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Abstract

This paper is concerned with the internal distributed control problem for the 1D
Schrödinger equation, i ut(x, t) = −uxx+α(x)u+m(u)u, that arises in quantum semi-
conductor models. Here m(u) is a non local Hartree–type nonlinearity stemming from
the coupling with the 1D Poisson equation, and α(x) is a regular function with linear
growth at infinity, including constant electric fields. By means of both the Hilbert
Uniqueness Method and the contraction mapping theorem it is shown that for initial
and target states belonging to a suitable small neighborhood of the origin, and for dis-
tributed controls supported outside of a fixed compact interval, the model equation is
controllable. Moreover, it is shown that, for distributed controls with compact support,
the exact controllability problem is not possible.
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1 Introduction

We are mainly concerned with the internal distributed controllability for the following 1D
Schrödinger equation

iut = −uxx + α(x)u+m(u)u, x ∈ R, t > 0, (1.1)

u(x, 0) = u0(x), (1.2)
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posed in the Sobolev space H = {φ ∈ H1(R) :
∫
µ(x)|φ|2 <∞}, where µ is a positive regular

function that coincides with |x| away from the origin. Here, the non linearity m(u) is of non
local nature:

m(φ)(x) =

∫
%(x, y)|φ(y)|2dy, (1.3)

where the kernel satisfies the estimate |%(x, y)| ≤ µ(y). This choice is motivated for the
self–consistent 1D Schrödinger–Poisson equation used in quantum semiconductor theory

iut = −uxx + u
(
|x| ∗

(
D − |u|2

))
(1.4)

where D ∈ C∞(R) denotes the fixed positively charged background or impurities, see [8] and
references therein for semiconductor models. After a suitable rearrangement of terms the
Hartree potential reads

|x| ∗
(
D − |u|2

)
=

∫
(|x− y| − µ(x))(D(y)− |u(y, t)|2)dy + µ(x)

∫
(D(y)− |u(y, t)|2)dy

=

∫
(|x− y| − µ(x))D(y)dy −

∫
(|x− y| − µ(x))|u(y, t)|2dy+

µ(x)
(
‖D‖L1(R) − ‖u(·, t)‖2

L2(R)

)
.

Introducing a := ‖D‖L1(R) − ‖u(·, t)‖2
L2(R), F (x) :=

∫
(|x − y| − µ(x))D(y)dy, and %(x, y) =

µ(x)− |x− y|, equation (1.4) thus becomes

iut(x, t) = −uxx(x, t) + (aµ(x) + F (x))u(x, t) +m(u(x, t))u(x, t),

taking α(x) := aµ(x) + F (x) we show that the evolution equation (1.4) becomes (1.1).
We note that in the 1D case the kernel µ(x) is not bounded nor integrable so the classic

theory developed in [1] does not apply and we refer to [3] for details on the well posedness.
In this article we will consider a slightly extended version in which the term aµ(x) is replaced
by a regular function α(x) ∈ C∞(R), with at most linear growth at infinity (i.e. with the
asymptotics α(x) ∼ C±x for x ∼ ±∞), in order to include constant electric fields α(x) =
qx. We note that due to the regularity requirements of the unique continuation technique
displayed in Lemma 3.2, the regular function α(x) appears as a regularized approximation of
a locally constant electric field, which is modelled with a continuous piecewise linear function.
It is also worth to mention that since the impurities give rise to a bounded potential

Vd(x) =

∫
(|x− y| − |x|)D(y)dy,

and hence enters in the model equation as a bounded multiplication operator, and since our
results are still valid for bounded perturbations, there is no loss of generality in restricting
ourselves to the case D ≡ 0. Let us finally mention that results on controllability with local
nonlinearities as |u|2σu are widely developed, see [5, 11], and therefore local nonlinearities
will not be taken into consideration.

The problem of exact internal controllability of equation (1.1)-(1.2) is usually described
as the question of finding a control function h ∈ L2(0, T,H) and its associated state function
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u ∈ C(0, T,H) such that

iut = −uxx + α(x)u+m(u)u+ ψ(x)h(x, t), x ∈ R, t ∈ (0, T ), (1.5)

u(x, t0) = u0(x), u(x, T ) = uT (x) (1.6)

where T > 0 is a given target time and u0 and uT are the given initial and target states
respectively, and ψ : R → R is a given C1 function that localizes the control to Supp(ψ).
The problem of distributed controllability for Schrödinger equations of nonlinear type appears
often in nonlinear optics, see for instance [9, 4]. There are several results on controllability
of the Schrödinger equation, for a review on this topic we refer to [13].

In this paper we discuss the internal distributed controllability for the problem

iut = −uxx + α(x)u+m(u)u, x ∈ R, t > 0,

u(x, t0) = u0(x)

and present results concerning two different situations depending on the support of the
control: on one hand controls that are supported outside a compact interval, in which case
we shall give positive results, and on the other hand localized controls, in which case we
shall give a non controllability result.

We start dealing with a distributed control given by ψ(x)h(x, t) where ψ ∈ C1(R) satisfies:

ψ(x) =

{
1 for |x| ≥ R + 1
0 for |x| ≤ R

(1.7)

We thus show that for a given 0 < T there exist a (small) constant δ such that for every
u0, uT ∈ H with ‖u0‖H, ‖uT‖H < δ there exists a control h(x, t) ∈ L2(0, T,H) such that the
nonlinear problem (1.5)-(1.6) has a unique solution u ∈ C(0, T,H).

We then turn to the case in which ψ ∈ C1 is compactly supported and show that for both
α = µ (linear operator with a discrete spectrum) and α(x) = x (constant electric field, which
has a continuous spectrum), the linear system is not exactly controllable. More precisely we
show that for any fixed finite time T > 0 and any fixed target state uT ∈ H there exist an
open bounded interval Ω and an initial state u0 ∈ H, such that for any ψ with Supp(ψ) ⊂ Ω,
there is no control function ψ(x)h(x, y), with h ∈ L2(0, T,H), and no constant C = C(T,Ω)
such that

iut = −uxx + α(x)u+ ψ(x)h, x ∈ R, t ∈ [0, T ],

u(x, 0) = u0(x), u(x, T ) = uT (x)

with ‖h‖L1(0,T,L2(Ω)) ≤ C(T,Ω) (‖u0‖H + ‖uT‖H) .
The paper is organized as follows. We set the problem in section 1. In section 2, we

deal with the existence of dynamics and establish useful estimates for the related evolution.
Section 3 is devoted to the problem in which the control vanishes inside an open bounded
interval. We start studying the linear system for which we prove global controllability in the
space H; we then prove the local controllability for the nonlinear system (1.5). In Section 4,
we deal with the non controllability result for compactly supported controls.
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2 Preliminaries

In this section we shall collect some results concerning spectral properties for the operator
−∂2

x + α(x). Since most of the estimates refer to different functional spaces we list them
below:

• H1(R) := {φ ∈ L2(R) : φx ∈ L2(R)}.

• L2
µ(R) := {φ : µ1/2φ ∈ L2(R)} where µ is a regular even function satisfying 1 ≤ µ(x),

and µ(x) ≡ |x| for |x| ≥ 2.

