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Photomorphogenesis, B-Box Transcription Factors,
and the Legacy of Magnus Holm

How plants perceive and respond to light

has fascinated us for millennia and was first

noted by Aristotle in De Anima. Erasmus

Darwin must also have reflected on it in

his garden, as evidenced by several lines in

The Botanic Garden, his epic poem about

plant life published in 1789. Almost 100 years

later, the first rigorous research on photo-

tropism was performed by his grandson

Charles Darwin, who reported his exper-

iments in The Power of Movement in

Plants, published in 1880. Subsequently,

at the beginning of the 20th century, the

importance of the daily duration of light in

the control of flowering time, a process

now known as photoperiodism, was recog-

nized by Julien Tournois at the Ecole

Normale Supérieure in Paris and was

subsequently studied in depth by Harry

Allard and Wightman Garner in Arlington,

Virginia in the 1920s. The key roles of red

and far-red light wavelengths were slowly

revealed and led to the identification of

phytochrome, the most famous of all plant

photoreceptors, in the 1950s (Furuya, 1993).

Since then, phytochrome research has ad-

vanced enormously and achieved a major

milestone in 2005 with the first three-

dimensional structure (Wagner et al., 2005).

The dawn of molecular genetics in Arabi-

dopsis thaliana has also permitted enor-

mous progress, leading to discovery of the

key intermediates COP1 and HY5. How they

work together within the intricate machinery

of photomorphogenesis has been an active

research area for 25 years (Franklin and

Quail, 2010; Lau and Deng, 2012). One of the

proponents in this research area, Magnus

Holm (Figure 1), passed away tragically in

2012, but some of the last research originating

from his laboratory, in collaborationwith Javier

Botto, reported in this issue (Gangappa et al.,

pages 1243–1257). The work fills in another

piece of the photomorphogenesis jigsaw.

In nature, a seed is likely to end up under

a layer of soil or litter, where there is little or

no light available. Upon germination, the

seedling will undergo etiolation, resulting

in an elongated hypocotyl with an apical

hook protecting the undeveloped cotyle-

dons and shoot apical meristem, in pursuit

of more favorable light conditions. If this

strategy is successful, light activation of the

photoreceptors will result in de-etiolation

and the start of photomorphogenesis,

during which the elongation of the hypo-

cotyl is inhibited, the apical hook unfolds,

and the cotyledons develop in order to

harvest energy from light and to fix carbon

from CO2 (Sullivan and Deng, 2003). Photo-

protective pigments, such as flavonoids

and anthocyanins, are synthesized, which

protect the seedling from the more damag-

ing effects of light. The dramatic transition

from an etiolated to a photomorphogenic

developmental mode is initiated by blue

(cryptochromes [CRY]), UV (UVR8), and

red/far-red (phytochromes [phyA to phyE])

photoreceptors, acting to promote photo-

morphogenesis through a massive transcrip-

tional reprogramming involving transcription

factors working alongside both large-scale

and finely tuned changes in chromatin struc-

ture (Charron et al., 2009; Bourbousse et al.,

2012).

Forward genetic screens first performed

in Arabidopsis in the 1980s identified a

group of nine genes referred to as theCOP/

DET/FUS genes (Franklin and Quail, 2010;

Lau and Deng, 2012). Mutants in these

genes display photomorphogenic growth

in darkness, and their recessive nature in-

dicated that they act to suppress deetiola-

tion in the dark. Two of the encoded proteins,

DET1 and COP10, are part of an E2

ubiquitin conjugating enzyme-like com-

plex (Yanagawa et al., 2004), whereas six

exist in another complex, the COP9 signal-

osome (Schwechheimer and Deng, 2000),

which can regulate a subset of E3 ubiquitin

ligases (Lyapina et al., 2001). The last,

COP1, is an E3 ubiquitin ligase acting as

a master regulator of the transition from

etiolated to photomorphogenic develop-

ment (Sullivan and Deng, 2003). COP1 is

also part of a multimeric ;700-kD protein

complex that includes SPA proteins, identi-

fied as suppressors of far-red light signaling

(Saijo et al., 2008). Null cop1 mutants are

adult lethal, but weak alleles show pleiotro-

pic effects throughout the plant life cycle,

including high anthocyanin accumulation,

dwarf stature, and early flowering. More-

over, the weak cop1-6 allele is able to flower

in constant darkness, suggesting that later

developmental transitions are derepressed

in the cop1 mutant (McNellis et al., 1994).

