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Abstract

We give extrapolation results starting from weighted inequalities between Lebesgue and Lipschitz
spaces, given by

sup
B

‖wχB‖∞
|B|1+ δ

n

ˆ
B
|f(x)−mB(f)| dx ≤ C ‖gw‖s , (0.1)

where 1 < β <∞, 0 ≤ δ < 1, δ
n = 1

β −
1
s , f and g are two measurable functions and w belongs to

a suitable class of weights. From this hypothesis we obtain a large class of inequalities including
weighted Lp − Lq estimates and weighted Lp- Lipschitz integral spaces, generalizing well know
results for certain sublinear operator.

From the same hypothesis (0.1) we obtain the corresponding results in the setting of variable
exponent spaces. Particularly, we obtain estimates of the type Lp(·)-variable versions of Lipschitz
integral spaces. We also prove a surprising weighted inequalities of the type Lp(·)-Lq(·).

An important tool in order to get the main results is an improvement of an estimate due to
Calderon and Scott in [1], which allow us to relate different integral Lipschitz spaces.

Our results are new even in the classical context of constant exponents.

Keyword: Variable exponent spaces, Lipschitz spaces, weights, maximal operator, fractional
integrals, Rubio de Francia extrapolation.
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1. Introduction

For 0 < γ < n, the fractional integral operator of order γ, Iγ is usually defined by

Iγf(x) :=

ˆ
f(y)

|x− y|n−γ
dy, (1.1)

whenever this integral is finite almost everywhere.
In 1974 Muckenhoupt and Wheeden ([17]), characterize the weights w for which the inequality

‖Iγf w‖q ≤ C ‖f w‖p (1.2)

holds for 1 < p < n/γ and 1/q = 1/p−γ/n, as those weights belonging to the A(p, q) class, that
is, the weights w such that the inequality(

1

|B|

ˆ
B
wq
)1/q ( 1

|B|

ˆ
B
w−p

′
)1/p′

≤ C

holds for every ball B ⊂ Rn.
For the one dimensional case and w ≡ 1, the inequality (1.2) was proved by Hardy and

Littlewood in [13]; and they also proved the result for w(x) = |x|α. This inequality is then
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extended to n dimensions with w ≡ 1 by Sobolev in [25] and with w(x) = |x|α by Stein and
Weiss in [26].

For the limiting case p = n/γ and q = ∞, Muckenhoupt and Wheeden also characterized
the weights w that satisfy the inequality

‖wχB‖∞
|B|

ˆ
B
|Iγf(x)−mB(Iγf)| dx ≤ C ‖fw‖n/γ

for every ball B ⊂ Rn, as those belonging to theA(n/γ,∞) class, which is known to be equivalent
to w−(n/γ)′ ∈ A1. Here mBf denotes the average |B|−1 ´

B f . This result can be viewed as the

boundedness of Iγ from L
n/γ
w into BMOw, one of the weighted versions of the space of functions

with bounded mean oscillation BMO introduced in [17].
In 1997 Harboure, Salinas and Viviani ([12]) give two different versions of weighted BMO

and Lipschitz integral spaces in order to obtain necessary and sufficient conditions on the weights
that guarantee the boundedness of the fractional integral operator Iγ from Lpw, for n/γ ≤ p <
n/(γ − 1)+, into these new weighted versions. They also characterize the weights for which
Iγ can be extended to a bounded linear operator between weighted Lipschitz integral spaces.
The corresponding results for the unweighted case have been established in different settings by
several authors, see for instance [28], [27], [8] and [11].

On the other hand, in [20] Pradolini gives different versions from those given in [12] of
weighted BMO and Lipschitz integral spaces. The author characterizes the pairs of weights
(w, v) for which Iγ can be extended to a bounded linear operator from Lpw into the new weighted
versions defined with the weight v. Particularly, when w = v, 0 ≤ δ < 1 and p verify that
δ = γ − n/p, the weights w for which the inequality

‖wχB‖∞
|B|1+ δ

n

ˆ
B
|Iγf(x)−mB(Iγf)| dx ≤ C‖fw‖p, (1.3)

holds for every ball B ⊂ Rn are proved to be those such that

‖wχB‖∞
|B|1+ δ−γ

n

(ˆ
B
w−p

′
)1/p′

≤ C

for every ball B ⊂ Rn. It is easy to check that the weights satysfying the inequality above are
those in the class A(p,∞) = A(n/(γ − δ),∞).

