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Symplectic structures on nilmanifolds: an obstruction for
its existence

Viviana del Barco∗

Abstract. In this work we introduce an obstruction for the existence of
symplectic structures on nilpotent Lie algebras. Indeed, a necessary condition is
presented in terms of the cohomology of the Lie algebra. Using this obstruction
we obtain both positive and negative results on the existence of symplectic
structures on a large family of nilpotent Lie algebras. Namely the family of
nilradicals of minimal parabolic subalgebras associated to the real split Lie
algebra of classical complex simple Lie algebras.
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1. Introduction

A nilmanifold is an homogeneous manifold M = Γ\N where N is a simply
connected nilpotent Lie group and Γ is co-compact discrete subgroup of N . For
these compact manifolds the natural map from H i

dR(n), n the Lie algebra of N , to
the de Rham cohomology group H i(M,R) is an isomorphism for all 0 ≤ i ≤ 2n ,
as showed by Nomizu in [13].

In particular this implies that any symplectic structure on a nilmanifold
is cohomologous to an invariant one. Thus to solve the problem of existence of
symplectic structures on the nilmanifold Γ\N reduces to find a non-degenerate
closed 2-form ω on the Lie algebra n ; if it exists n is called a symplectic Lie
algebra. Here we work from this Lie algebra point of view.

The goal of this work is to prove that every symplectic nilpotent Lie algebra
has a certain non-zero component on its cohomology. Actually, the intermediate
cohomology of a Lie algebra n (concept presented by the author in [3]) is used in
Theorem 3.1 to give a necessary condition for n to admit a symplectic structure.
As an application, we study the validity of this property on a particular subfamily
of nilpotent Lie algebras.

Benson and Gordon in [1] proved that the Hard Lefschetz Theorem fails
for any symplectic non-abelian nilpotent Lie algebra. In order to show this,
they deduce some general structure results of symplectic nilpotent Lie algebras.
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Nevertheless there are not many general conditions to determine whether a given
nilpotent Lie algebra is symplectic or not.

Until now there are known all the symplectic nilpotent Lie algebras up to
dimension 6 (see [6, 15] for instance) and this list is mostly build-up by studying
case by case. But the lack of a full classification of real nilpotent Lie algebras of
dimension ≥ 8 makes this method non-feasible in greater dimensions.

Moreover, several authors studied the problem on different subfamilies of
nilpotent Lie algebras. For example, the classification of symplectic filiform Lie
algebras, which are Lie algebras n of nilpotency index k = dim n − 1, is given in
[11]. Moreover, in [5] the authors work with Heisenberg type nilpotent Lie algebras.
Among nilpotent Lie algebras associated with graphs, a complete description of
the symplectic ones can be made in terms of the corresponding graph [14]. The
full classification of the symplectic free nilpotent Lie algebras is done in [2].

In this context, the aim of this work is to contribute with a better under-
standing of the structure of symplectic nilpotent Lie algebras. Its organization is
as follows. Section 2. is devoted to an introduction to the intermediate cohomol-
ogy of nilpotent Lie algebras and the development of the properties that will be
used later on the presentation. In Section 3. we study the relationship between
symplectic structures and intermediate cohomology. This leads us to a necessary
condition for a nilpotent Lie algebra to admit a symplectic structure. We notice
that this condition is not sufficient in general.

In Section 4 we restrict ourselves to the study of the existence of symplectic
structures in the family of nilradicals of minimal parabolic subalgebras associated
to the real split Lie algebras corresponding to complex classical simple Lie algebras.
We prove that the obstruction in Theorem 3.1 is also sufficient for that family.
This allows us to obtain both positive and negative results about the existence of
symplectic structures in this case.

Recall that for the nilpotent complex case Kostant in [10] describes the Lie
algebra cohomology groups of the nilradicals of Borel subalgebras for any irre-
ducible representation as a direct sum of one dimensional modules of multiplicity
one. The real version of his description was recently given in [16]. Here we also
use a decomposition of the cohomology groups but the summands are not in one
to one correspondence with those of neither Kostant (in the complex version) nor
Šilhan in the real case.

2. Intermediate Cohomology of nilpotent Lie algebras

The concept of intermediate cohomology of nilpotent Lie algebras and a deep
study of its properties were analyzed by the author in [3]. For completeness of this
work we give here a brief introduction to this cohomology by quickly reviewing its
definition and the properties that will be used later.

Let g denote a real Lie algebra. The central descending series of g , {gi}
for all i ≥ 0, is given by

g0 = g, gi = [g, gi−1], i ≥ 1.

A Lie algebra g is k -step nilpotent if gk = 0 and gk−1 6= 0; this number k is called
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the nilpotency index of g . Nilpotent Lie algebras will be denoted by n . Abelian
Lie algebras are 1-step nilpotent. Moreover, 2-step nilpotent Lie algebras verify
n1 ⊆ z(n), where z(n) denotes the center of n .

The Chevalley-Eilenberg complex of a Lie algebra g of dimension m is

0 −→ R −→ g∗
d1−→ Λ2g∗

d2−→ . . . . . .
dm−1−→ Λmg∗ −→ 0 . (1)

We identify the exterior product Λpg∗ with the space of skew-symmetric p-linear
forms on g , thus each differential dp : Λpg∗ −→ Λp+1g∗ is defined by:

dpc (x1, . . . , xp+1) =
∑

1≤i<j≤p+1

(−1)i+j−1c([xi, xj], x1, . . . , x̂i, . . . , x̂j, . . . , xp+1).

The first differential d1 coincides with the dual mapping of the Lie bracket
[ , ] : Λ2g −→ g and the collection of dp is a derivation of the exterior algebra
Λ∗(g∗). We will denote d instead of dp independently of p .

The cohomology of (Λ∗g∗, d) is called the Lie algebra cohomology of g (with
real coefficients) and it is denoted by H∗(g,R) and more often as H∗(g) if there is
no place to confusion. For nilpotent Lie algebras H1(n) ∼= n/n1 and dimH2(n) ≥ 2
[4].

When the Lie algebra is nilpotent, a filtration of the cochain complex in
Eq. (1) arises in the following manner. Consider the subspaces of n∗ defined by
Salamon in [15]

V0 = 0 Vi = {α ∈ n∗ : dα ∈ Λ2Vi−1} i ≥ 1. (2)

Then V0 ⊆ V1 ⊆ · · · ⊆ Vi ⊆ · · · ⊆ n∗ and Vi is the annihilator of ni , the ith-ideal
in the central descending series; that is Vi = (ni)◦ . In particular, n is a k -step
nilpotent Lie algebra if and only if Vk = n∗ and Vk−1 6= n∗ .