Consistent with the key role that COP1

plays as a repressor of photomorphogenic

development, transcriptome analyses have

revealed a remarkable overlap between dark-

grown cop1 seedlings and light-grown wild-

type seedlings (Ma et al., 2002). Thus,

photoreceptor-dependent inactivation of

COP1 is sufficient and absolutely neces-

sary to initiate photomorphogenic growth.

COP1 is localized to the nucleus in the

dark (von Arnim and Deng, 1994), where it

Figure 1. Magnus Holm (1968–2012).
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acts to target a range of positive regulators

of photomorphogenesis for degradation via

the 26S proteasome. Upon transfer to light,

COP1 activity is inhibited by photoreceptor-

dependent exclusion from the nucleus

(Osterlund et al., 2000). In addition, CRY

blue light photoreceptors interact with

COP1, and light activation of CRY proteins

was recently shown to directly inhibit COP1

activity in the nucleus (Liu et al., 2011; Zuo

et al., 2011).

The resulting inhibition of COP1 leads to

accumulation of factors that promote photo-

morphogenic development, most notably

HY5 (Osterlund et al., 2000) and HYH, which

was identified by Magnus in his first major

contribution to the plant field during post-

doctoral research with one of the authors

(Deng) at Yale University (Holm et al., 2002).

Magnus joined the Deng laboratory at Yale

University in 1998 after completing his doc-

torate entitled “Function and Calcium Regu-

lation of AML1 and Basic-Helix-Loop-Helix

Transcription Factors” from Umeå University,

Sweden. Fascinated by plants after a PhD

working with animals, Magnus wanted to

switch to plant research and learn to use

the plant genetic model systemArabidopsis.

At Yale, Magnus started working on Arabi-

dopsis COP1 and focused on how COP1

orchestrates downstream actions at the

molecular level. Ironically, after leaving the

animal field, Magnus made a discovery in

Arabidopsis that ended up with a greater

impact to the animal field. Magnus found

a “consensusCOP1 bindingmotif” onCOP1

target proteins, such as HY5, STO, and

HYH, which directly contacts residues in the

WD40 domain of COP1 (Holm et al., 2001).

This COP1 binding consensus turned out to

be highly conserved, not only in plants, but

also in animals. Although COP1 was first

known to have homologs in mammals in

1999 (Wang et al., 1999), the biology of

COP1 in animals was not understood until

several years later. Guided by the COP1

binding consensusmotif that Magnus discov-

ered in Arabidopsis, several important targets

of human COP1were identified. These stud-

ies have so far linked human COP1 to lipid

metabolism and hematopoiesis (through

tribbles proteins; Qi et al., 2006; Keeshan

et al., 2010), gluconeogenesis (through

TORC2; Dentin et al., 2007), and stress and

mitogenic pathways (through c-Jun and the

ETS family of transcription factors; Bianchi

et al., 2003; Baert et al., 2010; Vitari et al.,

2011) and have subsequently led to the

revelation that human COP1 is a tumor

suppressor (Migliorini et al., 2011; Vitari

et al., 2011).

In Arabidopsis, after HYH, Magnus identi-

fied six other COP1- and/or HY5-interacting

proteins through yeast two-hybrid screens.

Five of these proteins contain tandem re-

peated B-boxes (Zn21 binding domains).

The finding that COP1 interacts with B-box

proteins is quite interesting since the COP1

protein contains three protein interaction

domains: a RING finger, a coiled-coil, and

a WD40 domain. COP1 interacts through

the WD40 domain with the COP1 binding

consensus motif in the B-box proteins (Holm

et al., 2001), thus leaving the RING, coiled-

coil, and B-box domains free to interact with

other proteins.

