic modulus of the inclusion in equation 
(7) can be done taking into account the relationship that 
exists between the elastic modulus of the whole material, M, 
and the moduli of the matrix and inclusion parts, when a 
Reuss condition is considered [11, 20], 
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Then, by working mathematically equation (14), results 
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Remembering the mathematical form of β, then equation 
(16) can be written as 

. (17)m

m

M
M

fr


from where β coefficient can be now calculated, despite of 
unknowing the elastic modulus of the dipolar zone, that is 

(18)m
m

M
fr

M
 

  

 It should be highlighted the powerful of equation (18) 
here deduced since it makes possible to calculate the misfit 
coefficient in dielectric materials, or two-phase polymers, 
knowing the elastic modulus of the matrix, free of 
electrostrictive effects, its volume fraction and the elastic 
modulus of the whole material, when the electrostrictive 
effects appears. 

It should be stressed, that the above discussion which 
involves the Eshelby’s inclusion theory 11, 16, 17 has 
been performed taking in consideration a homogeneous and 
isotropic media. However, the model here described can be 
also applied to anisotropic materials. In fact,  coefficient 
obtained corresponds to the one-dimension rearrangement 
of strains between the matrix and the inclusion. So, by 
applying an electric field in a given direction we can obtain 
 for each direction. Where  is an average misfit 
coefficient that takes into account the contribution of all the 
anisotropic effects of both the matrix and the inclusion. 
Nevertheless, the three-dimensional case formerly reported 
for two phase polymer 17 cannot be used in anisotropic 
media. 

On the other hand, the above procedure can be easily 
applied to the study of the mechanical energy transfer 
related to the electrostriction phenomenon. In fact, by 
following the work in [18], we can write the expression for 
the whole elastic energy available to be transferred to one 
matrix element over the z-axis, such that 

21
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where Vp is the volume of the (v,m,j) partition. In addition, 
the energy in the partition corresponding to the matrix 
element results  

2

2 21
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Consequently, the ratio between the elastic energy 
transferred to the matrix and the whole available one is 
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 It is convenient to mention that the transfer of elastic 
energy is due to the movement of the borders of the 
inclusion into the matrix from its initial compressed state up 
to the achievement of the mechanical equilibrium 
condition. So, the ratio given by equation (21) is very 
intuitive regarding the competition of the moduli values 
between the inclusion and the matrix, until the equilibrium 
condition is achieved. 

 By replacing the value of Mi obtained from equation 
(14), equation (21) can be written as function of measurable 
values in mechanical tests and the value of β, that is 

 

2  1
(22)

z
m m rm

z
T m

W M M f

W M fr

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4.2 EXPERIMENTAL RESULTS-APPLICATION OF 

THE MODEL 

Dynamic mechanical analysis (mechanical spectroscopy) 
measurements were used in the present work as the 
mechanic test for the application of the model developed in 
Section 4.1, due to DMA is very sensitive to the changes 
occurring in the structure of materials [19]. Indeed, DMA 
can detect at.ppm of micromechanisms in movement giving 
rise to relaxation phenomena [19]. In addition, DMA has 
been also applied widely to the study of both 
magnetomechanical damping and magnetostriction 
phenomena [19, 26]. In contrast, as it was mentioned in the 
Introduction, to our knowledge, there is not reported works 
on DMA in which an electric field is applied during the 
measurements, for the study of dielectric materials.  

In order to apply the model developed in Section 4.1, 
SBR rubbers were chosen as samples for the present 
work. Indeed, SBR 1502, free of oil, was an appropriate 
reference dielectric material with negligible 
electrostriction effects, at the field intensities used in the 
present work, as it will be shown in the next paragraphs. 
In addition, the composition of SBR vulcanizates can be 
controlled at will for the authors. Then, the addition of 
the highly aromatic oil to the raw SBR polymer, giving 
rise to SBR 1712 samples is an excellent mode of 
introducing a given volume fraction of dipoles 
(inclusions) into a known matrix. As it can be seen from 
Table 1, the aromatic oil in SBR 1712 is the only 
material different from those included in SBR 1502 
formulation. Consequently, the results which will be 
obtained for β coefficient and the ratio Wz

m/Wz
T through 

the developed model, give an accurate measurement of 
the behavior of the strain misfit into the matrix caused by 
electrostrictive effects promoted by changes in the 
electric field strength. 

