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ABSTRACT: Prostate cancer (PCa) is the second leading cause of
cancer-related mortality in men. The prevalent diagnosis method is
based on the serum prostate-specific antigen (PSA) screening test,
which suffers from low specificity, overdiagnosis, and overtreatment.
In this work, untargeted metabolomic profiling of age-matched serum
samples from prostate cancer patients and healthy individuals was
performed using ultraperformance liquid chromatography coupled to
high-resolution tandem mass spectrometry (UPLC-MS/MS) and
machine learning methods. A metabolite-based in vitro diagnostic
multivariate index assay (IVDMIA) was developed to predict the
presence of PCa in serum samples with high classification sensitivity,
specificity, and accuracy. A panel of 40 metabolic spectral features was
found to be differential with 92.1% sensitivity, 94.3% specificity, and 93.0% accuracy. The performance of the IVDMIA was
higher than the prevalent PSA test. Within the discriminant panel, 31 metabolites were identified by MS and MS/MS, with 10
further confirmed chromatographically by standards. Numerous discriminant metabolites were mapped in the steroid hormone
biosynthesis pathway. The identification of fatty acids, amino acids, lysophospholipids, and bile acids provided further insights
into the metabolic alterations associated with the disease. With additional work, the results presented here show great potential
toward implementation in clinical settings.

KEYWORDS: prostate cancer, prostate cancer detection, untargeted metabolomics, oncometabolomics,
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■ INTRODUCTION

Prostate cancer (PCa) is the second leading cause of cancer-
related mortality in men worldwide, with 30 000 deaths per
year in the U.S. alone.1 The prevalent diagnosis method is
based on the triad of digital rectal examination, blood prostate-
specific antigen (PSA) measurement, and ultrasound-guided
prostate biopsy. Although the introduction of PSA screening
decreased mortality by 4% between 1994 and 2006,2 the use of
PSA as a diagnostic serum marker still presents several
drawbacks. The concentration of this protein in the blood-
stream increases during the development of cancer but also can
be secreted as a result of benign prostatic hyperplasia,
prostatitis, or other traumas to prostate cells.3 Therefore, this
method suffers from low specificity and consequent over-
diagnosis and overtreatment.4−7 Moreover, approximately 15%
of patients with PCa have PSA values lower than the commonly
used cutoff point of 4.0 ng mL−1, leaving many cases
undetected.8 These issues have led to an increased interest in
using untargeted metabolite profiling to discover new differ-
ential metabolic biomarkers that could improve the specificity

of PCa diagnosis.9 Metabolic biomarkers are used as a routine
tool in screening newborns for the presence of inborn errors of
metabolism by means of tandem mass spectrometry;10,11

however, global metabolite profiling of PCa patients still
remains at an early stage, and there is no biomarker panel
currently in use for clinical testing.9

Current research has shown some evidence of metabolic
alterations associated with PCa. Tissue sarcosine levels have
been suggested as a potential biomarker for the aggressive form
of the disease in a metabolomic profiling study using both
liquid and gas chromatography coupled to mass spectrometry
(LC-MS and GC-MS).12 Its concentration in prostate-cancer-
related tissue specimens was highly increased during PCa
progression to metastasis, but differences in urine were much
less marked.12 These results have been very prominent but
somewhat controversial as other targeted studies failed in the
attempt to differentiate healthy individuals from cancer patients
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based on sarcosine concentration in biological fluids and
cancerous tissues.9,13−15 The analysis of cancerous tissues by
proton high-resolution magic-angle spinning nuclear magnetic
resonance (NMR) spectroscopy has shown a decrease in the
concentrations of citrate and polyamines and increases in
cholines, glycerophospholipids, and lactate concentrations
during PCa proliferation.16,17 Increased levels of cholesterol
as well as alterations in amino acid metabolism were detected in
metastatic bone samples by GC-MS.18 However, all of these
studies included too few patients to offer strong leads on the
metabolic alterations associated with PCa. A panel of plasma
lipids that included phosphatidylethanolamines, ether-linked
phosphatidylethanolamines, and ether-linked phosphatidyl-
cholines was proposed to discriminate PCa patients from
healthy groups through direct infusion electrospray ionization
tandem MS.19 The authors demonstrated that a combination of
multiple biomarkers with multivariate analysis and various
classification algorithms yielded better predictive power for the
diagnosis of PCa than univariate analysis of single lipid species.
However, the predictive power was not compared with that of
PSA, as this information was not available at the time of cohort
design.19 More robust metabolic models still need to be
developed for improved understanding of disease progression
and more reliable PCa detection.
From a statistical point of view, analysis of metabolomic data

sets represents a significant challenge, and robust approaches
are necessary to handle, extract, and classify the relevant
information from the vast amount of data generated.20 Along
these lines, the application of machine learning algorithms
capable of identifying differentiating metabolites has seen
increased interest.21,22 For example, a mass spectrometric
platform in combination with support vector machines (SVMs)
has shown some promise for the detection of ovarian cancer in
blood sera,23,24 for lung cancer in blood plasma,25 and for
breast cancer in urine,26 to mention a few examples.
In this study, ultraperformance liquid chromatography

coupled to high-resolution mass spectrometry and tandem
mass spectrometry (UPLC-MS and MS/MS) combined with
machine learning methods was used to profile and identify a
panel of metabolites in blood sera that discriminates PCa
patients from healthy individuals. Based on these, we have
developed an in vitro diagnostic multivariate index assay
(IVDMIA)27 that provides a score predicting the presence or
absence of PCa. Moreover, we have chemically identified 10
discriminant metabolites and putatively identified another 21
metabolic spectral features from the discriminant panel.

