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Performing Molecular Dynamic simulations and using the isoconfigurational ensemble method, we studied the
effect of the potassium cation replacing the half part of lithium ions in glassy Li2SiO3. This so-constructed glassy
system has themain ingredients present in an immediate forthcoming definition of mixed alkali effect (MAE) in
glasses.We show the existence of dynamic correlations among the cations of the same species, i.e. Li–Li and K–K,
whereas a very weak correlation was observed between a distinct pair of cations. With this novel approach we
can put into evidence that the alkali ion diffusion evolves in specific channels for the ions: a Li ion prefers the lith-
ium ion channel and a K ion prefers the potassium ion channel. This result is coincident with previous
simulational studies using the bond–valence technique to reverse Monte Carlo and recent experimental findings
using quasielastic neutron scattering.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Relaxation processes in glasses and their inherent manifestations as
electrical (ionic) conductivity are still far from being understood at the
microscopic scale. Their comprehension plays at present an increasingly
urgent role in technology, where considerable progress has been made
recently on (for instance): solid-oxide fuel cells, thin film solid electro-
lytes, electrochemical sensors, supercapacitors, electrochromic win-
dows, etc. For a closer understanding of the ion dynamics in glasses,
the study of paradigmatic systems appears as pertinent because (be-
yond its particular importance) it allows us to extract the essential
ingredients of the dynamics, and consequently propose a theoretical
scenario for this drama. Silicate glasses are in this direction an appropri-
ate candidate for these purposes in the particular chapter of oxide
glasses.

One of the usual concepts inherent to the ion dynamics in oxide
glasses, is the concept of “channel” for the diffusion of themoving alkali
cations. This concept is closely bounded to the Modified Random
Network scenario proposed by Greaves [1] and it proves to be useful
to rationalize experimental results. Of course, the concept of channel
in glasses is quite different from that employed in crystalline solid elec-
trolytes where the periodic structure plays an essential role in its
definition.
.

The existence of the channels in silicate glasses has been put into
evidence theoretically by using the Molecular Dynamics formalism [2],
[3], [4], [5], [6], [7], [8] and both theoretically and experimentally in sil-
icate melts [9], [10], [11].

The present authors have shown the existence of these channels in
lithium metasilicate glasses in a completely alternative manner to the
usual approach [12], [13] by using the isoconfigurational ensemble
method (ICEM) proposed by Harrowell et al. [14]. In fact, the use of
the ICEM allowed us to put into evidence the existence of similar chan-
nels (the same portion of the space) which are found using the
pioneering way by Jund et al. [15]. Besides, this methodology has
revealed how the local structure and dynamics of the mobile particles
in the ‘cage regime’ are the precursors of the dynamics in the diffusive
regime [16]. Moreover, it allows us to put into evidence the dynamical
connectivity among the ions moving inside the channels [17].

Then the purpose of the present work is to extend our procedure as
used on single (lithium) metasilicate glasses to metasilicate mixtures
(lithium–potassium). This subject appears pertinent because it defines
one of the long standing puzzles of the glass science whose origins are
poorly understood: the mixed alkali effect. In a few words, when at a
given temperature in a single alkali silicate glass (among many other
examples) a systematic substitution by a second alkali oxide occurs, it
leads to drops in conductivity of many orders of magnitude before
increasing again to the ionic conductivity values corresponding to the
second alkali silicate [18]. From different experimental studies [19],
[20], [21] it is commonly accepted that the origin of MAE has structural
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character. A recent reference to the “state of the art” of theMAE (among
other topics of the ion conduction in disordered solids) can be found in
the review by Dyre et al. [22].

One attempt to explain this effect is found in the dynamic structure
model (DSM) [23], [24]which invokes themismatch concept: each type
of cation generates its own characteristic local environment corre-
sponding to an energy minimum. In this model (and its successive im-
provements) the relaxation time and the potential energy associated
with the ion site depend on the type of ion, each ion creating its own
preferred pathway in the network, and participating in the evolution
of the energy landscape.

On the other hand, Swenson and Adams, using the Bond Valence
analysis of transport pathways to ReverseMonte Carlomethod, showed
that the two types of alkali ionswere randomlymixed and have distinc-
tively different conduction static pathways of low dimensionality [25],
[26].