• H := H1(R) ∩ L2
µ(R) with ‖φ‖2

H = ‖φx‖2
L2 + ‖φ‖2

L2
µ

2.1 Existence of dynamics

To start with we consider the auxiliar operator L+ defined by

L+ : H 7→ H′

φ 7→ L+(φ) :=
(
−∂2

x + |x|
)
φ (2.1)

Although this operator does not enter directly in our model, because of the loss of reg-
ularity of |x| in the origin, it provides the workspace H and also it possesses useful spectral
properties, easily deduced from the ones of the Airy function, that are needed for the proof
of the non controllability result of Theorem 4.1.

Lemma 2.1. The operator L+ satisfies the following properties:

(a) It is self–adjoint in L2(R).

(b) It has a discrete spectrum 0 < λ̃1 < · · · < λ̃N ↗ +∞.

(c) It has a countable set of orthonormal (with respect to L2) eigenfunctions {φN : N ∈
N} ⊆ H satisfying

λ̃
−1/4
N

(∫
Ω

|(φN)x|2
)1/2

≤ C(Ω), (2.2)

where Ω is an arbitrary bounded interval.

Remark 2.2. Self–adjointness of L+ and the existence of both a discrete spectrum, {0 < λ̃1 <

λ̃2 < · · · }, and an orthonormal basis of eigenfunctions, {φN}N∈N ⊆ H, follows directly from
[2] where by means of variational methods it is only shown that L−1

+ is a compact operator.
However, the non–controllability result relies on some special feature of the eigenfunctions,
given by claim (c), that are not considered there and we shall give an alternative proof.

Proof. We first notice that the related quadratic form verifies 〈φ;L+φ〉 = ‖φx‖2
L2+‖|x|1/2φ‖2

L2

and this is an equivalent norm for H, from where we recover the self–adjointness of L+. The
operator L+ has an explicit spectral decomposition expressed in terms of the Airy function
Ai, defined as the solution of −Aixx(x) + xAi(x) = 0 such that Ai(+∞) = 0, as follows. Let
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0 < z0 < z1 < · · · ↗ +∞, and 0 < w0 < w1 < · · · ↗ +∞ be the zeros of Ai ′(−x) and Ai(−x)

respectively, and take λ̃2N = zN , λ̃2N+1 = wN , and φ2N(x) = c2NAi(|x| − λ̃2N), φ2N+1(x) =

c2N+1 sgn(x)Ai(|x| − λ̃2N+1), where cN is a (bounded) sequence of normalization constants.

A direct computation shows that L+(φN) = λ̃NφN . This gives the spectral decomposition of

L+. Since for |x| ∼ +∞ it happens that |x| − λ̃N > 0, each eigenfunction φN inherits the

decaying properties of the Airy function near +∞ where it behaves as e−r
3/2
.

In order to get claim (c) we take profit of the integral expression for the Airy function
and its derivative, with x = −|x|,

Ai(x) = (2π)−1/2|x|1/2
∫
ei|x|

3/2(k3/3−k)dk

Ai ′(x) = (2π)−1/2

∫
ikei|x|

3/2(k3/3−k)dk

from where, by means of the stationary phase method, we deduce the asymptotics

|Ai ′(x)| ≤ C(M)|x|1/4 (2.3)

valid for x ≤ −M, and also an estimate for the eigenvalues

λ̃N ∼ N2/3. (2.4)

Let M be such that Ω ⊆ [−M,M ], from estimate (2.4) there exists N0 such that, for

N > N0, λ̃2N − λ̃N > M. Then, for x ∈ Ω one has |x| − λ̃2N < M − λ̃2N < −λ̃N . Using (2.3)

we conclude |φ2N(x)| < λ̃
1/4
N , and therefore ‖(φN)x‖L2(Ω) ≤ (2M)1/2λ̃

1/4
N/2. This finishes the

proof.

As a direct consequence of previous result we get the existence of dynamics for the
operator Lµ defined by

Lµ : H 7→ H′

φ 7→ Lµ(φ) :=
(
−∂2

x + µ(x)
)
φ (2.5)

where µ(x) is a regular even function satisfying µ(x) ≡ |x| for |x| ≥ 2 and max{1, |x|} ≤
µ(x) ≤ 1 + |x|.
Lemma 2.3. The operator Lµ is well defined and verifies

(a) It is self adjoint.

(b) It has a discrete spectrum 0 < λ1 ≤ λ2 ≤ λN ↗ +∞, and a countable set of orthonor-
mal (with respect to L2) eigenfunctions {ϕN : N ∈ N} ⊆ H.

Proof. It follows directly from the inequalities

〈φ;L+φ〉 ≤ 〈φ;Lµφ〉 ≤ ‖φ‖2
L2 + 〈φ;L+φ〉 ,

and the compact embedding H ↪→ L2.
Notice that previous estimates yield the asymptotics

λN ∼ N2/3.
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In order to develop the observability inequality we need to build some appropriate Sobolev
spaces, related to the operator Lµ defined by (2.5). This is done as follows. Let {ϕN}N∈N

be the orthonormal basis of L2 given by Lemma 2.3 and, for φ ∈ L2, let φ̂ be the Fourier
coefficient: φ̂(N) := 〈φ;ϕN〉. We then set for k = 0, 1, 2 the Hilbert spaces W k := {φ ∈ L2 :∑

N≥0 λ
k
N φ̂(N)2 <∞}, with the inner product

〈ψ;φ〉Wk :=
∑
N≥0

λkN ψ̂(N)∗φ̂(N). (2.6)

Let F ⊂ W 0 be the set of finite linear combinations of {ϕN}N∈N. Then for k = −3,−2,−1
the inner product (2.6) is well defined. We then define W k as the Hilbert space obtained
from the closure of F with the norm induced by 〈·; ·〉Wk . We have that Lµ : W k → W k−2 is

an isometry: ‖Lµw‖Wk−2 = ‖w‖Wk . Being Lµ positive, we have L
1/2
µ : W k → W k−1 which is

also an isometry: ‖L1/2
µ w‖Wk−1 = ‖w‖Wk .

We finally mention that W 0 = L2, W 1 = H, W 2 = D(Lµ), the domain of the operator
Lµ : W 2 7→ L2, and W−1 = H′, with compact embeddings

W 2 ⊂ W 1 ⊂ W 0 ⊂ W−1 ⊂ W−2 (2.7)

Remark 2.4. Since for any ψ ∈ W k and φ ∈ W−k we have

〈ψ;φ〉L2 =
∑
N≥0

ψ̂(N)∗φ̂(N)

=
∑
N≥0

λ
k/2
N ψ̂(N)∗λ

−k/2
N φ̂(N)

≤ ‖ψ‖Wk‖φ‖W−k ,

we also have for k = −2,−1, 0, 1, 2 that
(
W k
)′

= W−k.

We now turn to the general situation L := −∂2
x +α(x), where α(x) ∈ C∞(R) is a regular

function verifying αx, αxx ∈ L∞, and also the asymptotics

lim
x→±∞

α(x)

µ(x)
= C± (2.8)

The following lemma states precisely the self–adjointness result.