■ MATERIALS AND METHODS

Cohort Description

Age-matched blood serum samples were obtained from 64 PCa
patients (age range 49−65, mean age 59 ± 4 years) and 50
healthy individuals (age range 45−76, mean age 57 ± 7 years).
At the 0.05 level, the population means were not significantly
different with the two-sample t test. The cohort ethnicity was as
follows: 28 African American (24.6%); 76 Caucasian (66.7%); 5
Hispanic (4.4%); 2 Asian (1.8%); 2 Jewish ancestry (1.8%); and
1 unknown (0.9%). After approval by the Institutional Review
Board (IRB), blood samples were collected at Saint Joseph’s
Hospital of Atlanta (GA, USA) by venipuncture from each
donor into evacuated blood collection tubes that contained no
anticoagulant. Serum was obtained by centrifugation at 5000
rpm for 5 min at 4 °C. Immediately after centrifugation, 200 μL

aliquots of serum were frozen and stored at −80 °C for further
use. The sample collection and storage procedures for PCa
patients and healthy individuals were identical. Gleason scores
were obtained for 61 PCa patients.

Chemicals

Healthy human blood serum (S7023-50 mL) and acetic acid
(≥99.7%) were purchased from Sigma-Aldrich Corp. (St. Louis,
MO, USA). Omnisolv LC-MS grade acetonitrile, Omnisolv
high-purity dichloromethane, and HPLC grade acetone were
purchased from EMD (Billerica, MA, USA). LC-MS grade
methanol and 2-propanol were purchased from J.T. Baker
Avantor Performance Materials, Inc. (Center Valley, PA, USA).
Ultrapure water with 18.2 MΩ·cm resistivity (Barnstead
Nanopure UV ultrapure water system, USA) was used to
prepare mobile phases. Uric acid (≥99%), azelaic acid (98%),
undecanedioic acid (97%), heptadecanoic acid (≥98%), and
decanoic acid (≥98%) were purchased from Sigma-Aldrich
Corp. (St. Louis, MO, USA). Hexadecanedioic acid (98%) was
purchased from Ark Pharm, Inc. (Libertyville, IL, USA).
Phenylalanyl phenylalanine was purchased from MP Biomed-
icals (Solon, OH, USA). Phenylacetyl glutamine was purchased
from Bachem (Hauptstrasse, Bubendorf, Sitzerland). Indoxyl
sulfate potassium was purchased from Alfa Aesar (Ward Hill,
MA, USA). 1-Stearoyl-2-hydroxy-sn-glycero-3-phosphocholine/
lysoPC (18:0/0:0) was purchased from Avanti Polar Lipids,
Inc. (Alabaster, AL, USA).

Sample Preparation and Ultraperformance Liquid
Chromatography−Mass Spectrometry (UPLC-MS)

A stock sample of healthy human blood serum was used to
develop the serum sample preparation protocol and UPLC-MS
method. Serum samples were thawed on ice, and protein
precipitation was performed by the addition of a mixture of
acetone, acetonitrile, and methanol (1:1:1 v/v) to 100 μL of
serum in a 3:1 volume ratio. Samples were vortex-mixed for 20
s and centrifuged at 16 000g for 5 min. After centrifugation, 800
μL of dichloromethane was added to 350 μL of supernatant
and vortex-mixed. Following the addition of 250 μL of
deionized water, samples were vortex-mixed again to extract
the nonpolar lipid fraction. The aqueous phase was used for
metabolite analysis by UPLC-MS. Samples were randomly
separated into seven batches and consecutively analyzed. The
instrument was calibrated before analysis and solvent, and
sample preparation blanks were jointly analyzed with the
samples in a random order.
UPLC-MS analysis was performed using a Waters

ACQUITY Ultra Performance LC (Waters Corporation,
Manchester, UK) system, fitted with a Waters ACQUITY
UPLC BEH C18 column (2.1 × 50 mm, 1.7 μm particle size),
and coupled to a high-resolution accurate mass (HRAM)
Synapt G2 high-definition mass spectrometry (HDMS) system
(Waters Corporation, Manchester, UK). The Synapt G2
HDMS is a hybrid quadrupole-ion mobility-orthogonal
acceleration time-of-flight instrument with typical resolving
power of 20 000 fwhm and mass accuracy of 9 ppm at m/z
554.2615. The instrument was operated in negative ion mode
with a probe capillary voltage of 2.3 kV and a sampling cone
voltage of 45 V. The source and desolvation temperatures were
120 and 350 °C, respectively, and the nitrogen desolvation flow
rate was 650 L h−1. The mass spectrometer was calibrated
across the range of m/z 50−1800 using a 0.5 mM sodium
formate solution prepared in 90:10 2-propanol/water v/v. Data
were mass corrected during acquisition using a leucine
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enkephalin reference spray (LockSpray) infused at 2 μL min−1.
Data were acquired in the 50−1750 m/z range, and the scan
time was set to 1 s. Data acquisition and processing were
carried out using MassLynx v4.1. The chromatographic method
for sample analysis involved elution with acetonitrile (mobile
phase A) and water with 0.1% acetic acid (mobile phase B)
using the following gradient program: 0−1 min 0−10% A; 1−
2.5 min 10−15% A; 2.5−4 min 15−22% A; 4−6 min 22−38%
A; 6−9 min 38−65% A; 9−12 min 65−80% A; 12−16 min 80−
100% A; 16−18 min 100% A. The flow rate was constant at
0.25 mL min−1 for 12 min. It was increased to 0.30 mL min−1