Thus in the present paper we will address the dynamical aspects
emerging in a system consisting of a mixture of alkali cations silicate
glasses, by comparing them with the two related single alkali glasses.
To do that we use the formalism of the Molecular Dynamics (MD) and
the ICEM applied to the study of the mixture (Li2O)0.5(K2O)0.5(SiO2).

From the dynamic/structural approach undertaken in this paper, we
note that the existence of the dynamic correlation between the mobile
ions and the presence of dynamic pathways, allow us to support the
scenario proposed in [26] to describe the mixed alkali effect model.

2. Computer simulations

Classical molecular dynamics calculations were performed on a
system of 3456 particles (576 Li, 576 K, 576 Si and 1728 O). The system
particles interact by the pair potential of Gilbert-Ida type [27] including
the r−6 term:

Uij rð Þ ¼ qiq je
2

4πε0r
−

cic j
r6

þ f 0 bi þ bj

� �
exp

ai þ aj−r
bi þ bj

 !
ð1Þ

The first term in Eq. (1) is the Coulomb interactionwith the effective
charge numbers qi, the second term is a dispersive interaction and pres-
ent for interactions involving only oxygen ions and the last term is a
Born–Meyer type potential and takes into account the repulsive short-
range interactions.

The parameters of the potentials used were derived on the basis of
ab-initio molecular orbital calculations by Habasaki, and the volume of
the simulational box ensures that the density corresponds to the exper-
imental density of the glass [28], [29].

The system was prepared by putting the atoms on a cubic box and
assigning to each atom velocities drawn from a Maxwell–Boltzmann
distribution corresponding to a temperature of 3000 K. The Verlet Algo-
rithm with a time step of 1 fs was used to integrate the equations of
motion. Simulations were performed on a cubic box with periodic
boundary conditions using the LAMMPS package [30] at two tempera-
tures (700 K and 950 K) well bellow from the calculated Tg which is
equal to 1150 K.

The system was equilibrated at 3000 K in a 2 ns run using the NVE
ensemble. Then to reach the working temperature, the system was
cooled down from 3000 K to its two final temperatures 950 K or 700 K
in 2 cooling steps. Each cooling step (from 3000 K to 2000 K, and from
2000 K to 950 K or 700 K) consists of a 2 ns run using a thermostat to
decrease the temperature linearly in the NPT ensemble. Two intermedi-
ate periods of equilibration consisting of a 2 ns run in the NPT ensemble
were included at 2000 K and at 950 K and 700 K to verify no pressure
and temperature drifts. After cooling the system, alternate runs of
100 ps each in the NVE and NVT ensemble were successively repeated
to complete 2 ns. Then, the system was equilibrated in a 2 ns run
using the NVE ensemble. After this equilibration procedure, trajectories
of 2 ns lengthwere generated in the NVE ensemble for analysis. We cal-
culate the Tg value from the change in the slope in a volume–tempera-
ture curve by performing our simulations in the NPT ensemble. The
cooling rate was 4.75 1012 K/s.

The usual quantities of interest, such as mean square displacement
(MSD): br2(t)N, the non-Gaussian parameter: α2(t) were calculated.
The mean square displacement br2(t)N is defined as:

r2 tð Þ
D E

¼ N−1XN
j¼1

r! j tð Þ− r! j 0ð Þ
��� ���2� �

ð2Þ

Where r! j tð Þ is the position vector of particle j at instant t andN is the
number of the j-particles. The non-Gaussian parameter α2(t) is defined
as:

α2 tð Þ ¼ 3
5

r4 tð Þ
D E
r2 tð Þ� �2 −1 ð3Þ

The non-Gaussian parameterα2(t) was introduced by Rahman in his
pioneering work, and it is a measure of the deviation from the Gaussian
form of the van Hove self-correlation function defined in Eq. (5). Then,
the timewhenα2(t) reaches its maximum value t* defines a time inter-
val in which the behaviour of the system is dynamically heterogeneous
[31]. This quantity is located roughly at the crossover from the caging to
the diffusive regime [12].