Lemma 2.5. Let α ∈ C∞(R) satisfying (2.8). Then L : H 7→ H′ defined by L := −∂2
x+α(x)

is self–adjoint, and therefore −iL generates a strongly continuous group of unitary operators
in L2(R).

Proof. To this purpose we first show that L is a closed operator. Let ϕ ∈ C∞0 (R) and
(φn;L(φn)) ∈ H ×H′ a sequence such that (φn;L(φn))→ (φ;ψ) in H×H′, since 〈ϕ;φxx −
(φn)xx〉 = 〈ϕxx;φ − φn〉 → 0 and 〈ϕ;α(φ − φn)〉 = 〈sgn(α)|α|1/2ϕ; |α|1/2(φ − φn)〉 → 0 we
thus have 〈ϕ;L(φ− φn)〉 → 0, and consequently we conclude 〈ϕ;ψ − Lφ〉 = 〈ϕ;ψ − Lφn〉+
〈ϕ;L(φn − φ)〉 → 0. This shows that L : H → H′ is a closed operator.
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Since Lµ := −∂2
x + µ(x), with µ(x) ≥ 1 we deduce that Lµ ≥ I (the identity operator).

For ϕ, ψ ∈ H we introduce the (well defined) bilinear form Q(φ, ψ) := 〈φx;ψx〉+ 〈φ;α(x)ψ〉.
We now establish two useful estimates

|Q(φ;ψ)| ≤ |〈φx;ψx〉|+ |〈φ;αψ〉|
≤ (1 + ‖αµ−1‖L∞) |〈φ;Lµψ〉|
≤ (1 + ‖αµ−1‖L∞)‖L1/2

µ φ‖L2 ‖L1/2
µ ψ‖L2

|Q(Lµφ;ψ)−Q(φ;Lµψ)| = |〈φ; [Lµ : L]ψ〉|
≤ |〈φ; (µ− α)xxψ〉|+ 2|〈(µ− α)xφ;ψx〉|
≤ (‖(µ− α)xx‖L∞ + 2‖(µ− α)x‖L∞) ‖L1/2

µ φ‖L2 ‖L1/2
µ ψ‖L2

where we have used the identity ‖L1/2
µ ϕ‖2

L2 = ‖ϕx‖2
L2 + ‖ϕ‖2

L2
µ
. Applying Theorem X.36’ in

[10] we obtain that L is a essentially self–adjoint operator in H, since it is closed, it follows
that L is self adjoint.

2.2 Scattering properties for constant electric fields

The non controllability result, see Theorem 4.4, for a constant electric field Le := −∂2
x − x,

follows from a well-known L1 − L∞ estimate for the group Ue(t) generated by −iLe, which
depends upon a result of Avron-Herbst, see [12] for details.

Lemma 2.6. The operator Le is essentially self–adjoint on S(R) and

Ue(t) = e−it
3

eitxe−i(p
2t+t2p) (2.9)

where p = −i∂x is the momentum operator.

Remark 2.7. Identity (2.9) says that except for phase factors Ue(t)φ(x) is obtained by first
translating by t2 units to the right and then applying the free particle group eit∂

2
x

Corollary 2.8. For φ ∈ L1(R) we have the following estimate:

‖Ue(t)φ‖L∞ ≤ C|t|−1/2‖φ‖L1

2.3 Estimates for the evolution

Lemma 2.5 guarantees that −iL generates a group U(t). In the sequel we will exhibit useful
bounds for the evolution related to both the homogeneous and inhomogeneous problem.

Lemma 2.9. Let U(t) be the group generated by −iL where L := −∂2
x + α in H. Then

• ‖(U(t)φ)x‖L2 ≤ ‖φx‖L2 + |t|‖αx‖L∞‖φ‖L2 .

• ‖U(t)φ‖L2
µ
≤ ‖φ‖L2

µ
+ 21/2|t|1/2‖φ‖1/2

L2 ‖φx‖1/2

L2 + |t|‖αx‖L∞‖φ‖L2 .
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• ‖U(t)φ‖H ≤ ‖φ‖H
(
1 + |t| · ‖µx − αx‖L∞

)
.

Proof. Let u(t) = U(t)φ, since u verifies iut = −uxx + αu and ‖u‖2
H = ‖u‖2

L2
µ

+ ‖ux‖2
L2 we

have

d

dt

〈
ux;ux

〉
L2 = 2Re

〈
uxt;ux

〉
L2

= 2Re
〈
ux;−iαxu

〉
L2

d

dt

〈
u;µu

〉
L2 = 2Re

〈
ut;µu

〉
L2

= 2Re
〈
ux; iµxu

〉
L2

d

dt

〈
u;u
〉
H = 2Re

〈
ux; i(µx − αx)u

〉
L2 .

The inequalities are obtained by means of a standard ODE argument given by the following
lemma. Details are given due to the lack of a suitable reference.

Lemma 2.10. Let y : [0, T ] → [0,+∞) be an L1 function satisfying the inequality y2(t) ≤
y2(0) + C

∫ t
0
y(s)ds for some constant C > 0. Then y(t) ≤ y(0) + Ct/2.

Proof. Let w(t) :=
∫ t

0
y(s)ds and z(t) :=

√
y2(0) + Cw(t). Then ż(t) ≤ C/2 and therefore

y(t) ≤ z(t) ≤ z(0) + Ct/2.

We now turn our attention to the non linear term in equation (1.5), and give the following
estimates.

Lemma 2.11. Let m : H 7→ L∞(R) be given by

m(φ)(x) =

∫
%(x, y)|φ(y)|2dy.

where |%(x, y)| ≤ µ(y) and |%x(x, y)| ≤ C. Then for φ, φ1 ∈ H the following estimates hold.

• ‖m(φ)‖L∞ ≤ ‖φ‖2
L2
µ

• ‖m(φ)φ−m(φ1)φ1‖H ≤ 3/2 (‖φ‖2
H + ‖φ‖H‖φ1‖H + ‖φ1‖2

H) ‖φ− φ1‖H

Proof. It is a straightforward computation and will be omitted.

We now turn to the non homogeneous problem (1.5) and give similar estimates in the
lemma below, which in turn express the global well posedness of the problem.

Lemma 2.12. Let T > 0 be fixed, and let u ∈ C(0, T,H) ∩ C1(0, T,H′) be a solution of
(1.5) with fixed h ∈ L2(0, T,H) and ψ ∈ C1(R) such that ψ, and ψx ∈ L∞(R). Then we have
the following estimates:

• ‖u‖L∞(0,T,L2(R)) ≤ ‖u0‖L2(R) + T 1/2‖ψ‖L∞‖h‖L2(0,T,H).

8



• ‖ux‖L∞(0,T,L2(R)) ≤ ‖u0‖H1 + ‖h‖L2(0,T,H) T
3/2C(u0, ψ).

• ‖u‖L∞(0,T,L2
µ(R)) ≤ ‖u0‖L2

µ
+ ‖h‖L2(0,T,H) T

3/2C(u0, ψ).

• ‖u‖L∞(0,T,H) ≤ ‖u0‖H + ‖h‖L2(0,T,H) T
3/2C(u0, ψ).