between 12 and 16 min and from 0.30 to 0.45 mL min−1

between 16 and 18 min. The gradient was returned to its initial
conditions over a period of 8 min after each sample injection.
The column temperature was set to 35 °C, the autosampler tray
temperature was set to 5 °C, and the injection volume was 10
μL. UPLC-MS/MS experiments were performed by acquiring
mass spectra with applied voltages between 5 and 50 V in the
trap cell, using ultrapurity argon (≥99.999%) as the collision
gas.
Data Analysis

After UPLC-MS analysis, metabolic features (retention time
(Rt), m/z pairs) were extracted from chromatograms using
MarkerLynx XS software. This procedure involved chromato-
gram alignment, peak picking and integration, peak area
extraction, and normalization. The matrix containing sample
peak areas for each feature (Rt, m/z) was utilized to build a
model for sample classification and to find the minimum set of
discriminant features by means of linear support vector
machines (SVMs).28 This supervised classification technique
is effective at handling high dimensionality data as those
produced in the present work. For a binary classification
problem, linearly separable samples represented as a row vector
x had membership of two classes g (= H or D), where H stands
for healthy and D for PCa disease with labels c = −1 for class H
and +1 for class D. In order to build the classification model,
70% of the samples were randomly selected as a training set and
30% as a test set. Within the training set, 10% of samples were
used for validation and to find the minimum set of discriminant
features that maximized accuracy in the classification through a
recursive feature elimination (RFE) method.23 The decision
function that separated the two classes, defined here as the
IVDMIA “PCa metabolic score”, was as follows:

∑= +
=

b wxPCa metabolic score
j

j

j ij
1 (1)

= ′ + =x wxg b( ) sgn( ) sgn(PCa metabolic score)i i (2)

where w and b are the weight and bias parameters that were
determined from the training set and j is the total number of
features. The sign of the PCa metabolic score determined to
which class a sample was assigned: class H if negative and class
D if positive. In this classification function, the two classes were
divided in the dataspace by a hyperplane wx′ + b = 0 that
maximized the margins between samples of different classes.
The margin between the two classes was defined such that

′ + ≥ = +wx b c1, 1 (3)

′ + ≤ − = −wx b c1, 1 (4)

To estimate the classification and feature selection perform-
ance, 10 iterative validations were performed to randomly select

the training and test sets. The statistical significance of the
model was further assessed through hypothesis testing by
permutation tests. No assumptions were made in this
nonparametric approach to hypothesis testing regarding the
data distribution, and the p value was computed as the
cumulative sum using the empirical distribution. Two
permutation tests were performed using 100 permutation
samples with the following null hypothesis:

(i) Null hypothesis 1: feature and labels (positive/negative)
are independent (i.e., indifference when class labels are
permutated).

(ii) Null hypothesis 2: features are independent within each
class (i.e., indifference when value of each features are
permutated within each class).

If the p value < α (α = 0.05), the null hypothesis H0 was
rejected; otherwise, the observed result was not statistically
significant.
Additionally, principal component analysis (PCA) was used

to evaluate the performance of all extracted metabolic features
or subsets of them in an unsupervised manner with MATLAB
R2011b (version 7.13.0, The MathWorks, Inc., Natick, MA,
USA) and the PLS Toolbox (v.6.71, Eigenvector Research, Inc.,
Wenatchee, WA, USA). Data were preprocessed by autoscaling.
Metabolite Identification Procedure

Compound identification was attempted for the 40 discrim-
inant features remaining after the feature selection processes.
Due to the biological complexity of serum samples, adduct ion
analysis was first performed to ensure the unambiguous
assignment of the signal of interest in each mass spectrum.
Adduct ions corresponding to SVM-selected variables that were
investigated in the mass spectra included [M − H]−, [M +
Cl]−, [M + Br]−, [M + CH3COO]

−, [M + HCOO]−, [M +
CF3COO]

− [M + Na − 2H]−, [M + K − 2H]−, [M − H2O −
H]−, [M + H2O − H]− species, which are typically observed in
negative ion mode electrospray ionization. The expected m/z
values for common adduct species were calculated and
compared with the experimental values from peaks within the
spectra. For spectra in which no confirmatory adducts were
present, the accurate mass of the candidate neutral molecule
was calculated based on the assumption that the peak of
interest corresponded to [M − H]−. Elemental formulas were
generated based on the mass accuracy of the peak of interest
and isotopic patterns with a mass error of 8 mDa, using
MassLynx 4.1. The list of elements included in the search was
C, H, N, O, P, S, Cl, and Br. The list of generated elemental
formulas was searched against the Metlin database,29 HMDB,30

and in order to determine the possible endogenous metabolite
candidates. The MS/MS Metlin and MassBank31 databases and
a literature survey were subsequently used to confirm the
identity of putative candidates. Fragmentation patterns were
also manually analyzed to discriminate between different
isobaric species. Additionally, commercially available chemical
standards were analyzed by UPLC-MS and MS/MS to confirm
tentative metabolite identities by retention time and mass
spectral matching.