Suppose n is a k -step nilpotent Lie algebra of dimension m , then for any
q = 0, . . . ,m , the space of skew symmetric q -forms Λqn∗ is filtered since

0 = ΛqV0 ( ΛqV1 ( . . . ( ΛqVk−1 ( ΛqVk = Λqn∗. (3)

In addition each of these subspaces is invariant under the differential, there-
fore

F pC∗ : 0 −→ R −→ Vk−p −→ Λ2Vk−p −→ · · · −→ ΛmVk−p −→ 0 (4)

is a subcomplex of the Chevalley-Eilenberg complex for each fixed p and {F pC∗}p≥0
constitutes a filtration of the complex in Eq. (1).

As any filtration of a cochain complex, {F pC∗}p≥0 gives rise to a spectral

sequence {Ep,q
r (n)}p,q∈Zr≥0 . In this case, this spectral sequence always converges to

the Lie algebra cohomology of n (see [3] and references therein). In particular this
implies that each cohomology group H i(n) can be written as a direct sum of the
limit terms of the spectral sequence. Namely

H i(n) ∼=
⊕
p+q=i

Ep,q
∞ (n) for all i = 0, . . . ,m. (5)

This way of describing the cohomology groups as a sum of smaller spaces
suggests us the following definition.
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Definition 2.1. Let n be a nilpotent Lie algebra of dimension m . Then, for
each i = 0, . . . ,m , the intermediate cohomology groups of degree i of n are the
vector spaces Ep,q

∞ (n) with p+ q = i .

Notice that for each i = 0, . . . ,m there is a finite amount of non-zero
intermediate cohomology groups of degree i .

Each intermediate cohomology group can be described using the Lie algebra
differential restricted to the subspaces in the filtration:

Ep,q
∞ (n) ∼=

{x ∈ Λp+qVk−p : dx = 0}
d({x ∈ Λp+q−1n∗ : dx ∈ Λp+qVk−p}) + {x ∈ Λp+qVk−p−1 : dx = 0}

. (6)

If a nilpotent Lie algebra n can be decomposed as a direct sum of a one
dimensional ideal R and a nilpotent Lie algebra of dimension one less than n ,
a similar formula to the Künneth formula can be stated for the intermediate
cohomology.

Theorem 2.2 ([3]). Let n be a k -step nilpotent Lie algebra which can be
decomposed as a direct sum of ideals n = R ⊕ h. Then h is k -step nilpotent
and for all 0 ≤ r ≤ ∞ it holds

1. Ep,−p
r (n) = 0 for all p = 0, . . . , k − 2 and Ek−1,1−k

r (n) ∼= R.

2. Ek−1,2−k
r (n) ∼= Ek−1,2−k

r (h)⊕ R,

3. Ep,1−p
r (n) ∼= Ep,1−p

r (h) if p ≤ k − 2,

4. Ep,q
r (n) ∼= Ep,q

r (h)⊕ Ep,q−1
r (h) if p+ q ≥ 2.

Throughout an inductive procedure the next result follows.

Corollary 2.3. Suppose n is a non-abelian nilpotent Lie algebra. Then
E0,2
∞ (Rs ⊕ n) = E0,2

∞ (n) for any s ≥ 0.

3. Symplectic structures and the E0,2r
∞ intermediate cohomology

groups

A symplectic structure on a differentiable manifold M is a differentiable closed
2-form Ω that is non-singular at every point of M . Not every manifold admits
such a structure. It is well known that for a compact symplectic manifold, its
even de Rham cohomology groups are non-zero. When M is a nilmanifold this
criteria is useless to determine the non-existence of symplectic strucutres since
H2p
dR(M) ∼= H2p(n) and always non-zero for nilpotent Lie algebras [4]. And yet

there exists non-symplectic nilmanifolds. We present here an adapted version of
this criteria that can be used to determine non-existence of symplectic structures
on nilmanifolds.

Recall that a Lie algebra is symplectic if it admits a skew-symmetric bilinear
form ω which is both closed and non-degenerate; in that case it is necessarily even
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dimensional. In Theorem 3.1 we prove that there is a close relationship between the
existence of symplectic structures on a nilpotent Lie algebra n and its even dimen-
sional intermediate cohomology groups E0,2r

∞ (n). Thus a new general obstruction
for the existence of these structures on nilpotent Lie algebras is introduced.

Theorem 3.1. Let n be a symplectic nilpotent Lie algebra. Then E0,2r
∞ (n) 6= 0

for all r = 1, . . . , dim n/2.

Proof. Given a symplectic form ω on a k -step nilpotent Lie algebra n , the
fact that is non-degenerate implies ω /∈ Λ2Vk−1 . Formula (6) for p = 0 and q = 2
gives

E0,2
∞ (n) =

{x ∈ Λ2n∗ : dx = 0}
{x ∈ Λ2Vk−1 : dx = 0}

.

So ω defines a non-zero element in E0,2
∞ (n). The wedge product ωr = ω∧ r. . . ∧ω

defines an even order non-exact closed form which also defines a non-zero element
in

E0,2r
∞ (n) =

{x ∈ Λ2rn∗ : dx = 0}
d(Λ2r−1n∗) + {x ∈ Λ2rVk−1 : dx = 0}

.

Thus the theorem follows.

Remark 3.2. Notice that if n is nilpotent, the fact E0,2
∞ (n) = 0 states not only

that n is not symplectic but also Rs ⊕ n is not symplectic for all s ≥ 0 as a
consequence of Corollary 2.3.

The converse of this result is not valid in general as the next example shows.

Example 3.3. Let nm,2 be the free 2-step nilpotent Lie algebra on m genera-
tors. Recall that nm,2 = fm/(fm)2 where fm is the free Lie algebra on m generators.
On the one hand, when m ≥ 4 the Lie algebra nm,2 does not admit symplectic
structures (see [2, 5, 14]).

On the other hand, E0,2r
∞ (nm,2) 6= 0 for all m . Indeed, consider the Hall

basis B of nm,2 for a set of generators {e1, . . . , em} , explicitely

B = {ei, [ej, ek] : i = 1, . . . ,m, 1 ≤ k < j ≤ m}.

These basis were introduced by Hall in [7] and they are the usual ones to work
with when dealing with free Lie algebras. Notice that dim nm,2 = m(m + 1)/2.
The dual basis of B consists of 1-forms αi, αjk and their differentials, by Maurer-
Cartan formulas, are{

dαi = 0, for i = 1, . . . ,m,
dαij = −αi ∧ αj, for 1 ≤ j < i ≤ m.