Proof. Using estimates for the linear and nonlinear term, given in Lemma 2.9 and Lemma
2.11 respectively, the proof relies on a procedure similar to the one displayed in Lemma 2.9
and will be omitted.

3 Controllability

3.1 Linear system

We start this section taking into consideration the controllability of the linear problem, which
throughout this section means the existence of a control h(x, t) such that the unique solution
of the related non homogeneous linear equation

iut(x, t) = Lu(x, t) + ψ(x)h(x, t) (3.1)

u(x, 0) = u0(x) x ∈ R (3.2)

satisfies u(x, T ) = uT (x), for given T > 0 and u0, uT (x) ∈ H, where L := −∂2
x + α(x)

is the operator of Lemma 2.5, and ψ is defined in (1.7). The main result is given in the
following theorem; its proof is based on the Hilbert Uniqueness Method (HUM), requires
some technicalities, which we shall first develop, and will be delayed until the end of this
subsection.

Theorem 3.1. Global controllability: linear case.

Let T > 0 be given. Then there exists a bounded linear operator G : H×H → L2(0, T,H)
such that for any u0, uT ∈ H the system (3.1)-(3.2), with h = G(u0, uT ), admits a solution
u ∈ C(0, T,H) satisfying u(x, T ) = uT .

As we stated before, we need first to present the ingredients to apply the HUM. To do
this, we consider the corresponding adjoint problem in H′:

ivt(x, t) = Lv, (3.3)

v(x, 0) = v0(x). (3.4)

Let Λ : H → H′ denote the usual isomorphism between the real spaces H and H′ defined
by Λ(v) = 〈v, ·〉H. Given v0 ∈ H′, let v be the solution of equation (3.3). Then, take
h(·, t) = Λ−1(ψv(·, t)) and consider the problem{

iwt(x, t) = Lw + ψ(x)h(x, t),
w(x, T ) = u1(x),

(3.5)
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which we split into the two problems:{
iw

(1)
t (x, t) = Lw(1),

w(1)(x, T ) = u1(x),
(3.6)

and {
iw

(2)
t (x, t) = Lw(2) + ψ(x)h(x, t),

w(2)(x, T ) = 0.
(3.7)

Clearly, w = w(1) + w(2). As usual with the HUM procedure, given v0 ∈ H′ the initial
condition of equation (3.3), we define the linear operator S : H′ → H by

S(v0) = −iw(2)(·, 0) (3.8)

where w(2) is the solution of (3.7).
If we can show that S is an isomorphism, then the inverse image by S of −iu0 +

iw(1)(·, 0), is the initial condition for equation (3.3) that will provide the sought control
h = Λ−1(ψv(·, t)).

This is shown by establishing the observability inequality of system (3.3) in H′ which we
describe in the following lemma.

Lemma 3.2. Let ψ be a C1 function defined by (1.7). There exists a constant C > 0 such
that for all v0 ∈ H′, the solution v of (3.3)-(3.4) satisfies∫ T

0

‖ψv(., t)‖2
H′dt ≥ C‖v0‖2

H′ . (3.9)

The proof of the observability inequality (3.9) is quite similar to the one given by L.
Rosier and B. Zhang in [11]. We repeat most of the construction given in that paper for the
sake of completeness.

In order to prove Lemma 3.2 we begin by proving the corresponding observability in-
equality in H. We recall the isomorphism Lµ : H → H′, Lµ = −∂2

x + µ. Consider the
Schrödinger equation

iwt(x, t) = Lw + P (w), (3.10)

w(x, 0) = w0(x), (3.11)

where P (w) = L−1
µ [ν, Lµ](w), with ν := α− µ.

Lemma 3.3. Following assertions are true:

(a) ∂ : W k 7→ W k−1 is a bounded operator for k = 0, 1.

(b) For g ∈ L∞ such that g′ ∈ L∞ the related multiplication operator g : W k 7→ W k is
bounded for k = 0, 1,−1.

(c) P : W k 7→ W k is a bounded operator for k = 0, 1,−1.

10



(d) ‖w‖L∞(0,T,Wk) ≤ C(T )‖w0‖Wk for k = 0, 1,−1.

Proof. For k = 0 claims (a) and (b) are evident. Claim (a) for k = 1 is obtained from k = 0
by duality W−1 = (W 1)′ (see Remark 2.4). Claim (b) for k = 1 follows from the estimate:

‖gφ‖H ≤ ‖g′‖L∞‖φ‖L2 + ‖g‖L∞‖φ′‖L2 + ‖g‖L∞‖φ‖L2
µ

By duality we also get claim (b) for k = −1. Claim (c) is a consequence of claims (a) and
(b) applied to the identity

L−1
µ [ν, Lµ] = L−1

µ (2νx∂x + νxx)

where we have used that νx, νxx ∈ L∞.
Finally, claim (d) is a direct consequence of claim (c).

Lemma 3.4. Let ψ be a C1 function defined by (1.7). There exists a constant C > 0 such
that for every w0 ∈ H, the solution w of (3.10)-(3.11) satisfies∫ T

0

‖ψ w(·, t) ‖2
H dt ≥ C‖w0‖2

H. (3.12)

Proof. By Duhamel, we know that there exists C > 0 such that for w0 ∈ H, the solution w
of (3.10)-(3.11) satisfies

‖w0‖2
H ≤ C

∫ T

0

‖w(·, t)‖2
H dt. (3.13)

Therefore, (3.12) will follow if we prove the following inequality in H:∫ T

0

‖w(·, t)‖2
H dt ≤ C

∫ T

0

‖ψ w(·, t) ‖2
H dt. (3.14)

We use the multiplier technique. Define q ∈ C∞0 (R)

q(x) =

{
x for |x| ≤ R + 2
0 for |x| ≥ R + 3

. (3.15)

We have that ∫ T

0

d

dt
〈w, iqwx〉dt = 〈w, iqwx〉

∣∣T
0
. (3.16)

Recall L = −∂2
x + α, then the l.h.s of the last equation reads:∫ T

0

〈iwxx, iqwx〉 − 〈iαw + iP (w), iqwx〉+ 〈w, iqiwxxx〉+ 〈w, iq(−i)(αw + P (w))x〉dt (3.17)

Integrating by parts we have that:

〈w, iqwx〉
∣∣T
0

=

∫ T

0

−2〈wx, qxwx〉 − 2〈αw + P (w), qwx〉 − 〈qxxw,wx〉 − 〈αw + P (w), qxw〉dt

(3.18)
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and therefore, using that 〈f, g〉 = Re
∫

R fg
∗:

1

2
Im

∫
R
qww̄x

∣∣T
0

+Re

∫ T

0

∫
R

[
qx|wx|2 +

1

2
qxxww̄x + (αw + P (w))(qw̄x +

1

2
qxw̄)

]
dxdt = 0.