Related with the extrapolation theory, in 1982, Rubio de Francia ([23]) proved that the Ap
class enjoy a very interesting extrapolation property. More specifically, if for some 1 ≤ p0 <∞,
an operator preserves Lp0(w) for any w ∈ Ap0 , then necessarily preserves the Lp(w) space for
every 1 < p <∞ and every w ∈ Ap. Later, in 1988 Harboure, Maćıas and Segovia ([10]) proved
that the A(p, q) classes have a similar extrapolation property, that is, if T is a sublinear operator
such that the inequality

‖Tf w‖q ≤ C ‖fw‖p (1.4)

holds for some pair (p0, q0), 1 < p0 ≤ q0 <∞ and every w ∈ A(p0, q0), then (1.4) holds for every
pair (p, q), 1 < p ≤ q <∞, which satisfy the condition

1/p− 1/q = 1/p0 − 1/q0

and every w ∈ A(p, q). Moreover, they also proved that this property is not only exclusive for
the boundedness between weighted Lebesgue spaces, but also it is possible to extrapolate based
on a continuity behavior of the type Lβw − BMOw for some 1 < β < ∞. In other words, if
1 < β <∞ and T is a sublinear operator satisfying

‖wχB‖∞
|B|

ˆ
B
|Tf(x)−mB(Tf)| ≤ C ‖fw‖β , (1.5)
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for every ball B ⊂ Rn and every weight w ∈ A(β,∞); then, if 1 < p < β, 1/p − 1/q = 1/β
and w ∈ A(p, q), the inequality (1.4) holds for the pair (p, q) provided that the left hand side is
finite.

The result above suggests the question whether it is possible to prove a version of extrapo-
lation result for sublinear operators T satisfying inequalities in the spirit of (1.3), that is

‖wχB‖∞
|B|1+ δ

n

ˆ
B
|Tf(x)−mB(Tf)| dx ≤ ‖fw‖p.

A considerable part of this paper is devoted to answering this question positively. In order
to reach this objective we consider the weighted integral Lipschitz space given in [20] (see also
[21]). More specifically, given a weight w and 0 ≤ δ < 1, we say that a locally integrable function
f belong to Lw(δ) if there exists a positive constant C such that the inequality

‖wχB‖∞
|B|1+ δ

n

ˆ
B
|f(x)−mBf | dx ≤ C (1.6)

holds for every ball B ⊂ Rn. The least constant C will be denoted by |||f |||Lw(δ). Let us observe
that for δ = 0, the space Lw(δ) coincides with one of the versions of weighted bounded mean
oscillation spaces, introduced in [18]. Moreover, for the case w ≡ 1, the space L1(δ) is the known
Lipschitz integral space for 0 < δ < 1.

We first obtain extrapolation results that allow us to obtain continuity properties of certain
operators of the type Lpw - Lqw or Lpw - Lw(δ̃) starting with hypothesis of continuity of the type
Lsw - Lw(δ) for some related parameters.

We are also interested in establish extrapolation results of the type described above in the
variable exponent spaces context. In this direction we exhibit extrapolation results starting
from hypothesis which involves inequalities of the type Lsw- Lw(δ), and obtaining unweighted
estimates of the type Lp(·)- Lq(·) or Lp(·)- L(δ̃(·)), where the last space is a variable version of
the space defined in (1.6) and was introduced in [22]. Extrapolation in the scale of the variable
Lebesgue spaces, to prove unweighted inequalities, was originally treated in [5]. In view of
the results proved in [20] for Iγ , the extrapolation results in the variable context allow us to
derive boundedness results for the same operator between Lp(·) and the variable version of the
Lipschitz integral spaces we had mentioned. This result was previously proved in [22] with
different techniques. Weighted versions of the results in the variable context are also obtained.

A useful tool used in obtaining our main results is an interesting estimate which allows us to
generalize an inequality due to Calderón and Scott in [1]. This generalization gives us a way to
relate the seminorms between weighed Lipschitz integral spaces associated to different orders.

Specifically, for a locally integrable function f and 0 ≤ δ < 1 we consider the operator

f ]δ(x) := sup
B3x

‖wχB‖∞
|B|1+ δ

n

ˆ
B
|f −mBf | dy.

In [1], the authors proved that

‖f ]0w‖r ≤ C‖f
]
δw‖p

for 1 < p < n/δ and 1/r = 1/p − δ/n. The fundamental key used in proving this result is the
following pointwise estimate

f ]0 ≤ CIδf
]
δ ,

where Iδ is the fractional integral operator of order δ. The improvement introduced in this
paper is a pointwise estimate of the same type but replacing Iδ for Mδ, the fractional maximal
operator or order δ. This estimate allows us to consider norm estimates for extreme values of
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the exponents of the type (n/δ,∞) that can not be obtained with Iδ, since it is well known that
this operator does not map Ln/δ into L∞. Concretely, we prove that

f ]
δ̃
≤ CMδ−δ̃f

]
δ

and, as a consequence, we derive the following weighted norm estimate which is essential in the
proof of our results,

‖f ]
δ̃
w‖r ≤ C‖f ]δ w‖p

for suitable values of p and r, including extreme values, 0 ≤ δ̃ ≤ δ < 1 and w belonging to
certain class of weights. In the variable exponent context some related estimates were obtained
too. As far as we know, our results are new even when we consider constants parameters.

The remainder of this paper is organized as follows. In Section 2 we give some preliminaries
and state our main theorems. In Section 3 we state and prove the auxiliary lemmas which are
important tools in order to prove the theorems stated in Section 2. Finally, in Section 4, the
proofs of the main results are given.