It has to be mentioned that in all the calculations made 
in the present work, the dynamic elastic shear modulus, 

G’, instead of the Young modulus, has been used. 
Nevertheless, this will not diminish nor obstruct the 
subsequent analysis made here, since the material under 
study is considered through a mean field approximation. 

Figure 4 shows the behavior of damping and dynamic 
modulus as a function of the applied electric field for the 
SBR 1712 sample, measured during the field increase. As 
it can be seen from the Figure, damping (circles) 
decreases and dynamic modulus (triangles) increases as 
the strength in the electric field increases. During the 
decrease in the electric field intensity, after having 
reached its maximum, a hysteretic behavior in both 
damping and modulus was not found, i.e. measured 
values are in good agreement with those measured during 
the increase in the field intensity. 

In contrast, SBR 1502 samples do not show any 
dependence on the strength of the electric field, giving 
rise to an independent damping and modulus behavior as 
a function of the applied electric field, E. 

A summary of the damping and modulus values 
measured at nil electric field for SBR 1502 and SBR 1712 
is shown in Table 2. 

 
 Table 2 indicates that the addition of oil to the samples 
increases the damping values, as it could be expected due to 
the enhancement of the movement capability of the 
frictional micromechanisms [28, 29]. In fact, the addition of 
oil plays a role similar to that of low molecular weight 
plasticizers into a polymer sample, increasing the whole 
frictional contribution of the polymer matrix [28-30]. In 
addition, the elastic modulus is smaller for 1712 than for 
1502 samples, in agreement with the above mentioned role 
of the oil into the matrix. 

 

Figure 4. tan() (circles) and G’ (triangles) as a function of the electric 
field strength for SBR 1712. Diamonds: dynamic modulus for the
dielectric inclusion calculated from equation (14), see explanation in the 
text. Lines joining points are a guide for the eyes. 
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Following the theoretical representation of the model 
developed in Section 4.1, the oil will be considered as cubes 
embedded into the rubber matrix accordingly to the 
corresponding volume fraction. The increase in the electric 
field promotes the stretching of dipoles along the direction of 
the electric field leading to the appearance of an inclusion, 
see Figures 3, i.e. the original cube of the partition was 
modified towards a parallelepiped-shaped inclusion, as it was 
shown in Section 4.1. Indeed, the increase in electric field 
leads to higher modulus in the inclusion due to the increase in 
the stretching of the dipoles, until saturation. Perhaps, an 
orientation contribution of the dipoles could contribute also 
to the increase in the modulus. In fact, an increase in the 
electric field promotes a strong pinning of the oriented 
dipoles along the field direction. The alignment direction is 
perpendicular to the torsion axis of the spectrometer (see 
Figure 2), so a larger anchorage of the dipoles could lead to 
higher torsion modulus of the inclusions, as the field 
increases. Then, the increase in the moduli of the inclusions 
(or second phase), leads to an increase in the modulus of 
the whole matrix, as it is well known in the mechanical 
properties of composite and two phase materials [11, 16, 
31]. Therefore, as the electric field increases, the modulus 
of the inclusions increases, leading to the increase of the 
modulus of the sample, in agreement with the reported 
results in Figure 4. 

As the viscosity of the oil (see Section 3.1), i.e. the 
dipolar phase, is high enough in such a way that this 
phase can be considered as a viscoelastic solid [28, 32], 
at both the frequencies and temperature used in the 
present work, the behavior of the elastic modulus of 

inclusions can be easily obtained from equation (14). In 
Figure 4, the behavior of dynamic modulus for the 
dipolar phase (inclusions) is plotted as a function of the 
electric field by means of diamonds. A clear increase in 
the elastic modulus of the dipolar phase, with an increase 
in the electric field intensity can be observed, according 
to what was mentioned above. 