As mentioned above, we introduced the isoconfigurational ensem-
blemethod (ICEM) proposed by Harrowell et al. [14]. In it, one performs
a series of equal length MD runs from the same initial configuration;
that is, always the same structure but each onewith different initial par-
ticle momenta chosen at random from the Maxwell–Boltzmann distri-
bution at the appropriate temperature. Then, having been averaged
over the initial influence of the momenta, the observed spatial correla-
tions must be configurational in origin. Accordingly, the propensity of
a particle for motion in the initial configuration for a fixed time interval
t, has been defined as [14]:

Δr2j
D E

IC
¼ r! j tð Þ− r! j 0ð Þ

��� ���2� �
ð4Þ

Where r! j tð Þ− r! j 0ð Þ�� ��2 is the squared displacement of particle j (in
such time interval) and b N indicates the average over the ensemble
(typically 1000 trajectories).

The self space–time correlation function–the van Hove function–
Gs(r,t) gives the probability that a particle has moved a distance r in
time t. For an isoconfigurational ensemble is written as [32]:

Gs r; tð Þ ¼ Ntype
−1NIC

−1XNIC

j¼1

XNtype

i¼1

δ r−j r!ji tð Þ− r!ji 0ð Þj
�� ED

ð5Þ

Where NIC is the number of trajectories of the ensemble and Ntype is
the total number of i-particles.

3. Results and discussion

3.1. Preliminalia

We have calculated the non-Gaussian parameter α2(t) for lithium
and potassium ions at two temperatures 950 K and 700 K respectively.
The non-Gaussian parameter quantifies the deviation of the van Hove
function from the Gaussian behaviour. From the results plotted in
Fig. 1 we learn that at both temperatures both t*'s for both kinds of cat-
ions are coincident. In the same manner, there is a shift of the peaks to
lower times when temperature increases. These similarities strongly



Fig. 1. The non-Gaussian parameter for both kinds of ions at 700 K and 950 K respectively.
In the inset: the self-part of the van Hove functions for lithium and potassium ions at two
times: t* and tD (see the text) and at 950 K.
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suggest that the same physics are governing the evolution of these two
cations.

The inset in Fig. 1, shows the self part of van Hove function at 950 K,
for lithium and potassium ions respectively (a qualitatively similar be-
haviour was observed for 700 K). This function was calculated at two
relevant times: t* = 20 ps and tD = 130 ps; the latter value is the
time in which the moving ion overcomes the distance across the site
of its near neighbours (i.e. it starts a slopewith value equal to 1 in a dou-
ble logarithmic plot of MSD vs. time at 950 K). At 950 K, t* (which
roughly corresponds to the end of the caging regime and start of the
subdiffusive regime) ions has travelled about 0.7 Å in mean. Following
Habasaki and Ngai, this time corresponds to “the primitive ion hopping
relaxation time of the coupling model” [33]. In that figure, a shoulder
situated approximately at 2.6 Å and at 3.1 Å (for Li and K ions respec-
tively) appears and indicates the existence of an incipient cage decay re-
gime at t*. At tD, this shoulder develops in a second peak with the
concomitant decrease in the area under the first peak, indicating that
the number of moving ions (Li or K) that have left from their original
sites now becomes significant and takes part in a cooperative regime
of motion.
Fig. 2.Normalized propensity of a collection of 200 lithiumand potassium ions respective-
ly chosen at random, at 950 K and at two time intervals: t* and tD respectively (see the
text).
3.2. The existence of channels

The ICEM formalism is directly bounded to the notion of propensity
to movement of the particles. In our previous work we introduced the
high propensity clusters concept (HPC), which defines a topological
region of the glassy matrix characterized by its high ability to promote
the faster motion of lithium ions: the channels for ionic transport [12].

In Fig. 2 we show the propensity calculated using Eq. (4) for lithium
and potassium ions at t* and tD respectively. Then, from this figure we
learn that short and long time behaviours regarding the propensity
distribution are similar for the two kinds of alkali cations.