■ RESULTS AND DISCUSSION

Classification Performance

UPLC-MS analysis in negative ion mode allowed the
interrogation of highly complex serum samples from PCa
patients and healthy individuals, revealing a total of 480 features
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(Rt, m/z pairs). The extracted features were used to build a
discriminant SVM model for sample classification. An optimum
set of 51 discriminant features was found to maximize
classification accuracy through a recursive feature elimination
method,23 as illustrated in Figure 1. Out of the 51 selected

features, seven were found to be only present in less than 2% of
the samples; two features were identified as acetaminophen and
its sulfite adduct, and two additional features were identified as
adducts or fragments of other features in the subset and were
thus removed from further consideration. The optimum panel
that best discriminated PCa patients from healthy individuals
was thus reduced to 40 features, demonstrating that the feature
selection process accomplished a high reduction in problem
dimensionality. Figure 2 illustrates the “PCa metabolic scores”

obtained for the training and the test sets of randomly selected
samples that were used to construct and evaluate the
classification model, respectively. The separation of the two
sample classes (H or D) was determined in the data space by
the optimal separating hyperplane for which the margin
between the most similar samples in each group was largest,

illustrated with a dotted line in the figure. The samples with
scores equal to 1 or −1 are the support vectors of the model.
For the particular cross-validation iteration illustrated in Figure
2, only one sample was misclassified as a false negative. The
remaining nine iterative validations with their respective
training and test sets are illustrated in Figure S1 (Supporting
Information). Based on these 40 discriminant features, serum
samples were successfully classified as cancerous or healthy with
93.0% accuracy, 92.1% sensitivity, and 94.3% specificity. These
values were calculated as the averages from 10 distinct test sets,
illustrated in Figures 2 and S1. In addition, the statistical
significance of the model was further evaluated through
hypothesis testing, and at 0.05 significance level, the null
hypothesis was rejected for all permutations generated (p value
= 0.0099). Unambiguously, the classifier did not yield a better
leave-one-out-cross-validation (LOOCV) accuracy rate than
the original data. These results suggest a promising approach
that could form the basis for a PCa IVDMIA. In particular, of
the 40 differential features, 24 were found to increase in sera
from PCa patients, and 16 were found to decrease in PCa, as
illustrated in Figure 3. It is important to underscore, however,

that the strength of this IVDMIA resides in the combination of
multiple metabolic features using an interpretation function to
yield a single, patient-specific result to be used in the disease
diagnosis and not on the average fold change of each
differential feature.
In order to evaluate the possible risk of data overfitting by

SVMs,28 a simple unsupervised approach was also used to
examine the data set. PCA score plots were generated for both
the 40 discriminant features set obtained by SVMs and the
starting set of 480 features. Figure S2 (Supporting Information)
shows the results for each case. Using the best 40 features, three
principal components containing 33.6% of the total variance
provided a good degree of separation between classes, as
illustrated in Figure S2a. Sample separation in the PCA score
plot was mainly achieved by the contribution of PC3. Loadings
for PC3 are displayed in Figure S2b. Interestingly, Figure S2c
shows that PCA does not provide any distinguishable clustering
when applied to the initial set of 480 features, further
supporting the use of RFE and SVMs when handling high
dimensionality data volumes as those in the present work.
Given the clustering observed in PCA when using the 40
discriminant feature subset, the risk of the high classification

Figure 1. Evolution of classification accuracy for a validation sample
subset consisting of 10% of the training samples as a function of the
number of features retained. The minimum discriminant feature set
that maximizes classification accuracy is highlighted with a dashed line.

Figure 2. Visualization of the PCa metabolic scores obtained by SVMs
in 1 out of 10 iterative model validations based on 40 discriminant
features. Green circles correspond to PCa patients in the training set;
black triangles correspond to controls in the training set; red circles
correspond to PCa patients in the test set built for the iteration shown,
and blue triangles correspond to healthy individuals in the test set. The
dotted line shows the projection of the separating hyperplane: wx′ + b
= 0.

Figure 3. Fold change of average peak areas of each discriminant
feature. Positive fold changes are calculated as the ratio of average peak
areas between PCa patients and healthy individuals, and negative fold
changes are calculated as the negative ratio of average peak areas
between healthy individuals and PCa patients. Features are labeled
with their codes.
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accuracy of SVM models being a product of overfitting is
greatly diminished.
IVDMIA versus PSA Diagnosis

The Gleason scores for the PCa patients, summarized in Table
S1 (Supporting Information), indicate that the most common
tumor patterns presented by the patients derived from
moderate to aggressive cancers. However, the PSA test
performed at surgery did not follow this histological evidence
for the entire PCa cohort, as 33% of patients with PCa (n = 20)
had PSA values lower than the commonly used cutoff point of
4.0 ng mL−1. Figure 4 compares PSA and IVDMIA results in

terms of true positive and false negative outputs, highlighted in
red and black, respectively. The IVDMIA outputs provided by
the randomly selected 10 test sets are visualized as box plots in
the figure and show that the IVDMIA was able to correctly
predict 100% of the true positives that were incorrectly
diagnosed as negatives by the PSA test. The false negative
results provided by the IVDMIA derived from one sample that
was misclassified in all test sets and four samples that were
misclassified in at least one test set. The classification
performance obtained with this cohort shows promise toward
prostate cancers that would go undetected by the PSA method.