2. Preliminaries and main results

For a weight w we mean a locally integrable function such that 0 < w(x) <∞ a.e.
We say that the weight w belongs to the Ap class, for 1 < p < ∞, if there exits a positive

constant C such that the inequality(
1

|B|

ˆ
B
w

)(
1

|B|

ˆ
B
w
− 1
p−1

)p−1

≤ C

holds for every ball B ⊂ Rn. The A1 class is defined as the set of weights w for which there
exits a positive constant C such that the inequality

1

|B|

ˆ
B
w ≤ C inf

B
w

holds for every ball B ⊂ Rn.
By Lp(Rn) we mean the usual Lebesgue space on Rn, that is, the set of the functions f such

that

‖f‖p =

(ˆ
Rn
|f(x)|pdx

)1/p

<∞

By Lpw we mean the class of functions f such that ‖fw‖p is finite, while Lp(w) denotes the
space of functions f such that ˆ

Rn
|f(x)|pw(x)dx

is finite.
A generalization of Ap classes defined above is given below. These classes were first intro-

duced in [17].
A weight w is said to belong to the A(p, q) class, w ∈ A(p, q), if there exits a positive constant

C such that the inequality(
1

|B|

ˆ
B
wqdy

)1/q ( 1

|B|

ˆ
B
w−p

′
dy

)1/p′

≤ C,

holds for any ball B ⊂ Rn.
For the limiting case q = ∞, we say that w ∈ A(p,∞) if and only if there exits a positive

constant C such that

‖wχB‖∞
(

1

|B|

ˆ
B
w−p

′
dy

)1/p′

≤ C,
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holds for any ball B ⊂ Rn. It is easy to check that w ∈ A(p,∞) is equivalent to w−p
′ ∈ A1.

We are now in a position of stating one of our main theorems related to extrapolation results
from Lipschitz spaces.

Theorem 2.1. Let 1 < β < ∞, 0 ≤ δ < 1 and δ
n = 1

β −
1
s , f and g two positive measurable

functions such that the inequality

|||f |||Lw(δ) ≤ C ‖gw‖s , (2.2)

holds for every w ∈ A(s,∞) and some positive constant C = C(w). Then there exists a positive
constant C such that the inequality

‖fw‖q ≤ C ‖gw‖p , (2.3)

holds for every p such that 1 < p < β, 1
p −

1
q = 1

β and for every weight w ∈ A(p, q), provided
that the left hand side of (2.3) is finite.

If δ = 0 a version of the theorem above for sublinear operators was proved by Harboure,
Maćıas and Segovia in [10].

Remark 2.4. From the fact that δ
n = 1

β −
1
s , and 0 ≤ δ < 1 it is easy to see that 1 < β ≤

s < βn
(n−β)+

, where z+ is defined by 0, if z ≤ 0 and z, if z > 0. Particularly, when β = n/α,

0 < α < n then 1 < n/α ≤ s < n/(α − 1)+ and in this case, it was proved in [20] that the
fractional integral operator Iα defined by

Iαf(x) :=

ˆ
f(y)

|x− y|n−α
dy

is bounded from Ls(w) into Lw(δ) when w ∈ A(s,∞). Thus, a simple application of Theorem
2.1 leads to the boundedness of Iα from Lp(w) into Lq(w) for w ∈ A(p, q) from extrapolations
results, that is, the result in [17].

As it can be seen the last theorem allows us to obtain boundedness result of Lpw − Lqw type
via extrapolation, from Lsw − Lw(δ) boundedness type result. It is natural to ask if it can be
derived boundedness results of the Lpw − Lw(δ̃) type from the same hypothesis as in Theorem
2.1. The answer to this question is given in the following theorem when 0 ≤ δ̃ ≤ δ < 1.

Theorem 2.5. Let 1 < β < ∞, 0 ≤ δ < 1, δ
n = 1

β −
1
s , f and g be two measurable functions

such that the inequality
|||f |||Lw(δ) ≤ C ‖gw‖s ,

holds for every w ∈ A(s,∞) and some positive constant C = C(w). Then, if 0 ≤ δ̃ ≤ δ < 1 and
δ̃
n = 1

β −
1
p , there exists a positive constant C such that the inequality

|||f |||Lw(δ̃) ≤ C ‖gw‖p , (2.6)

holds for every w ∈ A(p,∞).

Remark 2.7. When δ̃ = 0, then p = β and Theorem 2.5 gives boundedness results from Lβw into
Lw(0), which, as we said previously, is a version of a weighted BMO spaces.

Particularly, when we consider f = Iαg, in [20] it was proved that the hypothesis of Theo-
rem 2.5 holds for β = n/α. Thus, is δ̃ = 0 a simple application of this theorem lead us to the

boundedness of Iα from L
n/α
w in to Lw(0) for weights w ∈ A(n/α,∞), which is the result in [17].

If 0 < δ̃ ≤ δ we obtain the boundedness of Iα from Lpw into Lw(δ̃) for p > n/α.
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We are now interested in obtaining extrapolation results of the type described above in the
variable Lebesgue space context. Previous results related with this type of estimates were given
in [5].

In order to establish the main theorem we give some definitions and notations.
Let p : Rn → [1,∞) be a mesurable function. For A ⊂ Rn we define

p−A := ess inf
x∈A

p(x) p+
A := ess sup

x∈A
p(x).