Then, we search for the HPCs following a similar procedure we
employed in our previous work [12]. Briefly, the 15% of lithium (or po-
tassium) ions having the higher propensities at time t* are taken as the
HPPs (high propensity particles). This fraction at time t* involves those
cations having a displacement greater than 2.3 Å, which is roughly the
distance of the first minimum in their respective van Hove functions.
Following, a three-dimensional array of these HPPs is obtained by plot-
ting a sphere of radius (〈Δr2〉IC)1/2, at the initial positions (t = 0) of the
HPPs. We found that many of these topological objects are connected
among them defining a high propensity cluster: the HPCs. We identify
these HPCs to the conduction channels in glasses [17].

One question which arises here is: is the exploration of a narrow
time window (defined by t*) enough to define a HPC (“channel”)
which is supposed to prevail in the diffusive in a nanosecond scale? To
answer this question we proceed as in our previous paper [13]: from a
1 ns long MD trajectory at 950 K we select three configurations at
three different times: 0, 500 ps and 1000 ps respectively. Then, each
one of these three configurations was used as a starting point to con-
struct three isoconfigurational ensembles. At this point it is pertinent
to recall that after 500 ps themobile cations are in their diffusive regime
whereas the rest of the glassymatrix remains fixed. At 500 ps the Li and
K cations havemoved in average distance of 5.2Ǻ and 6.5Ǻ respectively,
which is well beyond the nearest neighbours.

Then, following the same way described in our previous work [13],
in each of these three configurations we search for the HPCs defined
by lithium and potassium ions of high propensity (the LiHPs and
KHPs). To put into evidence the degree of clusterization or spatial corre-
lation among the LiHPs and among the KHPs we use the following
function:

f HP−α rð Þ ¼ N−1
HP

XNHP

i¼1

1
Ni rð Þ

XNα

j¼1

δ r−r j þ ri
� �* +

ð6Þ
Fig. 3. Fraction of the degree of clusterization or spatial correlation among the LiHPs and
among KHPs defined by Eq. (6). (Line is a guide to the eye.)
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Fig. 5. The radial distribution function for potassium–potassium and potassium–lithium,
and KK–K and KK–Li in a potassium channel, at 700 K.
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Eq. (6), gives the fraction of anα-type atom at position r given that a
LiHP (or KHP) is at the origin r = 0. Here α indicates a high propensity
cation (LiHP and KHP respectively) or a low propensity cation (LiLP and
KLP respectively). The low propensity cations (LiLP ó KLP) are the same
in number as the cations chosen as high propensity ones, but in this case
having the lower values of propensities [17].

In Eq. (6),Ni(r) the number of lithium ions placed at the distance r of
the reference ion andNHP is the number of high propensity cations (Li or
K) involved in the calculation. The brackets indicate the average over
the 3 ensembles (0, 500 ps and 1000 ps respectively). Fig. 3 clearly
shows the remarkable correlation among the HPs, whereas among the
LPs this correlation is lower than the mean value.

3.3. The role of the channels in a scenario for the MAE

Up to this point we just show the existence of conduction channels
for lithium and potassium ions, in a similar manner as described in
our previous work [12,17,13].

Now, we will address the dynamical correlation among the ions
inside these channels. To do that we will use Pearson's correlation coef-
ficient, Kij [34,35]. The value of Kij lies in the [−1,1] interval. It takes the
value of 1 in the case of a “complete positive correlation” and on the
contrary, it takes the value of −1 for the case of a “complete negative
correlation.” A value near zero indicates that the involved variables
are uncorrelated.

For our particular case, we consider two particles (i, j) of the system
separated by a distance rij and calculate their mean displacement in an
isoconfigurational ensemble: briNIC and brjNIC respectively, and then
compare in each wth-trajectory of the ensemble their displacement in
relation to the corresponding mean value. Of course this analysis is
performed at a given time; in our case, the relevant t*. Then, for two par-
ticles i, j separated at a given distance rij, in the ensemble, the analytical
expression of Kij takes the following form:

Kij rij
� �

¼

XNIC

w¼1

	
rih iIC−ri



w
�� �

	
hr jiIC−r j



w
��

Si � Sj

ð7Þ

Where NIC is the total number of trajectories in the isoconfigurational
ensemble and Si and Sj are the standard deviation of the displacement in
the calculated trajectory of the ensemble.