The use of multiple discriminant features by this metabolic
IVDMIA yields higher predictive power for PCa diagnosis than
the univariate analysis of a single marker such as with the PSA
method.
IVDMIA Potential in Clinical Applications

To determine the fraction of samples in which the discriminant
features were present, and to evaluate the feasibility of
implementing the PCa IVDMIA in clinical laboratory settings
through targeted triple quadrupole mass spectrometry-based
assays, smaller subgroups of the optimum 40 discriminant
features, subsequently referred to as “panel A”, were
investigated (Table 1). These subpanels were chosen to
provide the minimum number of features that collectively
captured metabolic PCa patterns with a high level of accuracy,
specificity, and sensitivity. The selection of these additional
subpanels was based on the fraction of features that were
present in 50, 70, or 90% of the entire sample cohort, in either
PCa patients or healthy controls. Table 1 summarizes the
different panels constructed following these criteria, with their
corresponding subset of discriminant features. These panels
were used to build new SVM models and cross-validated to
provide average values of accuracy, specificity, and sensitivity
from 10 independent randomly selected training and testing
sets. Thirty-eight out of 40 discriminant features were present
in more than 50% of healthy controls (panel B), and 35 out of
40 were present in more than 50% of PCa samples (panel C),
providing similar accuracy, specificity, and sensitivity as panel A.
When the criterion for feature presence was made more
stringent, from panel A to panel G, the accuracy, specificity, and
sensitivity decreased by only ∼10%, suggesting the robust
biological role that the detected features might have. In other
words, the different feature subpanels were not highly sensitive
to a reduction in the number of discriminant features,
suggesting that the smaller number of metabolites contained
in subpanel G could still be potentially used to build a more
focused, simpler IVDMIA for PCa detection in a clinical setting.
To further test this finding, another SVM model was created
with only those 13 features that could be confidently assigned
to metabolites in subpanel G by HRAM MS and MS/MS
(Table S2, Supporting Information). It was found that this
model still provided high classification sensitivity (88.3%),
specificity (80.3%), and accuracy (85.0%). The mass spectro-
metric assay for such model would be much simpler to
implement in a targeted fashion due to the reduced number of
transitions that a UPLC-MS/MS triple quadrupole method

Figure 4. Comparison of IVDMIA vs PSA diagnosis performance for
62 PCa patients. True positive and false negative outputs are
highlighted in red and black, respectively. The cutoff point of 4.0 ng
mL−1 used in PSA-based diagnosis is indicated with a dotted line. The
IVDMIA score output is presented as box plots in the figure, each of
which is generated by results obtained for each of the 10 test sets
where each sample was selected for validation. No comparison is
shown for two of the 64 PCa samples as they were not randomly
selected in any of the 10 cross-validation iterations.

Table 1. Discriminant Feature (Sub)panels for PCa Detection

panel accuracy specificity sensitivity
discriminant
features (#) discriminant feature codes

% healthy
samples, % PCa

samples

A 93.0 94.3 92.1 40 147, 36, 71, 211, 60, 55, 107, 409, 250, 223, 386, 438, 157, 63, 176, 82, 393, 173, 84, 412, 43,
376, 343, 429, 384, 76, 444, 214, 128, 93, 398, 360, 448, 174, 153, 21, 364, 404, 242, 237

>0%, >0%

B 91.2 90.6 91. 7 38 147, 36, 71, 211, 60, 55, 107, 409, 250, 223, 386, 438, 157, 63, 176, 82, 393, 173, 84, 412, 43,
376, 343, 429, 384, 76, 444, 214, 128, 93, 398, 360, 448, 174, 153, 21, 364, 404

>50%, >0%

C 90.2 87.2 91.8 35 147, 36, 71, 211, 60, 55, 107, 409, 250, 223, 386, 438, 157, 63, 176, 82, 393, 173, 84, 412, 43,
376, 343, 429, 384, 76, 444, 214, 128, 93, 398, 360, 448, 174, 153

>50%, >50% and
>0%, >50%

D 86.1 87.2 85.3 28 147, 36, 71, 211, 60, 55, 107, 409, 250, 223, 386, 438, 157, 63, 176, 82, 393, 173, 84, 412, 43,
376, 343, 429, 384, 76, 444, 214

>0%, >70%

E 84.4 80.0 85.8 25 147, 36, 71, 211, 60, 55, 107, 409, 250, 223, 386, 438, 157, 63, 176, 82, 393, 173, 84, 412, 43,
376, 343, 429, 384

>70%, >70% and
>70%, >0%

F 85.0 80.0 88.8 22 147, 36, 71, 60, 55, 409, 223, 386, 438, 157, 63, 176, 82, 393, 173, 84, 412, 43, 376, 343, 429,
384

>90%, >0%

G 80.0 81.0 79.3 17 147, 36, 71, 60, 55, 409, 386, 438, 157, 176, 82, 393, 173, 84, 343, 429, 384 >90%, >90% and
>0%, >90%
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would require, allowing higher analysis throughput and
minimizing cost.
The set of 40 SVM weights obtained for panel A from the

optimal classification model are shown in Figure 5. The figure

shows the individual contribution of each of the 40 discriminant
metabolic features in the computed PCa metabolic score, that
is, the weight of each discriminant metabolite in the
classification. It is interesting to note that some features with
high weights in the SVM model, such as feature 60, 444, 409, or
429, also have large absolute values in the PC3 loadings plot
(Figure S2b, Supporting Information). Figure S3 (Supporting
Information) shows a comparison of the different sets of
weights for the different panels described in Table 1, sorted
from the largest to lowest value in panel A and expanded to
panels B−G. The figure shows that the sign of the weights

generally remained the same across the panels, in agreement
with the fact that accuracy, specificity, and sensitivity were
highly conserved even after restricting the presence of
discriminant features to those present in a majority of the
patients within the cohort. It was seen that for the most
restrictive panels, those features with weights equal to zero (i.e.,
those that do not contribute to the panels) are those with lower
weights in panel A.
Identification of Metabolites Used in the IVDMIA