For simplicity we denote p+ = p+
Rn and p− = p−Rn . We shall also suppose that 1 < p− ≤

p(x) ≤ p+ <∞ for every x ∈ Rn.
We say that p ∈ P(Rn) if 1 < p− ≤ p(x) ≤ p+ < ∞ and we say that p ∈ P log(Rn) if

p ∈ P(Rn) and it satisfies the following inequalities

|p(x)− p(y)| ≤ C

log(e+ 1/|x− y|)
, for every x, y ∈ Rn. (2.8)

and

|p(x)− p(y)| ≤ C

log(e+ |x|)
, with |y| ≥ |x|. (2.9)

The variable exponent Lebesgue space Lp(·)(Rn) is the set of the measurable functions f defined
on Rn such that, for some positive λ, the convex functional modular

%(f/λ) :=

ˆ
Rn
|f(x)/λ|p(x) dx

is finite. A Luxemburg norm can be defined in Lp(·)(Rn) by taking

‖f‖Lp(·) := inf{λ > 0 : %(f/λ) ≤ 1}.

This spaces are special cases of Museliak-Orlicz spaces (see [19]), and generalize the classical
Lebesgue spaces. For more information see, for example [15], [4], [6].

Let p ∈ P(Rn) such that β ≤ p− ≤ p(x) ≤ p+ < nβ
(n−β)+

and let δ(x)
n = 1

β −
1

p(x) . The space

L(δ(·)) is defined by the set of measurable functions f such that

|||f |||L(δ(·)) := sup
B

1

|B|
1
β ‖χB‖p′(·)

ˆ
B
|f −mBf | <∞

When p(x) is equal to a constant p, this space coincide with the space L1(nβ −
n
p ).

The spaces L(δ(·)) were δ(·)
n = 1

β −
1
p(·) was introduced in [22]. In this article, the author

give conditions on the exponent p(·) that guarantee the boundedness of the fractional integral
operator Iα from Lp(·) spaces into L(δ(·)) spaces.

We shall give some unweighted boundedness results on variable Lebesgue spaces by extrap-
olating from the same hypothesis as in Theorems 2.1 and 2.5. The first one gives Lp(·) − Lq(·)
type estimates and the second result gives Lp(·) − L(δ(·)) estimates.

Theorem 2.10. Let 1 < β < ∞, 0 ≤ δ < 1 and s such that δ
n = 1

β −
1
s . Let p ∈ P log(Rn),

1 < p− ≤ p(x) ≤ p+ < β and q(·) such that 1
p(·) −

1
q(·) = 1

β . If f and g are two measurable
functions such that the inequality

|||f |||Lw(δ) ≤ C ‖gw‖s ,

holds for every w ∈ A(s,∞) and some positive constant C = C(w). Then there exits a positive
constant C such that the inequality

‖f‖q(·) ≤ C ‖g‖p(·) (2.11)

holds, provided that the left hand side of (2.11) is finite.
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Moreover

Theorem 2.12. Let 1 < β < ∞, 0 ≤ δ < 1, and let s be such that δ
n = 1

β −
1
s . Suppose that

p(·) ∈ P log(Rn) and δ̃(x)
n := 1

β −
1

p(x) with 0 ≤ δ − δ̃(x) for every x ∈ Rn. If f and g are two
measurable functions such that the inequality

|||f |||Lw(δ) ≤ C ‖gw‖s ,

holds for every weight w in A(s,∞) and some positive constant C = C(w). Then there exits a
positive constant C such that the inequality holds

|||f |||L(δ̃(·)) ≤ C ‖g‖p(·) .

Remark 2.13. As we said in Remark 2.4 it was proved in [20] that the hypothesis in Theorem
2.10 and 2.12 hold with f replaced by Iαg. Thus we can obtain the following Corollaries of
Theorem 2.10 and 2.12 respectively for this operator.

Corollary 2.14. Let 0 < α < n and let p ∈ P log(Rn). Let 1 < p− ≤ p(x) ≤ p+ < n/α and q(·)
be such that 1

p(·) −
1
q(·) = α

n . Then there exists a positive constant C such that

‖Iαf‖q(·) ≤ C ‖f‖p(·) ,

provided that the left hand side is finite.

Corollary 2.15. Let 0 < α < n and let p ∈ P log(Rn) such that n
α ≤ p− ≤ p(x) ≤ p+ < n

(α−1)+

and δ̃(x)
n = α

n −
1

p(x) for every x ∈ Rn. Then there exists a positive constant C such that

|||Iαf |||L(δ̃(·)) ≤ C ‖f‖p(·) .

Remark 2.16. When p− = n/α the theorem above is a generalization to the variable Lebesgue
context of the well known result in the classical setting, that gives the Ln/α - BMO boundedness
of the operators Iα. See for example [27].

When p− > n/α, Corolary 2.15 is an extension to the variable contexts of the boundedness
of Iα from Lr into L1(δ) for 0 < δ < 1 and r > n/α.