The filtration in Eq. (2) of n∗m,2 is

V1 = span {αi, i = 1 . . . ,m},
V2 = span {αi, αjk, i = 1, . . . ,m, 1 ≤ k < j ≤ m} = n∗m,2.
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Assume dim nm,2 is even. It is possible to construct a closed 2r -form
defining a non-zero element in E0,2r

∞ (nm,2) for each r = 1, . . . , dim nm,2/2.

In fact, for r = 1, the 2-form α1 ∧ α12 is closed and fits into Λ2n∗m,2 but
not into Λ2V1 , so α1 ∧ α12 represents a non-zero class in E0,2

∞ (nm,2). To give a
4-form we concatenate α1 ∧ α12 with the closed 2-form α13 ∧ α14 thus obtaining
α1 ∧ α12 ∧ α13 ∧ α14 . Using formulas above it is possible to see that this 4-form
is non-exact, therefore, it represents a non-zero element in E0,4

∞ (nm,2) (see (6)). If
m = 3 then the 4-form α1 ∧ α12 ∧ α13 ∧ α2 can be used.

To obtain a closed 2r -form the idea is to concatenate 1-forms in the follow-
ing way

α1 ∧ α12 ∧ α13 ∧ . . . ∧ α1m ∧ α2 ∧ α23 ∧ . . . ∧ α2m ∧ α3 ∧ . . . ∧ α3m ∧ α4 . . .

up to obtain the form of the desired degree. One verifies that it defines a non-
zero element in E0,2r

∞ (nm,2). Therefore each 2-step free nilpotent Lie algebra has
E0,2r
∞ (nm,2) 6= 0 for all 1 ≤ r ≤ dim n/2 even though they are not symplectic for

m ≥ 4. Thus the converse of Theorem 3.1 does not hold.

A similar procedure applies on free nilpotent Lie algebras of greater nilpo-
tency index which are also non-symplectic as proved in [2].

3.1. Aut(n) action on E0,2
∞ (n).

Once it is known that a certain Lie algebra is symplectic, it is interesting to
classify its symplectic forms up to equivalence. In the case of symplectic nilpotent
Lie algebras the subspace E0,2

∞ is non-zero. What we study here is how this
subspace helps to this classification problem.

The automorphism group of a Lie algebra g is

Aut(g) = {A ∈ GL(g) : [Ax,Ay] = [x, y] for all x, y ∈ g}.

This group acts on H2(g) in the following way: A · [ω] = [(A−1)∗ω] , for all
A ∈ Aut(g) and [ω] ∈ H2(g). Here (A−1)∗ denotes the automorphism of the
exterior algebra Λ∗n∗ induced by (A−1)∗ : g∗ −→ g∗ .

When the Lie algebra is nilpotent its group of automorphisms Aut(n) acts
similarly in E0,2

∞ (n). Given a closed 2-form ω in Λ2n∗ denote with [ω]0,2 its class
as an element of the quotient space

{x ∈ Λ2n∗ : dx = 0}
{x ∈ Λ2Vk−1 : dx = 0}

∼= E0,2
∞ (n).

Any element in Aut(n) preserves the filtration in (3) of n∗ and in particular
(A−1)∗Vk−1 = Vk−1 . This implies that if ω1, ω2 are closed 2-forms on Λ2n∗ with
[ω1]

0,2 = [ω2]
0,2 then [(A−1)∗ω1]

0,2 = [(A−1)∗ω2]
0,2 . Therefore, the following action

is well defined:

Aut(n)× E0,2
∞ (n) −→ E0,2

∞ (n) (7)

(A, [ω]0,2) 7→ A · [ω]0,2 = [(A−1)∗ω]0,2.
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Proposition 3.4. For any nilpotent Lie algebra n the map

p : H2(n) −→ E0,2
∞ (n), [ω] 7→ [ω]0,2

is an Aut(n) equivariant map. Moreover, the orbit map p̃ : H2(n)/Aut(n) −→
E0,2
∞ (n)/Aut(n) is surjective.

Proof. The fact that d(n∗) ⊆ Λ2Vk−1 implies that the map p : H2(n) −→ E0,2
∞ ,

p ([ω]) = [ω]0,2 is well defined and surjective. Hence so is p̃ .

Notice that p is injective if and only if dimH2(n) = dimE0,2
∞ (n) and this

situation occurs only when n is a 2-step free nilpotent Lie algebra.

In the next example we show that the quotient map p̃ is not always injective,
even when E0,2

∞ 6= 0.

Example 3.5. Let n be the six dimensional nilpotent Lie algebra having non-
zero Lie brackets

[e1, e2] = e4, [e1, e3] = e5, [e1, e4] = e6.

Denote by {e1, . . . , e6} the dual basis of n∗ . The followings are symplectic forms
on n :

ω1 = e1 ∧ e6 − e2 ∧ e4 + e3 ∧ e5, ω2 = e1 ∧ e6 + e2 ∧ e5 + e3 ∧ e4.

They verify 0 6= [ω1]
0,2 = [ω2]

0,2 = [e1 ∧ e6]0,2 . However through direct computa-
tions one can prove that the de Rham cohomology classes of ω1 and ω2 do not
belong to the same Aut(n)-orbit.

In spite of the previous example, it is possible to find nilpotent Lie algebras
for which the cardinal of the quotient space E0,2

∞ /Aut(n) coincides with the amount
of Aut(n) equivalence classes of symplectic structures on n .

4. Classification of symplectic nilradicals.

In this section we study the intermediate cohomology of the real nilpotent Lie
algebras n arising as nilradicals of minimal parabolic subalgebras of the real split
forms of semisimple complex Lie algebras g . In particular we show that when
considering g to be a classical simple complex Lie algebra, it holds E0,2

∞ (n) = 0 in
almost every case. According to the results in the previous section those nilpotent
Lie algebras do not admit symplectic structures. Even more, we prove that if
E0,2
∞ (n) 6= 0 then n admits such structures.

To determine the intermediate cohomology group E0,2
∞ of those nilpotent

Lie algebras, our main tool is the root decomposition of semisimple Lie algebras.
For this subject we give the book of Helgason [8] as a reference. The understanding
of those systems allows the description of the filtration in Eq. (2) in terms of the
root spaces.
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Let g be a semisimple complex Lie algebra and let 4 be a root system of
g . Then g = h ⊕

⊕
α∈4−{0} gα , where h is a Cartan subalgebra of g . Denote as

4+ the set of positive roots. The Lie algebra

n =
⊕
α∈4+

gα (8)

is complex nilpotent.