Once the robustness of the model was established, chemical
identification of the 40 discriminant metabolic features was
attempted. Figure 6 exemplifies the procedure utilized for
identification of feature 60. Figure 6A,B shows the different
base peak intensity chromatograms (BPI) obtained for serum
samples of a typical PCa patient and healthy individual. As
differences between metabolomes and the corresponding
features in the BPI chromatograms arise both from the
presence of the disease and from differences in diet, lifestyle,
and numerous other factors,32 chemical identification of
endogenous metabolites was attempted only for the 40
discriminant metabolic features. The high resolving power of
the time-of-flight analyzer used allowed generating highly
selective extracted ion chromatograms for each discriminant
feature, as illustrated in Figure 6C. Adduct ion analysis (Figure
6D) was used to ensure the unambiguous assignment of the
signal of interest in the electrospray ionization mass spectrum,
and the isotopic pattern and accurate masses were used to
generate a list of possible candidate elemental formulas that
were searched against databases. Moreover, UPLC-MS/MS
experiments were performed to confirm the identities of these
candidate metabolites responsible for classification. Tandem
MS spectra were compared to those in databases or literature,

Figure 5. Weights for the 40 discriminant metabolic features in panel
A. Metabolic features are labeled with their codes.

Figure 6. Base peak intensity chromatograms obtained for typical serum samples from a patient with PCa (A) and a healthy individual (B). (C)
Extracted ion chromatogram for m/z 187.0968 ± 0.0050 generated from a PCa patient sample (red line) and a healthy individual (black line). These
were generated from the data shown in A and B, respectively. (D) Adduct ion analysis for discriminant feature at m/z 187.0968. Mass errors are
calculated with respect to the theoretical values for azelaic acid (C9H16O4). (E) Tandem MS spectrum for the m/z 187.0968 precursor ion using a
collision cell voltage of 15 V. The matching of tandem MS fragmentation patterns between the experimental spectrum and the metabolite candidate
is illustrated by the mass errors calculated as differences with the values in the Metlin database.
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Table 2. Results for the Chemical Identification Workflow for Various Discriminant Featuresa

feature
code

retention
time (min) m/z ion type

elemental
formula

theoretical
m/z

Δm
(mDa) tentative metabolite identification ref panel

60 5.10 187.0970 [M − H]− C9H16O4 187.0970 0.0 nonanedioic acid (azelaic acid) 50 G
36 0.63 167.0206 [M − H]− C5H4N4O3 167.0205 0.1 uric acid 37−39 G
71 1.95 203.0817 [M − H]− C11H12N2O2 203.0821 0.4 tryptophan 34,56 G
384 11.70 508.3403 [M − CH3]

− C26H54NO7P 508.3403 0.0 lysoPC(18:0/0:0) 19,57 G
84 8.41 223.1331 [M − H]− C13H20O3 223.1334 0.3 13-oxo-9,11-tridecadienoic acid 58 G
157 7.06 273.1703 [M − H]− C14H26O5 273.1702 0.1 3-hydroxytetradecanedioic acid 59,60 G
176 7.61 287.1854 [M − H]− C15H28O5 287.1858 0.4 6-hydroxypentadecanedioic acid G
55 5.21 185.0812 [M − H]− C9H14O4 185.0814 0.2 5-(2-methylpropyl)-2-oxooxolane-3-

carboxylic acid
61 G

5-butyl-2-oxooxolane-3-carboxylic acid
343 9.77 476.2772 [M − H]− C23H44NO7P 476.2777 0.5 lysoPE(0:0/18:2) 62 G

lysoPE(18:2/0:0)
429 9.80 578.3450 [M + CH3COO]

− C26H50NO7P 578.3458 0.8 lysoPC(18:2/0:0) 19 G
409 5.46 541.2639 [M − H]− C27H42O11 541.2649 1.0 cortolone-3-glucuronide 63,64 G
386 6.92 511.2900 [M − H]− C27H44O9 511.2907 0.7 pregnanetriol glucuronide G
173 8.19 285.1920 [M − H]− C19H26O2 285.1855 6.5 androstenedione 65 G
393 8.12 517.3015 - - - - G
438 7.04 600.2572 - - - - G
147 0.55 266.8028 - - - - G
82 8.12 215.1281 - - - - G
43 9.56 171.1383 [M − H]− C10H20 O2 171.1385 0.2 decanoic acid (capric acid) F
223 6.77 331.1753 [M − H]− C16H28O7 331.1757 0.4 menthol glucuronide 66−69 F

citronellol glucuronide
63 7.19 195.1020 [M − H]− C10H16 N2O2 195.1134 11.4 l-α-amino-1H-pyrrole-1-hexanoic acid F
376 9.63 504.3081 [M − CH3]