While this paper was being written we found the paper of Cruz Uribe and D.Wang in [3].
Particularly the authors proved an interesting result which gives extrapolation results in variable
Lebesgue spaces with weights. In order to establish it we need the following definition given in
the same article. We say that (p(·), v) is an M -pair if and only if M is bounded on Lp(·)(v) and
Lp
′(·)(v−1), where Lp(·)(v) denotes the space of all measurable functions f such that fv ∈ Lp(·).

Theorem 2.17. Suppose that for some p0, q0, 1 < p0 ≤ q0 < ∞, and every w0 ∈ A(p0,q0), the
inequality

‖fw0‖q0 ≤ C ‖gw0‖p0 ,

holds for some positive constant C.
Given p(·), q(·) ∈ P(Rn), suppose that

1

p(x)
− 1

q(x)
=

1

p0
− 1

q0
=

1

σ′
.

If w ∈ A(p(·),q(·)) and (q(·)/σ, wσ) is an M -pair, then

‖fw‖Lq(·) ≤ C ‖gw‖Lp(·) .

The theorem holds for p0 = 1 if we assume only that the maximal operator is bounded on
L(q(·)/q0)′(w−q0).
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If p ∈ P log(Rn) and 1
p −

1
q is a constant, then q ∈ P log(Rn). Thus, if w ∈ A(p(·),q(·)) then it is

easy to see that (q(x)/σ,wσ) is an M -pair. Then, as a consequence of Theorem 2.1 and [3] we
obtain the following extrapolation result.

Theorem 2.18. Let 1 < β <∞, 0 ≤ δ < 1 and s such that δ
n = 1

β −
1
s . Let p(·) ∈ P log(Rn) such

that p+ < β and let q(·) be defined by 1
p(x) −

1
q(x) = 1

β . If f and g are two measurable functions

such that ‖fw‖q1 <∞ for some 1 < q1 and

|||f |||Lw(δ) ≤ ‖gw‖s ,

holds for every w ∈ A(s,∞) then

‖fw‖q(·) ≤ C ‖gw‖p(·) ,

holds for every w ∈ A(p(·),q(·)).

Remark 2.19. The result above provide us with a weighted version of Theorem 2.10 and a
generalization to the variable context of Theorem 2.1.

3. Auxiliary Lemmas

Before proving the main results we give several technical lemmas. The first one is a version
of the algorithm of Rubio de Francia in the general context of variable Lebesgue spaces and can
be found in [4], [5], [6]. We include a short proof of this result.

Lemma 3.1. Let p(·) ∈ P(Rn) such that M is bounded on Lp(·)(Rn). Let h be a positive function
such that h ∈ Lp(·)(Rn), then there exists H ∈ Lp(·)(Rn) such that H ∈ A1 and

h(x) ≤ H(x) a.e. x ∈ Rn. (3.2)

‖H‖Lp(·) ≤ 2‖h‖Lp(·) . (3.3)

Proof. Following the algorithm of Rubio de Francia, it is sufficient to consider H := Rh defined
by

Rh(x) =
∞∑
k=0

Mkh(x)

2k‖M‖k
Lp(·)

,

where, for k ≥ 1, Mk denotes k iterations of the Hardy-Littlewood maximal operator, and M0

is the identity operator. The properties of H, follow immediately.

It is well known that a sufficient condition that guarantees the boundedness of the Hardy-
Littewood maximal operator in Lp(·)(Rn) is that the exponent function p ∈ P log(Rn) (see, for
example [4], [6]).

Definition 3.4. For a locally integrable function f and 0 ≤ δ < 1, the δ - sharp maximal
operator, f ]δ , is defined by

f ]δ(x) := sup
B3x

1

|B|1+δ/n

ˆ
B
|f −mBf | dy,

where mBf denotes the average of f over the ball B ⊂ Rn, that is mBf = 1
|B|

´
B |f |.

Lemma 3.5. Let 0 ≤ δ < 1 and v be a weight. Then there exits positive constants C1 and C2

such that
C1

∥∥∥vf ]δ∥∥∥∞ ≤ |||f |||Lv(δ) ≤ C2

∥∥∥vf ]δ∥∥∥∞ .
8



When δ = 0 the lemma above is due to Harboure, Maćıas and Segovia ([10]), the proof of
that lemma can be adapted to the general case, that is 0 < δ < 1. We omit it.

The following result will be used in the proof of Theorem 2.1. It was proved in [10].

Lemma 3.6. Let wp ∈ Ap0 and f ∈ Lp0(wp) for some 1 < p0 ≤ p. Then there exists a positive
constant C, independent of p0 and f , such that

‖f w‖p ≤ C‖f ]0 w‖p.

The following lemma is an easy consequence of a result proved in [5] (see Corollary 2.3) and
it will be useful in the proof of Theorem 2.10.

Lemma 3.7. Let p ∈ P log(Rn) and f ∈ Lp(·). Then there exists a positive constant C such that

‖f‖p(·) ≤ C
∥∥∥f ]0∥∥∥

p(·)
.

In order to prove our main results we give the following generalization of a result given by
Calderón and Scott in [1, Proposition 4.6].