Remark 4.1. Given a complex nilpotent Lie algebra n , the filtration described
in Eq. (2) and the induced spectral sequence are also canonically determined by n .
Therefore each Lie algebra cohomology group with complex coefficients H i(n,C)
decomposes as in Eq. (5).

In the particular case that n is the nilradical in (8) of a Borel subalgebra of a
complex semisimple Lie algebra, Kostant proved that H i(n,C) is a direct sum of T -
modules of dimension one (see [9, Theorem 6.1]) where T is the diagonal subgroup
of the semisimple Lie group. The action of T on n can be induced to Λkn∗

and commutes with the Lie algebra differential. As a consequence, the canonical
filtration of n∗ is preserved by the T -action and the intermediate cohomology
groups Ep,q

∞ are T -modules. But Ep,q
∞ is not irreducible in general. In particular,

each (complex) intermediate cohomology group of n is a sum of Kostant’s one
dimensional modules.

The Lie algebra n in Eq. (8) admits a basis {Xα}α∈4+ such that gα = CXα

and the structure constants of n in this basis are in R . The object of study in this
section is the real nilpotent Lie algebra having those real structure coefficients; we
will also denote it as n .

This real nilpotent Lie algebra n is the nilradical of the minimal parabolic
subalgebra of the split form corresponding to the semisimple Lie algebra g .

We pursue the computation of the filtration of the Chevalley-Eilenberg
complex of n and the intermediate cohomology group E0,2

∞ (n).

Denote as 40 = {α1, . . . , αr} the subset of positive simple roots of g . Then
for any positive root α there are non-negative integers ni , i = 1, . . . , r such that

α =
r∑
i=1

niαi.

In this case we say that the level of the root is `(α) =
∑r

i=1 ni . Clearly the roots
of level 1 are only the simple roots. There exists a unique positive root αmax of
maximal level, that is, such that `(α) ≤ `(αmax) for all α ∈ 4+ .

For each i ∈ N define Li =
⊕

α:`(α)=iRXα where Xα is as before. Then

n =
⊕
j≥1

Lj and [Lj, Li] ⊆ Li+j

and n is an N-graded Lie algebra.
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Let α be a positive root of level m and let γα ∈ n∗ be the dual element of
Xα . Since [gi, gj] = gm for all i+ j = m , it holds

dγα ∈
⊕
i+j=m

L∗i ∧ L∗j . (9)

In particular dγα = 0 if and only if α is a simple root. This accounts into a
description of the subspaces in (2) of n∗ as follows

V0 = 0, Vj = span{γβ : `(β) ≤ j} = L∗1 ⊕ · · · ⊕ L∗j , j = 1, . . . , k.

Notice that the nilpotency index of n is k = `(αmax).

We proceed by making an insight into the space of closed 2-forms which
we denote as Z2 . Such a form is an element of Λ2n∗ =

⊕
1≤i<j≤k L

∗
i ∧ L∗j . In

this context, the result of Benson and Gordon [1, Lemma 2.8] assures that Z2 is
contained in a strictly smaller subspace, namely

Z2 ⊆ L∗k ∧ L∗1 ⊕
⊕

1≤i<j≤k−1

L∗i ∧ L∗j .

Therefore any ω ∈ Z2 can be written as a sum ω = σ + ω̃ where

σ ∈ L∗k ∧ L∗1, ω̃ ∈
⊕

1≤i<j≤k−1

L∗i ∧ L∗j and dσ = −dω̃. (10)

The vector space L∗k has dimension one and is spanned by γαmax . Moreover
L∗1 = V1 is spanned by the 1-forms γαi

, i = 1, . . . , r where α1, . . . , αr are the
simple roots. Hence the 2-form σ in (10) is in fact σ = γαmax ∧ η , with η =∑r

i=1 ri γαi
∈ V1 , ri ∈ R .

Since dη = 0, dσ = dγαmax ∧ η and by Eq. (9),

dσ ∈ L∗k−1 ∧ L∗1 ∧ L∗1 ⊕
⊕
i+j=k

1≤i<j≤k−2

L∗i ∧ L∗j ∧ L∗1. (11)

In addition,
dω̃ ∈ Λ3(L∗k−1 ⊕ L∗k−2 ⊕ · · · ⊕ L∗1). (12)

The key here is to compare components of dσ and −dω in particular
subspaces of those in Eqns. (11) and (12). For classical complex simple Lie
algebras this idea allows us to prove that Z2 ⊂ Λ2Vk−1 which by (6) implies
E0,2
∞ (n) = 0.

Remark 4.2. The structure of the semisimple Lie algebra g is independent of
the root system. Therefore, the real nilpotent Lie algebra associated to a certain
root system is isomorphic to the nilpotent Lie algebra arising from a different one.
For this reason we can choose the root system of g that is more convenient for us
to make calculations easier.

The result we obtain is the following.
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Lemma 4.3. Let n be the nilradical of a minimal parabolic subalgebra of the
real split Lie algebra corresponding to the complex classical simple Lie algebra g.

1. If g = sl (n+ 1,C) for some n ≥ 3 then E0,2
∞ (n) = 0.

2. If g = so (2n+ 1,C) for some n ≥ 3 then E0,2
∞ (n) = 0.

3. If g = sp (2n,C) for some n ≥ 3 then E0,2
∞ (n) = 0.

4. If g = so (2n,C) for some n ≥ 4 then E0,2
∞ (n) = 0.

The full classification of the nilradicals admitting symplectic structures
follows.

Theorem 4.4. Suppose n is a nilradical of a minimal parabolic subalgebra of
the real split Lie algebra corresponding to the complex classical simple Lie algebra
g. The Lie algebra of even dimension Rs ⊕ n, s ≥ 0 admits symplectic structures
if and only if g is one of the followings:

sl (2,C), sl (3,C), so (5,C).

Proof. The nilradical n of sl (2,C) is the abelian Lie algebra of dimension one
and clearly R ⊕ n admits symplectic structures. When g = sl (3,C), then n is
the Heisenberg Lie algebra of dimension 3. It is well known that R ⊕ n admits
symplectic structures in this case too.

The nilradical corresponding to so (5,C) is the 4-dimensional 3-step nilpo-
tent Lie algebra which can be endowed with a symplectic structure.