Magnus brought the COP1-interacting

proteins with him when he started his own

laboratory at Gothenburg University in 2002,

and since then he showed that three of them

act as positive regulators of light-dependent

development (Datta et al., 2006, 2007, 2008)

and that some are involved in crosstalk

between light and the phytohormone auxin

(Sibout et al., 2006). In the last few years,

evidence has also emerged that BBX pro-

teins are additionally involved in themolecular

mechanisms regulating the shade avoidance

syndrome that allows plants to compete

efficiently in shaded environments. Mag-

nus also contributed to this with an article

on the role of BBX21 in shade avoidance

(Crocco et al., 2010), which was selected

for an addendum in Plant Signaling and

Behavior (Crocco et al., 2011).

In the new article, Gangappa et al. (2013)

describe the functional characterization of

BBX25 together with BBX24 in photo-

morphogenesis and hypocotyl shade avoid-

ance response. In contrast with the previously

published BBX4, BBX21, and BBX22 factors

(Datta et al., 2006, 2007, 2008; Sibout et al.,

2006; Crocco et al., 2010), BBX24 and BBX25

are negative regulators of light signaling and

they act additively in the control of de-

etiolation. Using a range of in vitro and in vivo

methods, it is shown that BBX25 physically

interacts with the bZIP domain of HY5

through its B-boxes, as previously shown

for BBX24, and that they both regulate

Figure 2. Proposed mode of action of BBX25 and BBX24 during seedling de-etiolation. COP1

negatively regulates HY5 and BBX22 proteins by targeting them to the 26S proteasome. HY5 induces

the expression of BBX22, which in turn enhances the function of HY5. BBX25 and BBX24 negatively

regulate BBX22 expression by reducing HY5, interacting through the bZIP domain. COP1 may

attenuate BBX25 and BBX24 function by targeting them for degradation in the light. (Figure provided by

Sreeramaiah Gangappa and Silvia Ibarra Figure based on Gangappa et al. [2013], Figure 10.)
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anthocyanin gene expression in a HY5-

dependent manner (Figure 2). Then, to exam-

ine thegenetic relationshipwithCOP1, a range

of double and triple mutants were generated

and analyzed. It was found that bbx25 and

bbx24mutations can additively enhance cop1

mutant hypocotyl phenotypes irrespective of

light (or dark) conditions.

To further understand how BBX24 and

BBX25 affect photomorphogenesis, the au-

thors then searched for transcription factor

targets, and it was found that together they

can negatively regulate the expression of

BBX22. It was shown previously that BBX22

expression is regulated directly by HY5

binding to its promoter (Chang et al., 2008)

and that COP1 degrades BBX22 in the dark

(Datta et al., 2008; Chang et al., 2011).

Based on the combinatorial mutant analysis,

it is therefore possible that they regulate

BBX22 expression either by altering HY5 or

COP1 activity. Both hypotheses were ex-

amined, and it was found that the mecha-

nism of action of BBX24 and BBX25 is most

likely mediated by reducing the function of

HY5 by forming inactive heterodimers.

In a final twist, the function of BBX24 and

BBX25 in the hypocotyl shade avoidance

response was examined. In shaded envi-

ronments, different members of the group IV

BBX factors (double B-box without a CCT

domain; Khanna et al., 2009) have opposite

functions (Crocco et al., 2010). Specifically,

BBX21 and BBX22 act as negative regula-

tors, whereas BBX24 and BBX25 promote

hypocotyl elongation in shade (Crocco et al.,

2010). In contrast with their role during

de-etiolation, Gangappa et al. found that

BBX24 and BBX25 can switch roles and

become independent of HY5 during shade

avoidance. This is not the first example of

an inversion of function in the regulation of

specific aspects of photomorphogenesis.

Most notably, while COP1 is a negative re-

gulator of cryptochrome- and phytochrome-

activated responses, it acts positively to

regulate processes activated by UVR8

photoreceptors (Oravecz et al., 2006).

Magnus was promoted in spring 2012 to

Professor of Plant Molecular Biology in the

Department of Biological and Environmental

Sciences at Gothenburg University in Swe-

den. His untimely death in the summer of the

same year has saddened many. As stated

by Cornelia Spetea Wiklund (a professor in

the same department) at the Minnestund

(memorial service) for him in Gothenburg,

“He was a great group leader, an excellent

scientist, a good colleague and a glad teacher.

He is not among us any longer and we will

miss him very much.” So will the photo-

morphogenesis research community.
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