− C26H50NO7P 504.309 0.9 lysoPC(0:0/18:2)b 62 F
412 8.86 545.3323 - - - - F
211 4.06 311.1387 [M − H]− C18H20N2O3 311.1396 0.9 phenylalanyl phenylalanine 35 E
250 5.70 383.1521 [M − H]− C19H28O6S 383.1528 0.7 3β,16α-dihydroxyandrostenone sulfate E
107 5.40 245.0480 [M − H]− C10H14O5S 245.0484 0.4 2-tert-butyl-1,4-benzenediol sulfate 70 E
76 2.64 212.0016 [M − H]− C8H7NO4S 212.0018 0.2 indoxyl sulfuric acid 12,42 D
214 9.87 311.2211 [M − H]− C18H32O4 311.2222 1.1 9,10-dihydroxy-12Z,15Z-octadecadienoic

acid (9,10-DiHODE)
71,72 D

12,13-dihydroxy-9Z,15Z-octadecadienoic
acid (12,13-DiHODE)

15,16-dihydroxy-9Z,12Z-octadecadienoic
acid (15,16-DiHODE)

444 6.82 613.3583 [M − H]− C32H54O11 613.3588 0.5 27-nor-5β-cholestane-3α,7α,12α,24,25-
pentol glucuronide

73,74 D

174 9.35 285.2059 [M − H]− C16H30O4 285.2066 0.7 hexadecanedioic acid 75 C
128 2.69 263.1023 [M − H]− C13H16N2O4 263.1032 0.9 phenylacetylglutamine 76,77 C
153 14.80 269.2475 [M − H]− C17H34O2 269.2481 0.6 heptadecanoic acid 57 C
398 7.06 528.2630 [M − H]− C26H43NO8S 528.2631 0.1 n-[(3α,5β,7β)-7-hydroxy-24-oxo-3-

(sulfooxy)cholan-24-yl]-glycine
78 C

n-[(3α,5β,7α)-3-hydroxy-24-oxo-7-
(sulfooxy)cholan-24-yl]-glycine

glycochenodeoxycholate-3-sulfate
93 6.36 229.0534 [M − H]− C10H14O4S 229.0535 0.1 5-isopropyl-2-methylphenol 79 C

sulfate (carvacrol sulfate)
360 8.16 489.2692 - - - - C
448 8.51 621.3273 - - - - C
364 5.57 495.2228 [M − H]− C25H36O10 495.2230 0.2 5′-carboxy-α-chromanol glucuronide 55 B
21 5.16 144.0471 [M − H]− C9H7NO 144.0449 2.2 indole-3-carboxaldehyde 53,54 B
404 7.28 537.2501 - - - - B
242 7.66 369.1740 [M − H]− C19H30O5S 369.1736 0.4 androsterone sulfate 43−45 A

5α-dihydrotestosterone sulfate
etiocholanolone sulfate

237 11.34 365.2680 - - - - A

aMetabolites confirmed by retention time matching with commercially available standards are highlighted in bold font. Abbreviations: lysoPC,
lysophosphatidylcholine; lysoPE, lysophosphatidylethanolamine. bNot in HMDB.
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and fragmentation patterns were manually analyzed, as well
(Figure 6E). Finally, standards of commercially available
metabolites were subject to UPLC-MS and MS/MS to verify
the identity of the candidates by retention time and mass
spectral matching. Of the 40 spectral features found in panel A,
31 were identified by HRAM MS and MS/MS, with 10 further
confirmed chromatographically by standards. The set of 31
metabolites provided 90.9% sensitivity, 91.3% specificity, and
91.1% accuracy, whereas the 10 differential metabolites
confirmed by standards, when considered alone, provided
79.9% sensitivity, 70.6% specificity, and 76.3% accuracy (Table
S2, Supporting Information). It should be noted that, among
the 31 identified metabolites, 1-α-amino-1H-pyrrole-1-hexanoic
acid (feature code 63) had the highest mass error (11.4 mDa),
and its identity should be viewed as tentative. However, a
classification model built using the set of 30 metabolites
excluding feature 63 still provided 92.8% sensitivity, 89.2%
specificity, and 91.2% accuracy.

Biological Relevance of the IVDMIA Metabolites

Table 2 summarizes the results from the chemical identification
workflow described above for the 40 discriminant features.
Those metabolites with chromatographic identity confirmation
by retention time matching with standards are shown in bold
and therefore can be viewed as the ones with the higher
confidence in the panel. Several discriminant metabolites were
identified as fatty acids, amino acids, lysophospholipids, and
bile acids, suggesting alterations in their respective metabolism.
Previous findings have shown abnormality in fatty acid33 and
amino acid12,34,35 metabolism in PCa patients. Alterations in
fatty acid metabolism through an enhanced β-oxidation
pathway have been suggested to provide bioenergy for
abnormal cell proliferation.33 Among the different lyso-
phospholipids identified that may play a role in cell signaling,36

lysoPC(18:2) and lysoPC(18:0) have been reported as
biomarkers for PCa detection within a panel of plasma lipids.19

Uric acid has also been suggested to be a disease risk marker
due to its pro-inflammatory properties,37,38 and a prospective
epidemiological study demonstrated positive association
between serum uric acid levels and risk of PCa development.39