When g is not one of the Lie algebras above, Lemma 4.3 implies that its
nilradical n has E0,2

∞ (n) = 0. By Corollary 2.3, given s ≥ 0 the Lie algebra
Rs ⊕ n also has zero intermediate cohomology group E0,2

∞ . After Theorem 3.1,
those nilpotent Lie algebras are not symplectic.

We proceed with the proof of Lemma 4.3. This is made using the canonical
root systems known for classical simple Lie algebras. Moreover it is performed
separately by cases because of the differences between those root systems. The
order in which the cases are exposed is from the easiest to the most difficult one.

Proof. Part (1) of Lemma 4.3. Let g = sl(n + 1,C), n ≥ 3. If n = 3, the
Lie algebra n is isomorphic to the Lie algebra of strictly upper triangular matrices
4× 4 for which can be easily shown that E0,2

∞ (n) = 0.

Suppose n ≥ 4 and consider the Cartan subalgebra h for which the positive
roots are ei ± ej , 1 ≤ i < j ≤ n + 1. The set of simple roots is 40 = {αi =
ei− ei+1 : i = 1, . . . , n} . Moreover the maximal root is αmax =

∑n
i=1 αi , hence the

nilpotency index k of n is k = n . There are two different roots of level n − 1,
namely δ1 =

∑n−1
i=1 αi and δ2 =

∑n
i=2 αi ; in particular dimLk−1 = 2.

Let ω be a closed 2-form in n∗ , then ω = σ+ ω̃ where σ and ω̃ satisfy the
conditions in (10). The fact dσ = −dω̃ implies that the components of dσ and
−dω̃ in the subspace L∗k−1 ∧L∗1 ∧L∗1 are equal. So we compute both components.
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As before, σ = γαmax ∧ η where η =
∑n

i=1 riγαi
, ri ∈ R i = 1, . . . , n and

dσ = dγαmax∧η . Using Equation (9) and the fact that αmax = δ1+αn = δ2+α1 we
obtain dγαmax = a1 γδ1∧γαn +a2 γδ2∧γα1 + τ with τ ∈ Λ2Vk−2 = Λ2(L∗k−2⊕· · ·⊕L∗1)
and a1, a2 ∈ R are both non-zero. This implies that the component of dσ =
dγαmax ∧ η in L∗k−1 ∧ L∗1 ∧ L∗1 is

n∑
i=1

a1ri γδ1 ∧ γαn ∧ γαi
+

n∑
i=1

a2ri γδ2 ∧ γα1 ∧ γαi
. (13)

To find the component of dω̃ in the same subspace write ω̃ = ω1 + ω̃1 with

ω1 ∈ L∗k−1 ∧ L∗2, ω̃1 ∈ L∗k−1 ∧ (
⊕
j≤k−1

j 6=2

L∗j )⊕ Λ2(L∗k−2 ⊕ · · · ⊕ L∗1). (14)

Hence by Eq. (9),

dω1 ∈ L∗k−1 ∧ L∗1 ∧ L∗1 ⊕
⊕

i+j=k−1

L∗i ∧ L∗j ∧ L∗2. (15)

By the same equation dω̃1 has no component in that subspace. Therefore
the component of dσ equals the component of −dω1 in L∗k−1 ∧ L∗1 ∧ L∗1 .

Since n ≥ 4 it is L∗k−1 6= L∗2 and the roots of level 2 are {αi + αi+1 : i =
1, . . . , n−1} . Hence L∗k−1∧L∗2 has a basis of the form {γδ1∧γαi+αi+1

, γδ2∧γαi+αi+1
:

i = 1, . . . , n− 1} . Then

ω1 =
n−1∑
i=1

bi γδ1 ∧ γαi+αi+1
+

n−1∑
i=1

ci γδ2 ∧ γαi+αi+1
, where bi, ci ∈ R for all i.

Equation (9) implies that dγαi+αi+1
= ξiγαi

∧ γαi+1
where ξi 6= 0, for all

i = 1, . . . , n− 1. Then

−dω1 =
n−1∑
i=1

biξiγδ1 ∧ γαi
∧ γαi+1

+
n−1∑
i=1

ciξiγδ2 ∧ γαi
∧ γαi+1

−
n∑
i=1

bidγδ1 ∧ γαi+αi+1
−

n∑
i=1

cidγδ2 ∧ γαi+αi+1
.

The component of −dω1 in L∗k−1 ∧ L∗1 ∧ L∗1 is

n−1∑
i=1

biξiγδ1 ∧ γαi
∧ γαi+1

+
n−1∑
i=1

ciξiγδ2 ∧ γαi
∧ γαi+1

. (16)

Indeed, the element dγδi belongs to Λ2Vk−2 for i = 1, 2 because γδi ∈ L∗k−1 ⊆
Vk−1 .

Formulas (13) and (16) give the components in L∗k−1 ∧ L∗1 ∧ L∗1 of dσ and
−dω1 which must be equal, that is,

n−1∑
i=1

biξiγδ1 ∧ γαi
∧ γαi+1

+
n−1∑
i=1

ciξiγδ2 ∧ γαi
∧ γαi+1

=

n−1∑
i=1

a1riγδ1 ∧ γαn ∧ γαi
+

n∑
i=2

a2riγδ2 ∧ γα1 ∧ γαi
.
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This expression implies that ri = 0 for all i = 1, . . . , n which means η = 0
yielding to σ = 0. The conclusion here is that if ω = σ + ω̃ is closed then σ = 0,
that is, ω ∈ Λ2Vk−1 and therefore E0,2

∞ (n) = 0 as we wanted to prove.

Proof. Part (3) of Lemma 4.3. Let g = sp(2n,C) for some n ≥ 4.

Let h be the Cartan subalgebra of g associated to the set of positive roots
4+ = {ei ± ej : 1 ≤ i < j ≤ n, 2ei, i = 1, . . . , n} ; the subset of simple roots
is 40 = {αi := ei − ei+1 : i = 1, . . . , n − 1, αn := 2en} . The maximal root is
αmax =

∑n−1
i=1 2αi + αn from which we deduce that n is 2n− 1-step nilpotent; set

k = 2n − 1. Unlike the previous case, dimLk−1 = 1; the root of level k − 1 is
δ = α1 +

∑n−1
i=2 2αi + αn .

Consider a closed 2-form ω ∈ Λ2n∗ with ω = σ + ω̃ as in Eq. (10).
We are interested in computing the components of dσ and dω in the subspace
L∗k−1 ∧ L∗1 ∧ L∗1 ⊕ L∗k−2 ∧ L∗2 ∧ L∗1 which must be opposite. Below we compute
them both.