We calculate using Eq. (7) and plot in Figs. 4 and 5, the Pearson's
correlation coefficient for the Li–Li and Li–K pairs which are diffusing
in a “lithium channel”: HPCLi–Li and HPCLi–K respectively. Similarly, for
the K–K and K–Li pairs moving into “potassium channel”: HPCK–K and
Fig. 4. The radial distribution function for lithium–lithium and lithium–potassium, and KLi–Li

and KLi–K in a lithium channel, at 700 K.
HPCK–Li. In these figures and the respective partial pair, distribution
functions are included.

In Fig. 4 it becomes clear for the lithium channel that (for example)
over the value 0.2–which ensures an acceptable degree of correlation–
the values of KLi–Li are strongly concentrated under the first peak of its
corresponding g(r). Conversely, the KLi–K values indicate a poor or non-
existent correlation. A completely equivalent explanation holds for the
potassium channel in Fig. 5: the values of of KK–K are strongly concen-
trated under the first peak of its corresponding g(r). Conversely, the
KK–Li values remain under 0.2 indicating a poor or nonexistent
correlation.

Then a high value of Kij between two ions of the same species indi-
cates that in this portion of the sample these ions are dynamically con-
nected (its dynamics is facilitated). Then from Figs. 4 and 5 we can
conclude that these topological regions of the sample are specific for
the diffusion of the same kind of ions: in other words, there are exclu-
sively channels for lithium ions and for potassium ions respectively.

The previous results are clearly and qualitatively summarised and
shown in Fig. 6. In this figure, we plot the distribution of Kij between
neighbours at a distance lower than 4.5 Å corresponding to the first
minima in the partial pair distribution functions for the Li–Li, Li–K and
K–K pairs respectively. Clearly for the unlike pairs the probability is
strongly concentrated at a value equal to 0.1 for K, whereas for the
pairs of the same kind of ions the distribution is displaced to the higher
values of K.
Fig. 6. The distribution of Kij at 700 K and 950 K (shown in the inset) on the length scale of
the nearest-neighbour distance (first minima in the partial pair distribution functions for
the Li–Li, Li–K and K–K pairs respectively).
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This figure also attends to a very important experimental fact
present the MAE in its connection with temperature. Effectively, the
specificity of the channels is stronger at the lower temperature and
could contribute to condition (hinder) the ionic transport. On the
other hand, the preferred pathways (specificity) effect disappears at
higher temperatures probably mainly due to thermal effects.

4. Conclusion

In this paper we report our studies on the alkali cation dynamics in
glassy LiKSiO3. We use the Molecular Dynamics formalism and the
isoconfigurational ensemble method. The isoconfigurational ensemble
method and Pearson's coefficient allowed us to calculate the correlation
among the displacements of themoving cations. Our results confirm the
existence of dynamic correlations among the cations of the same spe-
cies, i.e. Li–Li and K–K, whereas a very weak correlation was observed
between an unlike pair of cations. That is, our results clearly indicate
that the alkali ion diffusion in silicate evolves in specific channels for
the ions: a Li ion prefers the lithium ion channel and a K ion prefers
the potassium ion channel; channels whose existence is underlying in
the short time dynamics, even in the caging regime. The existence of
preferred (specific) pathways for conduction on silicate melts was
recently put into evidence experimentally by Meyer et al. [10], [11]
from a structural point of view, using quasielastic neutron scattering.
On the other hand Swenson and Adams showed using the bond-
valence technique to reverse Monte Carlo–i.e. a structural study–that
two types of alkali ions in a mixed alkali glass have distinctly different
conduction pathways meaning that A ions block the pathways for the
B ions and vice-versa. These authors concluded that this blocking effect
is themain reason for the experimentally observedMAE [36].Moreover,
Habasaki and co-workers have emphasized–from a dynamical point of
view–the importance of the cooperative blockage as the mechanism
responsible for the MAE [36]. Thus, we conclude here saying that due
to the intrinsic nature of our study it confirms in a more comprehensive
(general) manner these previous findings.
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