Proposition 3.8. Let 0 ≤ δ̃ ≤ δ < 1, 1 < p ≤ n
δ−δ̃ and 1

r = 1
p −

δ−δ̃
n . If w is a weight such that

w ∈ A(p, r), then there exists a positive constant C such that the following inequality

‖f ]
δ̃
w‖r ≤ C‖f ]δ w‖p

holds.

Remark 3.9. When w ≡ 1 and δ̃ = 0, the proposition above was proved in [1]. In proving that
result the authors obtain the following pointwise estimate

f ]0(x) ≤ CIδf ]δ(x),

and then the result follows from the boundedness properties of the fractional integral operator
Iδ and the relation between p and r.

To state the next result we need the following definition: for 0 < α < n, the fractional
maximal operator Mα is given by

Mαf(x) := sup
B3x

1

|B|1−
α
n

ˆ
B
|f |

were the supremum is taken over every ball B ⊂ Rn containing x.
The proof of Proposition 3.8 well be a consequence of the following improvement of the above

inequality.

Lemma 3.10. Let 0 ≤ δ̃ ≤ δ < 1, then

f ]
δ̃
(x) ≤Mδ−δ̃f

]
δ(x).

Proof. Let B ⊂ Rn, if x, z ∈ B then

1

|B|1+ δ̃
n

ˆ
B
|f −mBf | =

|B|
δ−δ̃
n

|B|1+ δ
n

ˆ
B
|f −mBf |

≤ |B|
δ−δ̃
n f ]δ(z).

9



By integrating over the ball B we obtain that

|B|

|B|1+ δ̃
n

ˆ
B
|f −mBf | ≤ |B|

δ−δ̃
n

ˆ
B
f ]δ(z) dz,

or equivalently

1

|B|1+ δ̃
n

ˆ
B
|f −mBf | ≤

1

|B|1−
δ−δ̃
n

ˆ
B
f ]δ(z) dz

≤Mδ−δ̃f
]
δ(x).

Thus, the result follows by taking supremum over every ball containing x.

Then the proof of Proposition 3.8 follows immediately from the continuity properties of the
fractional maximal operator between weighted Lebesgue spaces ([17]) when 1 < p < n

δ−δ̃ . For

the case p = n
δ−δ̃ we use the following lemma.

Lemma 3.11. Let 0 ≤ α < n and w ∈ A(n/α,∞) if α > 0 or w−1 ∈ A1 if α = 0. Then there
exists a positive constant C such that

‖wMαf‖∞ ≤ C ‖wf‖n/α
Proof. If x ∈ B, by applying Hölder’s inequality and the hypothesis on the weight w we obtain
that

w(x)
1

|B|1−
α
n

ˆ
B
|f | ≤ w(x)

|B|1−
α
n

(ˆ
B
|fw|n/α

)α/n(ˆ
B
w−

n
n−α

)1−α
n

≤ C ‖wχB‖∞
( 

B
w−

n
n−α

)1−α
n

‖fw‖n/α

≤ C ‖fw‖n/α .

As a direct consequence of Lemma 3.10 and the boundedness of the operator Mα in the
variable context (see [5], Corollary 2.12) we have the following result.

Corollary 3.12. Let 0 ≤ δ̃ ≤ δ < 1 and p ∈ P log(Rn). Let p+ < n/(δ− δ̃) and r(·) be such that
1
p(·) −

1
r(·) = δ−δ̃

n . Then there exists a positive constant C such that the following inequality∥∥∥f ]
δ̃

∥∥∥
r(·)
≤ C

∥∥∥f ]δ∥∥∥
p(·)

holds.

The next lemma is a result due to Rubio de Francia, (see [7] or [24])

Lemma 3.13. Let w be an Aa weight, 1 ≤ a < ∞. Then, for any h ≥ 0 belonging to La
′
(w),

there exists H such that h ≤ H, Hw ∈ A1 and ‖H‖La′ (w) ≤ C ‖h‖La′ (w) . The constant C and
the A1 constant corresponding to Hw do not depend on h.

The following lemma is an unweighted version of Proposition 3.8 in the variable context. In
order to state and prove it we give the following definition.

Let 1 < β < ∞ and s(·) ∈ P(Rn) be such that δ(x)
n = 1

β −
1
s(x) ≥ 0, the δ(·)-sharp maximal

operator f ]δ(·) is defined by

f ]δ(·)(x) = sup
B3x

1

|B|1/β ‖χB‖s′(·)

ˆ
B
|f −mBf | ,

where the supremum is taking over every ball B contaning x.
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Remark 3.14. From the definitions of |||f |||L(δ(·)) and f ]δ(·) it is easy to see that

|||f |||L(δ(·)) =
∥∥∥f ]δ(·)∥∥∥∞ .

Lemma 3.15. Let 1 < β <∞, s(·) ∈ P log(Rn), p(·) ∈ P(Rn), and δ(·), δ̃(·) such that

δ(x)

n
=

1

β
− 1

s(x)
,
δ̃(x)

n
=

1

β
− 1

p(x)
,

and 0 ≤ δ̃(x) ≤ δ(x) < n a.e. x ∈ Rn. Then∥∥∥f ]
δ̃(·)

∥∥∥
∞
≤ C

∥∥∥f ]δ(·)∥∥∥ n
δ(·)−δ̃(·)

.