As before σ = γαmax ∧ η where η is a linear combination of the 1-forms γαi
,

i = 1, . . . , n . Moreover αmax = δ + α1 . The roots ρ = α1 + α2 +
∑n−1

i=3 2αi + αn
and ρ′ =

∑n−1
i=2 2αi + αn are the only ones of level k − 2 so

dγαmax = a1γα1∧γδ+a2γα1+α2∧γρ+τ, a1 6= 0, a2 6= 0, with τ ∈ Λ2Vk−3. (17)

In fact, αmax = δ + α1 and there do not exists any positive root β such that
β + ρ′ = αmax .

From Eq. (17),

dσ = dγαmax ∧ η = a1γα1 ∧ γδ ∧ η + a2γα1+α2 ∧ γρ ∧ η + τ ∧ η,

being τ ∧ η an element in Λ3Vk−3 . The component of dσ in L∗k−1 ∧ L∗1 ∧ L∗1 ⊕
L∗k−2 ∧ L∗2 ∧ L∗1 is

a1γα1 ∧ γδ ∧ η + a2γα1+α2 ∧ γρ ∧ η. (18)

To find the component of dω̃ let ω1 and ω̃1 be 2-forms such that ω̃ = ω1+ω̃1

where

ω1 ∈ L∗k−1 ∧ L∗2 ⊕ L∗3 ∧ L∗k−2,
ω̃1 ∈ L∗k−1 ∧ (

⊕
j≤k−1

j 6=2

L∗j )⊕ L∗k−2 ∧ (
⊕
j≤k−1

j 6=3

L∗j ) ⊕ Λ2(L∗k−3 ⊕ · · · ⊕ L∗1).

Using Eq. (9) for the differential of basic 1-forms one obtains

dω1 ∈ L∗k−1 ∧ L∗1 ∧ L∗1 ⊕ L∗k−2 ∧ L∗2 ∧ L∗1.

and dω̃1 has zero component in the same subspace. Hence the component of dω̃
in L∗k−1 ∧ L∗1 ∧ L∗1 ⊕ L∗k−2 ∧ L∗2 ∧ L∗1 is the component of dω1 in that subspace.

In this case, `(β) = 2 if and only if β = αi+αi+1 for some i = 1, . . . , n−1.
Thus L∗k−1 ∧ L∗2 admits the set {γαi+αi+1

∧ γδ, i = 1, . . . , n − 1} as a basis. The
roots of level three are αi + αi+1 + αi+2 , i = 1, . . . , n− 2 and 2αn−1 + αn .
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Since n ≥ 4, 3 6= k − 2 and L∗3 ∧ L∗k−2 is spanned by {γαi+αi+1+αi+2
∧

γρ, γαi+αi+1+αi+2
∧ γρ′ : i = 1, . . . , n − 2, γ2αn−1+αn ∧ γρ, γ2αn−1+αn ∧ γρ′} . The

2-form ω1 can be written as

ω1 =
n−1∑
i=1

ciγαi+αi+1
∧ γδ +

n−2∑
i=1

diγαi+αi+1+αi+2
∧ γρ + dn−1γ2αn−1+αn ∧ γρ

+
n−2∑
i=1

eiγαi+αi+1+αi+2
∧ γρ′ + en−1γ2αn−1+αn ∧ γρ′ , ci, di, ei ∈ R.

From (10),

dγαi+αi+1
= ξiγαi

∧ γαi+1
,

dγαi+αi+1+αi+2
= s1i γαi+αi+1

∧ γαi+2
+ s2i γαi

∧ γαi+1+αi+2
;

dγ2αn−1+αn = sn−1γαn−1 ∧ γαn−1+αn ,

with ξi, s
1
i , s

2
i , sn−1 all non-zero.

Putting this all together we reach:

dω1 =
n−1∑
i=1

ciξiγαi
∧ γαi+1

∧ γδ −
n−1∑
i=1

ciγαi+αi+1
∧ dγδ

+
n−2∑
i=1

di(s
1
i γαi+αi+1

∧ γαi+2
+ s2i γαi

∧ γαi+1+αi+2
) ∧ γρ

−
n−2∑
i=1

diγαi+αi+1+αi+2
∧ dγρ + dn−1sn−1γαn−1 ∧ γαn−1+αn ∧ γρ

− dn−1γ2αn−1+αn ∧ dγρ −
n−2∑
i=1

eiγαi+αi+1+αi+2
∧ dγρ′

+
n−2∑
i=1

ei(s
1
i γαi+αi+1

∧ γαi+2
+ s2i γαi

∧ γαi+1+αi+2
) ∧ γρ′

− en−1sn−1γαn−1 ∧ γαn−1+αn ∧ γρ′ − en−1γ2αn−1+αn ∧ dγρ′ .

Since `(ρ) = `(ρ′) = k − 2, dγρ, dγρ′ ∈ Λ2Vk−3 . In addition, δ = α2 + ρ =
α1 + ρ′ implies

dγδ = b1γα2 ∧ γρ + b2γα1 ∧ γρ′ + τ ′, b1 6= 0, b2 6= 0, with τ ′ ∈ Λ2Vk−3.

Therefore, the component of −dω1 in L∗k−1 ∧ L∗1 ∧ L∗1 ⊕ L∗k−2 ∧ L∗2 ∧ L∗1 is

−
n−1∑
i=1

ciξiγαi
∧ γαi+1

∧ γδ +
n−1∑
i=1

ciγαi+αi+1
∧ (b1γα2 ∧ γρ + b2γα1 ∧ γρ′)

−
n−2∑
i=1

di(s
1
i γαi+αi+1

∧ γαi+2
+ s2i γαi

∧ γαi+1+αi+2
) ∧ γρ (19)

−
n−2∑
i=1

ei(s
1
i γαi+αi+1

∧ γαi+2
+ s2i γαi

∧ γαi+1+αi+2
) ∧ γρ′

− dn−1sn−1γαn−1 ∧ γαn−1+αn ∧ γρ + en−1sn−1γαn−1 ∧ γαn−1+αn ∧ γρ′ .
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The components of dσ and −dω̃1 expressed in Eqns. (18) and (19) respec-
tively, coincide. Following usual computations we get that ci , ej are zero for all
i = 1, . . . , n − 1 and j = 1, . . . , n − 2 which simplify Eq. (19). After some other
simplifications we obtain once again that σ = 0 and then any closed 2-form in n
belongs to Λ2Vk−1 which is equivalent to E0,2

∞ (n) = 0.