The decrease in damping values as the electric field 
increases is also in agreement with the increasing modulus 
of the dipolar phase and the appearance of internal stresses 
in the matrix. An increase in the modulus of the dipolar 
phase and the appearance of internal stresses lead to a 
decrease in the capability of movement of the dissipative 
micromechanisms, polymer chains in the case of polymers, 
giving rise to a decrease in the damping values. As the 
internal stresses into the matrix increases, polymer chains, 
similarly to dislocation lines, are forced to overcome a 
higher energy saddle point to begin the movement [5]. The 
decrease in the damping values related to the modulus 
increases of the matrix due to the hardening by the 
appearance of inclusions or second phases, has been widely 
verified either in metallic alloys and polymeric materials 
[19, 28, 33, 34]. 

Figure 5 shows the behavior of β coefficient and 
Wz

m/Wz
T, as a function of the applied electric field, 

calculated by means of equations (18) and (22), 
respectively. Plotted values start from the first stage in 
electric field, due to the model can be applied after the 
appearance of the inclusion promoted by the electric field 
application, see Figure 3 in Section 4.1. As it can be seen 
from the Figure 5, β increases and Wz

m/Wz
T decreases, as the 

electric field increases. In fact, β and Wz
m/Wz

T show the 
inverse dependence among them, in agreement with 
previous reported works [18]. 

The increase in β values, indicates that the increase in the 
strain misfit is mainly accommodated by the matrix, i.e.,     
β → 1 leads to lop + lopβ → lop + lop (see Figure 3), so 
the strain misfit is mainly accommodated by the matrix. 
The electric field increase, leads to an increase in the 
modulus of the inclusion (see Figure 4); forcing the matrix 
to accommodate higher strain misfit, so leading to an 
increase of β. It is convenient to mention, that the behavior 
of β and consequently the behavior of the internal stresses 
shown for this case is different to the previously reported 
for EPDM, where the volume fraction of inclusions was the 
predominant changing phenomenon [5, 17, 18]. 

In order to make easier the interpretation of β behavior 
shown in Figure 5, theoretical curves of β coefficient were 
calculated by means of equation (18), Figure 6, where the 
M modulus was calculated through equation (14), i.e. both 
contributions Mm and Mi were taken into account. Curves 
were calculated as a function of the modulus of the 
inclusion, for different volume fraction of inclusions, 
considering an arbitrary modulus for the matrix to be equal 

Table 2. tan() and G’ measured at nil electric field in SBR 1502 and 
1712. 

 SBR 1502 SBR 1712 

tan() 0.092 0.104 

G’ (MPa) 5.5 5.2 

 

 
Figure 5. misfit coefficient β (left axis) and Wz

m/Wz
T (right axis) as a

function of the electric field strength calculated for SBR1712. Lines
joining points are a guide for the eyes. 
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to one, Mm = 1. So, from the x-axis, a percentage variation 
between Mm and Mi can be easily determined. As it can be 
seen from the Figure an increase in the modulus of the 
inclusion leads to an increase in β values, for all the 
calculated volume fractions, in agreement with the 
experimental results here reported. In contrast, if the 
modulus of the inclusion is constant and the change is 
produced in the volume fraction, then the β values decrease 
as the volume fraction increases. This is in agreement with 
previously reported works related to the modification of the 
crystalline zones in EPDM [5, 17, 18]. 

On the other hand, the behavior of Wz
m/Wz

T indicates that 
the work done in compressing the inclusions from lop + lop  
up to lop for being introduced into the matrix holes, see 
Figures 3 in Section 4.1, is larger than the work done by the 
matrix, as the electric field increases. Indeed, a larger work is 
required for compressing the inclusion in a magnitude  as 
the electric field increases, due to the increase in the modulus 
of the inclusion promoted by the increase in the electric field. 
Therefore, it can be determined that the increase in the 
modulus promoted by the application of the electric field has 
a larger effect than the increase in the mismatch parameter , 
as the field increases. 