(3.19)
Then∣∣∣∫ T0 ∫|x|≤R+2

|wx|2
∣∣∣ ≤ 1

2

∣∣∣∫{|x|≤R+3} qww̄x
∣∣T
0

∣∣∣+
∫ T

0

[∣∣∣∫{R+2≤|x|≤R+3} qx|wx|
2
∣∣∣

+ 1
2

∣∣∣∫{R+2≤|x|≤R+3} qxxww̄x

∣∣∣+
∣∣∣∫{|x|≤R+3}(αw + P (w))(qw̄x + 1

2
qxw̄)

∣∣∣]
(3.20)

and using Lemma 3.3 and

‖w(t0, .)‖2
H1(R) ≤ C

∫ T

0

‖w(t, ·)‖2
H1(R)dt ∀t0 ∈ [0, T ] (3.21)

‖αw‖L2({|x|≤R+3}) ≤ C‖w‖L2(R) (3.22)

we have that there exist ε > 0 and a constant Cε such that∫ T

0

∫
|x|≤R+2

|wx|2dxdt ≤ ε

∫ T

0

‖w(t, ·)‖2
H1dt+ Cε

∫ T

0

‖w(t, ·)‖2
L2dt (3.23)

+ C2

∫ T

0

∫
{R+2≤|x|≤R+3}

|wx|2dxdt. (3.24)

We have that
‖w‖H ≤ ‖ψw‖H + ‖(1− ψ)w‖H (3.25)

and since 1− ψ = 0 for |x| > R + 1

‖(1− ψ)w‖H ≤ C‖(1− ψ)w‖H1 . (3.26)

It is clear that

‖(1− ψ)w‖2
H1 ≤ C

(∫
|x|≤R+1

|wx|2dx+ ‖w‖2
L2(R)

)
, (3.27)

and since (ψw)x = wx for |x| ≥ R + 2, we have that∫
|x|≥R+2

|wx|2dx ≤ ‖ψw‖2
H. (3.28)

Therefore, if ε is chosen small enough, from (3.23) and (3.25)-(3.28), it follows the inequality∫ T

0

‖w(·, t)‖2
H dt ≤ C

(∫ T

0

‖ψ w(·, t) ‖2
H dt+

∫ T

0

‖w(·, t)‖2
L2 dt

)
. (3.29)

It remains to prove that∫ T

0

‖w(·, t)‖2
L2dt ≤ C

∫ T

0

‖ψw(·, t)‖2
H dt. (3.30)
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Assume inequality (3.30) is not true, then there exists a sequence wk0 ∈ H such that the
corresponding sequence wk of solutions of (3.10) satisfies

1 =

∫ T

0

‖wk(t)‖2
L2(R)dt ≥ k

∫ T

0

‖ψwk(t)‖2
Hdt, k = 1, 2, . . . (3.31)

According to (3.29) and (3.31), the sequence {wk} is bounded in L2(0, T,H). Therefore by
(3.13) the sequence {wk0} is bounded in H. Extracting a subsequence if needed, we may
assume that

wk0 ⇀ w0 weakly in H and wk ⇀ w weakly in L2(0, T ;H) (3.32)

where w ∈ C([0, T ];H) solves equation (3.10)-(3.11) with initial data w0. Indeed, we first
have that wk0 ⇀ w0 weakly in H and wk ⇀ u weakly in L2(0, T,H). Being H compactly
imbedded in L2(R), we may assume that wk0 → w0 strongly in L2(R) and therefore

wk → w strongly in L2(0, T, L2(R)) (3.33)

where w ∈ C(0, T,H) since it is the solution of equation (3.10)-(3.11) with initial data
w0 ∈ H. From the uniqueness of weak limit in L2(0, T, L2(R)) we obtain that w = u.

By (3.31), ψwk → 0 strongly in L2(0, T,H) and since ψwk ⇀ ψw weakly in L2(0, T,H),
we conclude that ψw ≡ 0 on R× (0, T ). Consequently,

w(x, t) = 0, |x| > R + 1, t ∈ (0, T ). (3.34)

Let v = Lµw, then v satisfies equation (3.3) and

v(x, t) = 0, |x| > R + 1, t ∈ (0, T ). (3.35)

We consider the new problem (similar to (3.3))

ivt = −vxx + αψ̃v (3.36)

v(x, 0) = v0.

where ψ̃ is a C∞0 (R) given by

ψ̃(x) =

{
1 for |x| ≤ R + 1
0 for |x| ≥ R + 2

. (3.37)

Then, problems (3.3) and (3.36) have the same solution which satisfy (3.35). Using Propo-
sition 2.3 from [11] with a = −αψ̃ and b = 0 functions in C∞0 (R) and being v0 ∈ H′ with
compact support, we have that v is of class C∞ on R× (0, T ).

By the unique continuation property for Schrödinger equation we conclude that v ≡ 0 on
R×(0, T ). This implies w ≡ 0 on R×(0, T ). From (3.33) and (3.31) we have a contradiction.

Then observability inequality in H (3.12) is proved.

We are now in position to prove the observability inequality (3.9) in H′. We first prove
a weaker inequality:
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Lemma 3.5. There exists a constant C > 0 such that for every v0 ∈ H′ = W−1 and v the
solution of equation (3.3)-(3.4), the following inequality is satisfied

‖v0‖2
W−1 ≤ C

(∫ T

0

‖ψv(t)‖2
W−1dt+ ‖v0‖2

W−2

)
. (3.38)

Proof. Suppose that inequality (3.38) is false. Then there exist a sequence vk of solutions of
(3.3) in C(0, T,H′) such that

1 = ‖vk(0)‖2
W−1 ≥ k

(∫ T

0

‖ψvk(t)‖2
W−1dt+ ‖vk(0)‖2

W−2

)
. (3.39)

Then we can extract a subsequence such that vk(0) → v0 weak in H′ for some v0 ∈ H′ and
we can assume vk → 0 strongly en W−2 and therefore v0 = 0. Moreover, we can assume
ψvk → 0 strongly in L2(0, T,H′).

Since H ⊂ H1(R) continuosly, we have that

‖wx‖W 0 ≤ ‖w‖W 1 (3.40)

Now, let v ∈ H′ = W−1, there exists w ∈ H = W 1 such that v = Lµw, then

‖vx‖W−2 = ‖Lµwx + µxw‖W−2 = ‖L−1
µ (Lµwx + µxw)‖W 0 ≤ ‖wx‖W 0 + ‖L−1

µ µxw‖W 0 (3.41)

using (3.40), we have ‖vx‖W−2 ≤ C‖v‖W−1 . From Lemma 3.3 we also know that there exists
a constant C > 0 such that for all w ∈ L2 = W 0

‖wx‖W−1 ≤ C‖w‖W 0 . (3.42)

Next, we will prove that vk(0)→ 0 strongly in W−1 arriving to a contradiction by (3.39).
Let wk = L−1

µ (vk), then wk ∈ C([0, T ],W 1) is a solution of equation (3.10) in H and

ψwk = ψL−1
µ vk = L−1

µ (ψvk) + [ψ,L−1
µ ]vk = L−1

µ (ψvk) + L−1
µ [Lµ, ψ]wk. (3.43)

Since ψvk → 0 strongly in L2(0, T,H′) and ‖L−1
µ (ψvk)‖1 = ‖ψvk‖−1, we deduce that

L−1
µ (ψvk) → 0 strongly in L2(0, T,H). On the other hand, using (3.42) and Lemma 3.3 we

get

‖L−1
µ [Lµ, ψ](wk)‖W 1 = ‖[Lµ, ψ](wk)‖W−1

= ‖ψxxwk + 2ψx(wk)x‖W−1

≤ C(‖vk‖W−3 + ‖vk‖W−2)

≤ C‖vk‖W−2

and this implies that L−1
µ [Lµ, ψ](wk) → 0 strongly in L2(0, T,H), since vk(0) → 0 strongly

in W−2.
Therefore ψwk → 0 strongly in L2(0, T,H). Since wk is a solution of (3.10) we have

from the observability inequality (3.12) that wk(0) → 0 strongly in H. It follows that
vk(0) = Lµwk(0)→ 0 strongly in H′, which contradicts the fact that ‖vk(0)‖H′ = 1.
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Proof of Lemma 3.2. Assume that inequality (3.9) is false, then there exists a sequence vk
of solutions of (3.3) in C([0, T ];H′) such that

1 = ‖vk(0)‖2
W−1 ≥ k

∫ T

0

‖ψvk(t)‖2
W−1dt (3.44)

for all k ≥ 0.