When g = sp(6,C) the Lie algebra n has dimension 9 and the proof is
made by direct computations using a mathematical software.

Proof. Part (2) of Lemma 4.3. Suppose g = so(2n+ 1,C) for some n ≥ 5.

Consider the Cartan Lie subalgebra such that the set of positive roots is
4+ = {ei ± ej : 1 ≤ i < j ≤ n, ei, i = 1, . . . , n} . Then dim n = n2 . The simple
roots are {αi := ei − ei+1 : i = 1, . . . , n − 1, αn := en} and the maximal root
αmax is e1 + e2 = α1 + 2

∑n
i=2 αi . As a consequence n is 2n − 1-step nilpotent;

set k = 2n − 1. Here we also have dimLk−1 = 1; the root of level k − 1 is now
δ = α1 + α2 +

∑n−1
i=2 2αi .

Let ω ∈ Λ2n∗ be a closed form and let σ and ω̃ be as in (10). In this case
we study the components of dσ and dω̃ in L∗k−1 ∧ L∗1 ∧ L∗1 ⊕ L∗k−2 ∧ L∗2 ∧ L∗1 ⊕
L∗k−3 ∧ L∗3 ∧ L∗1 which must be opposite since 0 = dω = dσ + dω̃ .

Recall that σ = γαmax ∧ η with η a linear combination of the 1-forms γαi
,

i = 1, . . . , n . There are two roots of level k−2, namely ρ = α1+α2+α3+
∑n

i=4 2αi
and ρ′ = α2+

∑n
i=3 2αi . The roots of level k−3 are θ = α1+α2+α3+α4+2

∑n
i=5 αi

and θ′ = α2 + α3 + 2
∑n

i=4 αi .

Notice that

αmax = δ + α2, αmax = ρ+ (α2 + α3) = ρ′ + (α1 + α2) and

αmax = θ + (α2 + α3 + α4) = θ′ + (α1 + α2 + α3).

This implies

dγαmax = a1 γα2 ∧ γδ + a2 γα2+α3 ∧ γρ + a3 γα1+α2 ∧ γρ′ (20)

+a4 γα2+α3+α4 ∧ γθ + a5 γα1+α2+α3 ∧ γθ′ + τ,

where ai 6= 0, for all i and τ ∈ Λ2Vk−4 . Then dσ = dγαmax ∧ η is

dσ = a1 γα2 ∧ γδ ∧ η + a2 γα2+α3 ∧ γρ ∧ η + a3 γα1+α2 ∧ γρ′ ∧ η
+a4 γα2+α3+α4 ∧ γθ ∧ η + a5 γα1+α2+α3 ∧ γθ′ ∧ η + τ̃ , (21)

with τ̃ ∈ Λ2Vk−4 . Thus the element

a1 γα2 ∧ γδ ∧ η + a2 γα2+α3 ∧ γρ ∧ η + a3 γα1+α2 ∧ γρ′ ∧ η
+a4 γα2+α3+α4 ∧ γθ ∧ η + a5 γα1+α2+α3 ∧ γθ′ ∧ η (22)

is the component of dσ in L∗k−1 ∧ L∗1 ∧ L∗1 ⊕ L∗k−2 ∧ L∗2 ∧ L∗1 ⊕ L∗k−3 ∧ L∗3 ∧ L∗1 .

To compute the component of dω in the same subspace, take ω1 and ω̃1

such that ω̃ = ω1 + ω̃1 where

ω1 ∈ L∗2 ∧ L∗k−1 ⊕ L∗3 ∧ L∗k−2 ⊕ L∗4 ∧ Lk−3 and
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ω̃1 ∈ L∗k−1∧(
⊕
j≤k−1

j 6=2

L∗j )⊕L∗k−2∧(
⊕
j≤k−1

j 6=3

L∗j )⊕L∗k−3∧(
⊕
j≤k−3

j 6=4

L∗k ) ⊕ Λ2(L∗k−4⊕· · ·⊕L∗1).

The 3-form dω̃1 has zero component in L∗k−1 ∧L∗1 ∧L∗1 ⊕ L∗k−2 ∧L∗2 ∧L∗1⊕
L∗k−3 ∧ L∗3 ∧ L∗1 . Therefore the component of dω̃ in that subspace is that one of
dω1 and to compute it we will make use of the following formulas obtained from
Eq. (9):

dγδ = b1 γα3 ∧ γρ + b2 γα1 ∧ γρ′ + b3 γθ ∧ γα3+α4 + τ ′,

dγρ = ν1 γα1 ∧ γθ′ + ν2 γα4 ∧ γθ + τ ′′, (23)

dγρ′ = µ1 γα3 ∧ γθ′ + τ ′′′, with τ ′, τ ′′, τ ′′ ∈ Λ2Vk−4

The difference between dγρ and dγρ′ is due to the lack of simple roots β verifying
θ + β = ρ′ ; in opposite to ρ which verifies ρ = θ + α4 .

Notice that `(θ) = `(θ′) = k − 3, hence γθ and γθ′ are in Vk−3 ; dγθ and
dγθ′ are elements in Λ2Vk−4 = Λ2(L∗k−4 ⊕ · · · ⊕ L∗1).

The roots of level two are αi + αi+1 , i = 1, . . . , n − 1, which gives the
following basis of L∗k−1 ∧ L∗2 : {γαi+αi+1

∧ γδ, i = 1, . . . , n − 1} . In addition,
the roots of level three are αi + αi+1 + αi+2 , i = 1, . . . , n − 2 and αn−1 + 2αn .
Therefore L∗3 ∧ L∗k−2 is spanned by {γαi+αi+1+αi+2

∧ γρ, γαi+αi+1+αi+2
∧ γρ′ : i =

1, . . . , n − 2, γαn−1+2αn ∧ γρ, γαn−1+2αn ∧ γρ′} . Finally, the roots of level four
are αi + αi+1 + αi+2 + αi+3 , i = 1, . . . , n − 3, and αn−2 + αn−1 + 2αn . Since
n ≥ 5, k − 3 6= 4 and {γαi+αi+1+αi+2+αi+3

∧ γθ, γαi+αi+1+αi+2+αi+3
∧ γθ′ , i =

1, . . . , n− 3, γαn−2+αn−1+2αn ∧ γθ, γαn−2+αn−1+2αn ∧ γθ′} is a basis of L∗k−3 ∧ L∗4 .