In addition, elevated concentrations of serum uric acid are often
found due to tumor lysis syndrome observed as a result of
cancer therapy.40 Interestingly, indoxyl sulfate, a toxic product
of dietary tryptophan metabolism that accumulates in the blood
of patients with impaired renal function,41 was also identified
among the 40 discriminant features. The reason behind
elevated indoxyl sulfate in serum of PCa patients is not yet
fully understood; nevertheless, this nephrotoxic metabolite
likely contributes to the disease or its complications via multiple
mechanisms, including enhanced oxidative stress due to
decreased levels of glutathione.42

Perhaps the most salient finding resulting from the chemical
identification workflow is that many differentiating metabolites
belong to the steroid hormone biosynthesis pathway. As
illustrated in Figure S4, the pathway supplies androgens43−45

such as testosterone and 5α-dihydrotestosterone, to support
the growth of androgen-dependent PCa.46 An average increase
of pregnanetriol and androstenedione concentrations in PCa
serum suggests that there is a metabolic alteration of the steroid
pathway that mimics congenital adrenal hyperplasia (CAH), a
metabolic disease that is accompanied by androgen excess due
to the diversion of 17-hydroxyprogesterone into the pathway
for androgen biosynthesis.47,48 In addition, the average decrease

of azelaic acid concentration in the serum of PCa patients, an
inhibitor of 5α-reductase,49 suggests the disinhibition of 5α-
reductase, an enzyme that catalyzes the synthesis of highly
active androgen 5α-dihydrotestosterone to support PCa
growth. Indeed, azelaic acid, which has a large contribution in
the models, has been postulated to be a potential antitumoral
agent.50

Table 2 also shows the identification of several xenobiotics
that can be grouped into two classes according to their origin.
Menthol, citronellol, carvacrol, and t-butylhydroquinone are
most likely related to food components. Assuming that both
PCa patients and healthy individuals were equally exposed, on
average, to food components/additives, their different metab-
olism could explain the different levels of these xenometabolites
in serum. For example, the terpenoids menthol, carvacrol and
citronellol are metabolized by CYP2A6,51,52 which is also
involved in steroid metabolism. As a result, average lower
concentrations of these terpenoids relative to healthy
individuals may be suggestive of higher activity of CYP2A6 in
PCa patients, supporting inclusion of these xenometabolites in
the models. The second group of xenobiotics comprises indole-
3-carboxaldehyde and 5′-carboxy-α-chromanol glucuronide,
which could possibly result from the consumption of dietary
supplements used by cancer patients. Self-medicating with an
over-the-counter indole-3-carbinol (I3C) supplement may
explain the increased average concentration of indole-3-
carboxaldehyde in PCa serum.53 Indeed, indole-3-carbox-
aldehyde demonstrated activity against prostate cancer in
both in vitro and in vivo models.54 Similarly, α-tocopherol, a
form of vitamin E and a precursor of 5′-carboxy-α-chromanol
glucuronide, has been suggested to influence the development
of PCa due to its antioxidant activity.55 As humans do not
normally produce indole-3-carbaldehyde or 5′-carboxy-α-
chromanol, and their consideration in the models may reflect
dietary supplementation differences rather than endogenous
metabolic differences, PCa detection was attempted using 28 of
the 31 identified metabolites, excluding from the SVM
classification model two metabolites which might result from
dietary supplementation and one metabolite with highest mass
error (1-α-amino-1H-pyrrole-1-hexanoic acid). This modified
classification model provided 89.7% sensitivity, 90.7% specific-
ity, and 90.2% accuracy (Table S2, Supporting Information),
indicating that the three excluded metabolites had little effect
on the overall assay performance, as supported by their low
weights in panel A (Figure 5 and Figure S3, Supporting
Information).

■ CONCLUSIONS
The present study shows the combined application of UPLC-
MS/MS and machine learning methods to develop a
metabolite-based IVDMIA that predicts the presence of PCa
in serum samples with high classification sensitivity, specificity,
and accuracy. A panel of 40 metabolic spectral features was
found to be differential with 92.1% sensitivity, 94.3% specificity,
and 93.0% accuracy. Of further significance, the detection
performance of the IVDMIA was proven to be higher than the
prevalent PSA test, highlighting that a combination of multiple
discriminant features yields higher predictive power for PCa
detection than the univariate analysis of a single marker. Within
the discriminant panel, 31 metabolites were identified by
HRAM MS and MS/MS, with 10 further confirmed chromato-
graphically by standards. Fatty acids, amino acids, lysophospho-
lipids, and bile acids have been identified among the
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discriminant metabolites, suggesting alterations in their
metabolism. Additionally, several metabolites were mapped to
the steroid hormone biosynthesis pathway. These observations
demonstrate some of the plausible metabolic alterations in PCa
and provide further insight into the biological pathway changes
associated with the disease. The combination of multiple
metabolites that yield a single, patient-specific result for disease
detection is the strength of the IVDMIA developed in the
present work. When the assay is based on the 28 identified
disease-related metabolites, PCa can still be detected with
89.7% sensitivity, 90.7% specificity, and 90.2% accuracy. If
higher throughput analysis and lower analysis cost and
complexity are desired, 13 metabolites that were found to be
present in 90% of the entire sample cohort would still provide
high classification sensitivity (88.3%), specificity (80.3%), and
accuracy (85.0%) for cancerous and healthy samples. There-
fore, this assay shows promise toward its implementation in the
clinical laboratory setting once it is fully validated by the
examination of a larger patient cohort through targeted assays.
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