Extracting a subsequence, we may assume that

vk → v in L∞(0, T ;H′) weak− ?,
vk(0)→ v(0) weakly in H′ (3.45)

for some solution v ∈ C(0, T ;H′) of (3.3)-(3.4). From (3.44), ψvk → 0 strongly in L2(0, T,H′)
and since ψvk → ψv in L∞(0, T ;H′) weak-?, we have that ψv ≡ 0. We deduce as before that
v ≡ 0 in R× (0, T ).

{vk(0)} being a bounded sequence in W−1 and since W−1 is compactly imbedded in W−2,
see (2.7), there exists a subsequence such that vk(0) converges strongly in W−2 necessarily
to 0.

We infer from (3.38) that vk(0) converges strongly to 0 in W−1 which is absurd from
(3.44). This finishes the proof.

Proof of Theorem 3.1. Let v0 ∈ H′ and v(x, t) the solution of (3.3) such that v(x, 0) = v0.
Let w be the solution of (3.7) with u1 = 0 and h = Λ−1(ψv(·, t)). Then∫ T

0

〈v, iwt − Lw〉H′,Hdt =

∫ T

0

〈v, ψh〉H′,Hdt. (3.46)

Using that

〈v, iwt〉H′,H = d
dt
〈v, iw〉H′,H + 〈ivt, w〉H′,H

〈v, ∂2
xw〉H′,H = 〈∂2

xv, w〉H′,H
(3.47)

we obtain ∫ T

0

d

dt
〈v, iw〉H′,Hdt =

∫ T

0

〈−ivt + Lv,w〉H′,Hdt+

∫ T

0

〈v, ψh〉H′,Hdt. (3.48)

By (3.3), being w(·, T ) = 0 and h(·, t) = Λ−1(ψv(·, t))

〈v0,−iw(x, 0)〉H′,H =

∫ T

0

〈ψv,Λ−1(ψv)〉H′,Hdt, (3.49)

and therefore

〈v0, S(v0)〉H′,H =

∫ T

0

‖ψv‖2
H′dt ≥ C‖v0‖2

H′ . (3.50)

It follows from Lax Milgram that S is an isomorphism.
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3.2 Non linear system

We are now in a position to present the local controllability of the non linear problem

iut(x, t) = Lu+m(u)u+ ψ(x)h(x, t) (3.51)

u(x, 0) = u0(x) x ∈ R (3.52)

which, as in the linear case, means the existence of a control h ∈ L2(0, T,H) such that the
related solution satisfies u(x, T ) = uT (x).

Theorem 3.6. Let T > 0 be fixed, then there exists R > 0 such that for every u0, uT ∈ H
with max{‖u0‖H; ‖uT‖H} < R there exists h ∈ L2(0, T ;H) such that the unique solution of
(3.51)–(3.52) satisfies u(x, T ) = uT (x).

Equation (3.51)-(3.52) can be written in its integral form

u(x, t) = e−iLtu0(x)− i
∫ t

0

eiL(s−t)m(u(x, s))u(x, s)ds− i
∫ t

0

eiL(s−t)ψ(x)h(x, s)ds.

We then set, for v ∈ C(0, T,H), the mapping that defines the nonlinear term

N (v, 0, t) := −i
∫ t

0

eiL(s−t)(m(v(s))v(s)
)
ds. (3.53)

We next define Γ : C(0, T,H)→ C(0, T,H) as follows:
Given v ∈ C(0, T,H), we compute N (v, 0, t) as in (3.53). Given the initial state u0 and

the target state uT −N (v, 0, T ), from Theorem 3.1 there exists a control hlin ∈ L2(0, T,H)
such that the solution w̃ of the linear equation (3.1)-(3.2) with h = hlin

w̃(t) = e−iLtu0(x)− i
∫ t

0

eiL(s−t)ψ(x)hlin(x, s)ds. (3.54)

satisfies w̃ ∈ C(0, T,H) and
w̃(T ) = uT −N (v, 0, T ). (3.55)

Observe that hlin depends on v and therefore w̃ also depends on v.
Let

Γ(v)(t) := e−iLtu0 +N (v, 0, t)− i
∫ t

0

eiL(s−t)ψ(x)hlin(x, s)ds. (3.56)

Since w̃ ∈ C(0, T,H) and is a solution of the linear equation (3.1), then Γ(v) reads

Γ(v)(t) := w̃(t) +N (v, 0, t) (3.57)

and therefore Γ(v) ∈ C(0, T,H), Γ(v)(0) = u0, and Γ(v)(T ) = uT . We shall remark that
any fixed point of Γ yields the function needed to build the control h ∈ L2(0, T,H). Hence,
it only remains to show that Γ has a fixed point. Let δ > 0 and set Kδ := {v ∈ C(0, T,H) :
v(0) = u0, v(T ) = uT , ‖v‖L∞(t0,T,H) ≤ δ}. As usual, we must show that Kδ is left invariant
by Γ, and also that this is a contractive mapping. With this in mind we list below some
useful estimates.
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Lemma 3.7. Let R > 0 and let u0, uT ∈ H be such that max{‖u0‖H; ‖uT‖H} < R, let also
δ > 0 and take v, u ∈ Kδ. Thus the following estimates hold,

• ‖Γ(v)‖L∞(0,T,H) ≤ AR +Bδ3

• ‖Γ(v)− Γ(u)‖L∞(0,T,H) ≤ Cδ2‖u− v‖L∞(0,T,H).

where A,B,C are positive constants.