Proof. Let x, z ∈ B, then

1

|B|1/β

ˆ
B
|f −mBf | =

1

|B|1/β
‖χB‖s′(·)
‖χB‖s′(·)

ˆ
B
|f −mBf | ≤ ‖χB‖s′(·) f

]
δ(·)(z),

or equivalently
1

‖χB‖s′(·) |B|1/β

ˆ
B
|f −mBf | ≤ f ]δ(·)(z).

Integrating over the ball B and by applying Hölder’s inequality with exponents n/(δ − δ̃) and
n/[n− (δ − δ̃)] we obtain that

|B|
‖χB‖s′(·) |B|1/β

ˆ
B
|f −mBf | ≤

ˆ
B
f ]δ(·)(z) dz ≤ C

∥∥∥f ]δ∥∥∥ n
δ−δ̃

‖χB‖ n
n−(δ−δ̃)

since n−(δ−δ̃)
n = 1

p′(·) + 1
s(·) , from the generalized version of Hölder’s inequality in the variable

Lebesgue spaces (see [4], [6] for details), we obtain that ‖χB‖ n
n−(δ−δ̃)

≤ C ‖χB‖p′(·) ‖χB‖s(·), and

hence
|B|

‖χB‖s′(·) ‖χB‖s(·)
1

|B|1/β ‖χB‖p′(·)

ˆ
B
|f −mBf | ≤ C

∥∥∥f ]δ∥∥∥ n
δ−δ̃

.

From the fact that s ∈ P log(Rn), it follows that

|B|
‖χB‖s′(·) ‖χB‖s(·)

≥ C,

(see [2], [4], [6]).
Therefore the result follows by taking supremum over every ball B contaning x.

4. Proof of main results

In this section we give the proofs of our main theorems. We begin with the proof of Theo-
rem 2.1.

Proof of Theorem 2.1. Let w ∈ A(p, q) and f ∈ Lq(wq) and suppose that ‖gw‖p <∞, otherwise

there is nothing to prove. Then there exists h ∈ L(p/s)′(w−p
′
) such that

ˆ
h(p/s)′w−p

′
dx = 1. (4.1)
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and (ˆ
|g|pwp dx

)1/p

=

(ˆ
(|gwp′ |s)hw−p′ dx

)1/s

, (4.2)

in fact, it is sufficient to consider h(x) := (g(x)w(x)p
′
/ ‖gw‖p)p−s.

Let h̃ = h−s
′/s and 1

r = 1
p −

1
s . From (4.1) is follows that

ˆ
h̃r/s

′
w−p

′
dx = 1.

Since w ∈ A(p, q) and 1
r −

1
q = δ

n , it follows that w−p
′ ∈ A1+p′/q ⊂ A1+p′/r, then w ∈ A(p, r).

Therefore, by applying Lemma 3.13, with a = 1 + p′/r, there exists a function H̃ ≥ h̃ satisfying

‖H̃1/s′w−p
′/r‖rr =

ˆ
H̃r/s′w−p

′
dx ≤ C. (4.3)

Then (ˆ
|g|pwp dx

)1/p

=

(ˆ
(|gwp′ |s)(h̃−1/s′)sw−p

′
dx

)1/s

≥
(ˆ

(|gwp′ |s)(H̃−1/s′)sw−p
′
dx

)1/s

≥
(ˆ
|g|s
[
H̃−1/s′ wp

′/s′
]s
dx

)1/s

.

By Lemma 3.13 H̃w−p
′ ∈ A1, hence H̃−1/s′wp

′/s′ ∈ A(s,∞). Therefore, we use the hypoth-
esis, Lemma 3.5 and (4.3) to obtain(ˆ

|g|pwp dx
)1/p

≥ |||f |||L
H̃−1/s′wp′/s′

(δ)

≥ C‖f ]δ H̃
−1/s′wp

′/s′‖∞
≥ C‖f ]δ H̃

−1/s′wp
′/s′‖∞‖H̃1/s′w−p

′/r‖r
≥ C‖f ]δ w‖r.

On the other hand, since w ∈ A(p, q) and 1
r′ −

1
p′ > 0, we obtain that wq ∈ A1+q/p′ ⊂ A1+q/r′

and hence w ∈ A(r, q).
Then by the Proposition 3.8 we have(ˆ

|g|pwp dx
)1/p

≥ C‖f ]0 w‖q.

Finally, as we have assumed f ∈ Lq(wq), in accordance of Lemma 3.6 it follows(ˆ
|g|pwp dx

)1/p

≥ C‖f w‖q,

which concludes the proof.

Proof of Theorem 2.5. Let w ∈ A(p,∞) and ‖gw‖p < ∞. Define 1
r := 1

p −
1
s = δ−δ̃

n ≥ 0,

since w−p
′ ∈ A1 ⊂ A1+p′/r, as in the proof of Theorem 2.1, we can deduce the existence of

H̃ ∈ Lr/s′(w−p′) such that ∥∥∥H̃1/s′w−p
′/r
∥∥∥
r
≤ C,
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with H̃−1/s′wp
′/r ∈ A(s,∞) and (ˆ

|g|pwp
)1/p

≥ C
∥∥∥f ]δw∥∥∥

r
.