Theoretical curves of the ratio Wz
m/Wz

T were calculated 
by means of equation (22), where β was obtained from 
equation (18) and M modulus was calculated through 
equation (14), Figure 7. Similarly to the theoretical 
calculations for β, curves were calculated as a function of 
the modulus of the inclusion, for different volume fraction 
of inclusion and considering an arbitrary modulus for the 
matrix Mm = 1.  

As it can be seen from the Figure, an increase in the 
modulus of the inclusion with respect to the modulus of the 
matrix leads to a decrease in Wz

m/Wz
T, in agreement with the 

behavior exhibited from the experimental data. Therefore, it 
is clear from the Figure, that when the modulus of the 
inclusion is higher than the modulus of the matrix, for a 
given volume fraction of inclusions, the ratio Wz

m/Wz
T 

decreases as the modulus of the inclusion increases. In 
contrast, for a phenomenon developed at constant values of 
the modulus of inclusions, where an increase in the volume 
fraction appears, the ratio Wz

m/Wz
T increases in agreement 

with previously reported work [18]. Besides this, the 
maximum in Wz

m/Wz
T for a volume fraction of 50% has 

been found for an inclusion with the same modulus than the 
matrix, as it could be expected. In addition, it can be 
observed from the Figure that a non systematic evolution of 
the curves can be described for matrix harder than the 
inclusions around 30%, and also that an increase in the 
volume fraction of inclusions, for inclusions harder than the 
matrix, leads to an increase in Wz

m/Wz
T, revealing clearly 

the interaction processes between the inclusions. 

From the mathematical point of view the present model 
has still the limitation that a group of equations were not 
yet found in order to get a1 and a2 in equation (12) for 
obtaining the physical magnitudes for the electrostrictive 
process. 

Our model has been developed from a mesoscopic point 
of view, so it presents limitations for the description of 
electrostrictive processes at molecular level. For instance, 
we cannot resolve the movement of single electric dipoles 
(local movement) embedded into the inclusion at molecular 
scale when an electric field is applied, since we are 
studying the average behavior of the whole group of 
dipoles. In other words, we are studying the internal stress 
promoted by the electrostriction without the need of 
knowing the behavior of the dielectric at molecular level. 
So, we cannot get from our study the dependence of 
dielectric constant as a function of either molecular 
polarity, applied electric field, etc.. 

 
Figure 6. Theoretical curves of the misfit coefficient β as a function of the
modulus of the inclusion for different volume fraction of inclusions. Mm = 
1. See explanation in the text. 

Figure 7. Theoretical curves of Wz
m/Wz

T as a function of the modulus of 
the inclusion for different volume fraction of inclusions. Mm = 1. See 
explanation in the text. 
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Nevertheless, it should be pointed out, that the present 
model give a solution to a crucial point in material science 
related to the determination of the behavior of the internal 
stresses in materials immersed in both electrical and 
mechanical fields. 

In another light, DMA measurements conducted under 
electric field have been performed successfully also in other 
polymers such as silicon rubbers, EPDM and polyamides. 
These experiments together with the theoretical results of 
the new model developed in Section 4.1 will be reported in 
further works. 

 

5 CONCLUSIONS 
A new model based on the theory of inclusions for two 

phase polymers has been developed for the study of dielectric 
materials when an electric field is applied. 

The behavior of the internal stresses promoted by the 
electrostriction phenomenon, can be monitored by studying 
the behavior of the misfit coefficient, β, and the ratio Wz

m/Wz
T 

as a function of the electric field. The equations obtained 
through the model for both β and Wz

m/Wz
T are calculable 

using magnitudes from mechanical tests, in particular 
dynamic mechanical analysis, which is very sensitive to 
changes in the microstructure. 

Dynamic mechanical analysis as a function of the electric 
field is reported, perhaps for the first time in literature, for the 
study of dielectric materials. DMA measurements performed 
under electric field were verified as a useful tool for studying 
the behavior of internal stresses in dielectric materials, in 
particular in this study for styrene butadiene rubbers. 
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