Proof. These estimates follow from identities (3.53), (3.54), (3.57) and Lemmas (2.9) and
(2.11):

‖N (v, 0, t)‖H ≤
∫ t

0

‖eiL(s−t)(m(v(s))v(s)
)
‖H ds

≤
∫ t

0

‖m(v(s))v(s)‖H
(
1 + (t− s)‖µx − αx‖L∞

)
ds

≤ 3

2
(1 + T‖µx − αx‖L∞)

∫ t

0

‖v(s)‖3
H ds

≤ B(T, ‖µx − αx‖L∞)‖v‖3
L∞(0,T,H)

≤ B(T, ‖µx − αx‖L∞)δ3,

and∥∥∥∥∫ t

0

eiL(s−t)ψ(x)hlin(x, s)ds

∥∥∥∥
H
≤
∫ t

0

‖ψhlin(·, s)‖H
(
1 + (t− s)‖µx − αx‖L∞

)
ds

≤ Cψ‖hlin‖L2(0,T,H) ‖1 + (t− s)‖µx − αx‖L∞‖L2(0,t)

≤ C(ψ, T, ‖µx − αx‖L∞) (‖u0‖H + ‖uT −N (v, 0, T )‖H)

≤ C(ψ, T, ‖µx − αx‖L∞)
(
‖u0‖H + ‖uT‖H + ‖v‖3

L∞(0,T,H)

)
≤ A1(ψ, T, ‖µx − αx‖L∞)R +B(T, ‖µx − αx‖L∞)δ3

For the second assertion note that

Γ(v)(t)− Γ(u)(t) = −i
∫ t

0

eiL(s−t)(m(v)(s)v(s)−m(u)(s)u(s)
)
ds. (3.58)

A similar reasoning leads us to the inequality

‖Γ(v)(t)− Γ(u)(t)‖H ≤
∫ t

0

‖eiL(s−t)(m(v(s))v(s)−m(u(s))u(s)
)
‖H ds

≤ B(T, ‖µx − αx‖L∞)

∫ t

0

‖m(v(s))v(s)−m(u(s))u(s)‖H ds

≤ B(T, ‖µx − αx‖L∞)

∫ t

0

(
‖v‖2

H + ‖v‖H‖u‖H + ‖u‖2
H
)
‖v − u‖H ds

≤ B(T, ‖µx − αx‖L∞)δ2‖v − u‖L∞(0,T,H),

from where second estimate follows easily. This finishes the proof.
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Proof of Theorem 3.6. As we state above, it relies on a fixed point argument. Set Kδ :=
{v ∈ C(0, T,H) : v(0) = u0, v(T ) = uT , ‖v‖L∞(0,T,H) ≤ δ}. Using the estimates given by
Lemma 3.7, we get the following sufficient conditions

AR +Bδ3 ≤ δ

Cδ2 < 1

which are easily satisfied taking δ = 2RA and R < min{ 1
2
√
CA
, 1

2
√

2BA
}.

4 Non controllability for compactly supported controls

Throughout this section we shall focus our attention to controls ψ(x)h(x, t) with Supp(ψ)
compact, and consider two different situations, depending on the linear term: Lµ = −∂2

x+µ,
which has a discrete spectrum, and Le = −∂2

x−x with a continuous spectrum. The negative
result concerning the related exact controllability for the linear problem is similar to the one
given in [6], however our problem is posed in H which is not L2 but a suitable Sobolev space.
For this reason we shall adapt both the result and its proof, and this heavily relies upon
the spectral properties reported in section 2. Actually, since the proof relies on a special
feature of the eigenstates of the linear operator, we shall use the unitary group U+, and the
eigenfunctions {φN}N∈N of the auxiliar operator L+ := −∂2

x + |x| yielded by Lemma 2.1.

4.1 Discrete spectrum

We first consider the non–controllability result for the model equation,

iut(x, t) = Lµu(x, t) + ψ(x)h(x, t), x ∈ R, (4.1)

u(x, 0) = u0(x), u(x, T ) = uT (x), (4.2)

with Supp(ψ) compact. The main result reads as follows.

Theorem 4.1. The exact internal distributed control is not possible, i.e. for a given target
state uT ∈ H there exist a bounded open set Ω ⊆ R and an initial function u0 such that there
is no control function h and no constant C = C(Ω, T ) > 0 such that the equation (4.1) holds
with u(0) = u0, u(T ) = uT , and ‖h‖L1(0,T,H) ≤ C (‖u0‖H + ‖uT‖H)

Proof. As in [6] we argue by contradiction. Let Ω be a fixed finite interval and take φN , the
N–th eigenfunction of L+, as a target state, and assume that there exist a time T > 0, a
control function hN ∈ L2(0, T,H), a constant C(Ω, T ), with ‖h‖L2(0,T,H) ≤ C(Ω, T )(‖u0‖H+
‖φN‖H) an initial state u0 and a solution uN of (4.1). Let U+(t) be the unitary group
generated by −iL+ in H, since Lµ = L+ + b where b(x) = µ(x)− |x| has compact support,
from Duhamel identity we have:

φN(x) = U+(T )u0(x)− i
∫ T

0

U+(T − s)(ψhN + buN)ds.

18



Since U+(t)ψ =
∑
e−itλ̃N ψ̂(N)φN(x), where ψ̂(N) =

∫
ψ(x)φN(x)dx are the related Fourier

coefficients, after taking the L2-inner product with φN we get

1 = e−iT λ̃N 〈u0;φN〉 − i
∫ T

0

e−i(T−s)λ̃N 〈ψhN + buN ;φN〉ds. (4.3)

Since u0 ∈ H the first term goes to zero. The second term verifies

〈ψhN + buN ;φN〉 = λ̃−1
N 〈ψhN + buN ;L+φN〉

= λ̃−1
N 〈∂(ψhN + buN); (φN)x〉+ λ̃−1

N 〈|x|ψhN + |x|buN ;φN〉
= λ̃−1

N 〈ψxhN + ψ(hN)x + bxuN + b(uN)x; (φN)x〉+ λ̃−1
N 〈|x|ψhN + |x|buN ;φN〉

From Lemma 2.1 we see that the eigenfunctions {φN}N∈N satisfy ‖φN‖L2 = 1, ‖φN‖H =

λ̃
1/2
N , and ‖(φN)x‖L2(Ω) ∼ λ̃

1/4
N , we also recall that both ψ and b have compact support, and

verifies bx, ψx ∈ L∞. With this in mind we get:∣∣∣∣i ∫ T

0

e−i(T−s)λ̃N 〈ψhN + buN ;φN〉
∣∣∣∣ ≤ ∫ T

0

|〈ψhN + buN ;φN〉|

≤ C(ψ, b)λ̃−1
N ‖φN‖L2

∫ T

0

(‖uN‖H + ‖hN‖H)

+ C(ψ, b)λ̃−1
N ‖(φN)x‖L2(Ω)

∫ T

0

(‖uN‖H + ‖hN‖H)

≤ λ̃−1
N C(ψ,Ω, T )(‖u0‖H + λ̃

1/2
N )(1 + λ̃

1/4
N )

which goes to zero as N goes to infinity. This contradicts identity (4.3), and finishes the
proof.

4.2 Continuous spectrum

We now consider the non–controllability result for the linear model equation, with Le =
−∂2

x − x,

iut(x, t) = Leu(x, t) + ψ(x)h(x, t), x ∈ R, (4.4)

u(x, 0) = u0(x), u(x, T ) = uT (x), (4.5)

with Supp(ψ) compact. The main result reads as follows.