Since r′ < p′, by applying Hölder’s inequality with exponents p′/r′ and p′/(p′ − r′), we obtain

‖wχQ‖∞

( 
Q
w−r

′
)1/r′

≤ ‖wχQ‖∞

(ˆ
Q
w−p

′
)1/p′

|Q|
1
r′

1
(p′/r′)′−

1
r′

= ‖wχQ‖∞

( 
Q
w−p

′
)1/p′

≤ C,

where in the last inequality we use that w ∈ A(p,∞). Then w ∈ A(r,∞), and by applying
Proposition 3.8 we have that (ˆ

|g|pwp
)1/p

≥ c
∥∥∥f ]

δ̃
w
∥∥∥
∞
,

which leads to the desired inequality after applying Lemma 3.5.

Proof of Theorem 2.10. It is enough to consider ‖g‖p(·) < ∞. Let h(x) =
(

g(x)
‖g‖p(·)

)p(x)−s
, then

‖h‖( p(·)
s

)′ ≤ 1. In fact

ˆ
|h(x)|(p(x)/s)′ dx =

ˆ
(|g(x)| / ‖g‖p(·))

p(x)dx ≤ 1.

Moreover ˆ
|g(x)|s h(x)

‖g‖sp(·)
dx =

ˆ
(g(x)/ ‖g‖p(·))

p(x)dx ≤ 1,

then

‖g‖p(·) ≥
(ˆ
|g|s h

)1/s

. (4.4)

If h̃ := h−s
′/s and 1

r(x) := 1
p(x) −

1
s we have

ˆ
h̃(x)r(x)/s′dx =

ˆ
h−r(x)/s(x)dx =

ˆ (
g(x)

‖g‖p(·)

)p(x)

dx ≤ 1,

Consequently
‖h̃‖r(·)/s′ ≤ 1.

By (4.4) and the definition of h̃ we obtain that

‖g‖p(·) ≥
(ˆ
|g|s h

)1/s

=

(ˆ
|g|s (h̃−1/s′)s

)1/s

.

From the fact that (r(·)/s′)− > 1 and r(·)/s′ ∈ P log(Rn) since p(·) ∈ P log(Rn), from Lemma 3.1
there exists a function H̃ ≥ h̃ such that H̃ ∈ A1 and

‖H̃‖r(·)/s′ ≤ 2‖h̃‖r(·)/s′ ≤ 2. (4.5)

Thus, we have that

‖g‖p(·) ≥
(ˆ
|g|s (H̃−1/s′)s

)1/s

.
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Then, since H̃−1/s′ ∈ A(s,∞), we can apply the hypothesis, Lemma 3.5 and (4.5) to obtain
that

‖g‖p(·) ≥ C|||f |||L
H̃−1/s′ (δ)

≥ C
∥∥∥H̃−1/s′f ]δ

∥∥∥
∞

∥∥∥H̃1/s′
∥∥∥
r(·)

≥ C
∥∥∥f ]δ∥∥∥

r(·)
.

On the other hand, since 1
r(·) −

1
q(·) = δ

n then r+ < n
δ . Thus, by Corollary 3.12 we have that∥∥∥f ]0∥∥∥

q(·)
≤ C

∥∥∥f ]δ∥∥∥
r(·)

.

Finally, since f ∈ Lq(·), and q(·) ∈ P log(Rn), from Lemma 3.7 we have that

‖f‖q(·) ≤ C
∥∥∥f ]0∥∥∥

q(·)
,

which concludes the proof.

Proof of Theorem 2.12. By following the same argument as in proof of Theorem 2.10 we can
obtain the existence of a function H̃ such that

‖g‖p(·) ≥
(ˆ
|g|s h

)1/s

=

(ˆ
|g|s (h̃−1/s′)s

)1/s

≥
(ˆ
|g|s (H̃−1/s′)s

)1/s

≥ c
∥∥∥H̃−1/s′f ]δ

∥∥∥
∞

∥∥∥H̃1/s′
∥∥∥
r(·)

≥ c
∥∥∥f ]δ∥∥∥

r(·)
,

where
1

r(x)
:=

1

p(x)
− 1

s
=
δ − δ̃(x)

n
.

Then, the result follows by applying Lemma 3.15 and Remark 3.14.
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[2] Cruz-Uribe, D., L. Diening, and P. Hästö. The maximal operator on weighted variable
Lebesgue spaces. Fract. Calc. Appl. Anal. 14(3):361-374, 2011.

[3] Cruz-Uribe, D., and L.-A. Wang. Extrapolation and weighted norm inequalities in the vari-
able Lebesgue spaces. To appear in Trans. Amer. Math. Soc..

[4] Cruz-Uribe, D., and A. Fiorenza. Variable Lebesgue Spaces. Foundations and harmonic
analysis. Series: Applied and Numerical Harmonic Analysis. IX, 312 p, 2013.

[5] Cruz-Uribe, D., A. Fiorenza, J.M. Martell, and C. Pérez. The boundedness of classical
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