Theorem 4.2. The exact internal distributed control is not possible, i.e. for a given target
state uT ∈ H there exist a bounded open set Ω ⊆ R and an initial function u0 such that there
is no control function h and no constant C = C(Ω, T ) > 0 such that the equation (4.4) holds
with u(0) = u0, u(T ) = uT , and ‖h‖L1(0,T,H) ≤ C (‖u0‖H + ‖uT‖H)

Remark 4.3. As for the result of the previous subsection we follow the ideas of Theorem 3
of [6], but in order to accomplish the task we need an extra ingredient given by the following
Lemma.
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Lemma 4.4. Let Ue(t) be the group generated by −iLe where Le := −∂2
x + x. Then [∂x :

Ue(t)] = −itUe(t).

Proof. We start noting that [∂x : Le] = [∂x : x] = 1 and [∂x : LM+1
e ] = [∂x : LMe ]Le + LMe [∂x :

Le]. An inductive argument shows the identity [∂x : LM+1
e ] = (M + 1)LMe . For φ in the

Schwarz space we have

[∂x : Ue(t)]φ =
∑
M≥0

(−it)M

M !
[∂x : LMe ]φ

=
∑
M≥0

(−it)M+1

(M + 1)!
[∂x : LM+1

e ]φ

= −itUe(t)φ

A density argument allows us to extend the result for φ ∈ H.

Proof of Theorem 4.2. We first set Ψ(x) ∈ C∞0 (R) such that 0 ≤ Ψ(x), Supp(Ψ) = [−1; 1],
and 1 =

∫
Ψ(x), and take Ψε = ε−1Ψ(ε−1x). We below collect the behavior of the different

norms involved in the proof, their validity is evident and will not be reported.

‖Ψε‖L1 = ‖Ψ‖L1 = 1 (4.6)

‖Ψε‖L2 = ε−1/2‖Ψ‖L2 (4.7)

‖Ψε‖L2
µ
≤ ε−1/2(1 + ε)1/2‖Ψ‖L2

µ
(4.8)

‖(Ψε)x‖L1 = ε−1‖Ψx‖L1 (4.9)

‖(Ψε)x‖L2 = ε−3/2‖Ψx‖L2 (4.10)

We also add, for a fixed T > 0, the function φε := Ue(2T )Ψε, where Ue is the related
unitary group, and notice that ‖φε‖2

L2 = ‖Ψε‖2
L2 = ε−1‖Ψ‖2

L2 .We now argue by contradiction.
Assume the exact controllability of (4.4), then there exist hε ∈ L2(0, T,H) such that

‖hε‖L2(0,T,H) ≤ C(‖u0‖H + ‖φε‖H),

and a solution uε(x, t) of (4.4) with uε(·, T ) = φε, and u0 ∈ H arbitrary.
From Duhamel identity we have

φε = Ue(T )u0 − i
∫ T

0

Ue(T − s)(ψhε)ds

and taking the L2 inner–product with Lµφε we get

〈φε;Lµφε〉 = 〈Ue(T )u0 − i
∫ T

0

Ue(T − s)(ψhε)ds;Lµφε〉, (4.11)

left hand side reads:

〈φε;Lµφε〉 = 〈Ψε;Ue(−2T )(−∂2
x)Ue(2T )Ψε〉+ 〈φε;µφε〉.
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Before going further we develop an useful identity, based on the commutator relation given
by Lemma 4.4:

Ue(r)(−∂2
x)Ue(s) = −[Ue(r) : ∂x]∂xUe(s)− ∂xUe(r)∂xUe(s)

= −irUe(r)∂xUe(s) + is∂xUe(r)Ue(s)− ∂xUe(r)Ue(s)∂x
= r2Ue(r + s)− i(r − s)∂xUe(r + s)− ∂xUe(r + s)∂x. (4.12)

With this result, the left hand side of (4.11) reads

〈φε;Lµφε〉 = 4T 2‖Ψε‖2
L2 + 4iT 〈Ψε; ∂xΨε〉 − 〈Ψε; ∂

2
xΨε〉+ 〈φε;µφε〉

= 4T 2ε−1‖Ψ‖2
L2 + ε−3‖Ψx‖2

L2 + ‖φε‖2
L2
µ
.

The last term is bounded with the help of Lemma 2.9

‖φε‖2
L2
µ
≤ ‖Ψε‖2

L2
µ

+ 4T‖Ψε‖L2‖(Ψε)x‖L2 + 4T 2‖Ψε‖2
L2 .

Previous estimates altogether yield:

ε3〈φε;Lµφε〉 = ‖Ψx‖2
L2 +O(ε). (4.13)

After multiplying by ε3, the right hand side of (4.11) reads:

ε3〈Ue(T )u0;LµUe(2T )Ψε〉 − iε3

∫ T

0

〈Ue(T − s)(ψh);LµUe(2T )Ψε〉ds .

The first term goes to zero as easily follows from Lemma 2.9 and estimates (4.6):

ε3 |〈Ue(T )u0;LµUe(2T )Ψε〉| ≤ ε3‖φε‖H‖Ue(T )u0‖H
≤ ε3C(T )‖Ψε‖H‖u0‖H
≤ C(T, u0,Ψ)ε3/2.

The second term is splitted as

−iε3

∫ T

0

〈Ue(T − s)(ψh); (−∂2
x)Ue(2T )Ψε〉 ds− iε3

∫ T

0

〈Ue(T − s)(ψh);µUe(2T )Ψε〉 ds.

and each term is treated separately. For the later we apply a similar procedure as for the
initial datum:

ε3 |〈Ue(T − s)(ψh);µUe(2T )Ψε〉| ≤ ‖φε‖L2
µ
‖Ue(T − s)ψhε‖L2

µ

≤ C(T,Ψ)ε2‖ψhε‖1/2

L2 ‖(ψhε)x‖1/2

L2

≤ C(T,Ψ,Ω)ε2‖hε‖H1

≤ C(T,Ψ,Ω)ε1/2,

and the former is handled using the L1−L∞ estimate displayed in Corollary 2.8. To see this
we first apply the identity (4.12) and get:

Ue(−2T )(−∂2
x)Ue(T − s) = 4T 2Ue(−T − s)− i(s− 3T )∂xUe(−T − s)− ∂xUe(−T − s)∂x.
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This leads to:∣∣〈Ue(T − s)(ψh); (−∂2
x)Ue(2T )Ψε〉

∣∣ ≤ 4T 2‖Ψε‖L1‖Ue(−T − s)(ψhε)‖L∞
+ 3T‖(Ψε)x‖L1‖Ue(−T − s)(ψhε)‖L∞
+ ‖(Ψε)x‖L1‖Ue(−T − s)(ψhε)x‖L∞
≤ C(Ω, T )‖hε‖L2 + C(Ω, T,Ψ)ε−1‖hε‖H1

≤ C(Ω, T,Ψ, u0)ε−5/2

where we have used the estimates ‖ψhε‖L1 ≤ C(Ω, T )‖hε‖L2 , ‖(ψhε)x‖L1 ≤ C(Ω, T )‖hε‖H1 ,
and the fact that | − T − s|−1/2 ≤ T−1/2. Integrating in [0, T ] and multiplying by ε3 we
see that the right hand side of (4.11) tends to zero, contradicting the estimate (4.13). This
finishes the proof.

The authors wish to thank the anonymous referee for the very useful comments and
suggestions.
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