To make computations easier, write ω1 ∈ L∗2∧L∗k−1 ⊕ L∗3∧L∗k−2 ⊕ L∗4∧L∗k−3
as ω1 = ωa1 + ωb1 + ωc1 where for some coefficients ci, di, ei, fi, gi ∈ R , it holds

ωa1 =
n−1∑
i=1

ci γαi+αi+1
∧ γδ,

ωb1 =
n−2∑
i=1

di γαi+αi+1+αi+2
∧ γρ + dn−1 γαn−1+2αn ∧ γρ +

+
n−2∑
i=1

ei γαi+αi+1+αi+2
∧ γρ′ + en−1 γαn−1+2αn ∧ γρ′ ,

ωc1 =
n−3∑
i=1

fi γαi+αi+1+αi+2+αi+3
∧ γθ + fn−2 γαn−2+αn−1+2αn ∧ γθ +

+
n−3∑
i=1

gi γαi+αi+1+αi+2+αi+3
∧ γθ′ + gn−2 γαn−2+αn−1+2αn ∧ γθ′ .

Notice that ωa1 ∈ L∗k−1∧L∗2 , ωb1 ∈ L∗3∧L∗k−2 and ωc1 ∈ L∗4∧L∗k−3 . The differential
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of the basic elements of L∗2 , L∗3 y L∗4 are

dγαi+αi+1
= ξi γαi

∧ γαi+1
,

dγαi+αi+1+αi+2
= s1i γαi+αi+1

∧ γαi+2
+ s2i γαi

∧ γαi+1+αi+2
,

dγαn−1+2αn = sn−1γαn−1+αn ∧ γαn ,
dγαi+αi+1+αi+2+αi+3

= t1i γαi
∧ γαi+1+αi+2+αi+3

+ t2i γαi+αi+1
∧ γαi+2+αi+3

+t3i γαi+αi+1+αi+2
∧ γαi+3

,
dγαn−2+αn−1+2αn = t1n−2 γαn−2 ∧ γαn−1+2αn + t2n−2 γαn−2+αn−1+αn ∧ γαn ,

where ξi, s
j
i , sn−1, t

j
i , are all non-zero.

The differential of ωa1 is by (23)

dωa1 =
n−1∑
i=1

ci dγαi+αi+1
∧ γδ −

n−1∑
i=1

ci γαi+αi+1
∧ dγδ =

n−1∑
i=1

ci ξi γαi
∧ γαi+1

∧ γδ−

n−1∑
i=1

ci γαi+αi+1
∧ (b1 γα3 ∧ γρ + b2 γα1 ∧ γρ′ + b3 γθ ∧ γα3+α4 + τ ′) .

Then the component of dωa1 in L∗k−1∧L∗1∧L∗1 ⊕ L∗k−2∧L∗2∧L∗1⊕L∗k−3∧L∗3∧L∗1
is

n−1∑
i=1

ci ξi γαi
∧γαi+1

∧γδ−
n−1∑
i=1

b1 ci γαi+αi+1
∧γα3 ∧γρ+ b2 ci γαi+αi+1

∧γα1 ∧γρ′ , (24)

since τ ′ ∈ Λ2Vk−4 = Λ2(L∗k−4⊕· · ·⊕L∗1) and γαi+αi+1
∧γθ∧γα3+α4 ∈ L∗2∧L∗2∧L∗k−3 .

In a similar way we compute the components of dωb1 and dωc1 in L∗k−1 ∧
L∗1 ∧ L∗1 ⊕ L∗k−2 ∧ L∗2 ∧ L∗1 ⊕ L∗k−3 ∧ L∗3 ∧ L∗1 which are:

- component of dωb1 :

n−2∑
i=1

(
dis

1
i γαi+αi+1

∧ γαi+2
∧ γρ + s2i di γαi

∧ γαi+1+αi+2
∧ γρ

)
+dn−1sn−1 γαn−1+αn ∧ γαn ∧ γρ − dn−1ν1 γαn−1+2αn ∧ γα1 ∧ γθ′ (25)

−
n−2∑
i=1

(
diν1 γαi+αi+1+αi+2

∧ γα1 ∧ γθ′ + diν2 γαi+αi+1+αi+2
∧ γα4 ∧ γθ

)
−ν2dn−1γαn−1+2αn ∧ γα4 ∧ γθ +

n−2∑
i=1

dis
1
i γαi+αi+1

∧ γαi+2
∧ γρ′

+
n−2∑
i=1

dis
2
i γαi

∧ γαi+1+αi+2
∧ γρ′ −

n−2∑
i=1

diµ1 γαi+αi+1+αi+2
∧ γα3 ∧ γθ′

+dn−1sn−1 γαn−1+αn ∧ γαn ∧ γρ′ − dn−1µ1 γαn−1+2αn ∧ γα3 ∧ γθ′ ;

notice that, in fact, the elements of (25) belong to L∗k−2∧L∗2∧L∗1⊕L∗k−3∧L∗3∧L∗1 .
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- component of dωc1 :

n−3∑
i=1

fi
(
t1i γαi

∧ γαi+1+αi+2+αi+3
+ t3i γαi+αi+1+αi+2

∧ γαi+3

)
∧ γθ

+fn−2(t
1
n−2γαn−2 ∧ γαn−1+2αn + t2n−2γαn−2+αn−1+αn ∧ γαn) ∧ γθ

+
n−3∑
i=1

gi
(
t1i γαi

∧ γαi+1+αi+2+αi+3
+ t3i γαi+αi+1+αi+2

∧ γαi+3

)
∧ γθ′

+gn−2(t
1
n−2γαn−2 ∧ γαn−1+2αn + t2n−2γαn−2+αn−1+αn ∧ γαn) ∧ γθ′ . (26)

In this case, the elements of (26) are in L∗k−3 ∧ L∗3 ∧ L∗1 .

The component of −dω1 in L∗k−1∧L∗1∧L∗1 ⊕ L∗k−2∧L∗2∧L∗1⊕L∗k−3∧L∗3∧L∗1
is obtained from Eqns. (24), (25) and (26) and, at the same time, it coincides with
the 3-form in (22).

The part in L∗k−1 ∧ L∗1 ∧ L∗1 of (22) and that of −dω1 are equal, that is,

n∑
i=1

a1 ri γα2 ∧ γδ ∧ γαi
=

n−1∑
i=1

ci ξi γαi
∧ γαi+1

∧ γδ.

This imply ri = 0 for all 4 ≤ i ≤ n . Putting this in (22) and looking at the part
in L∗k−3 ∧ L∗3 ∧ L∗1 of −dω1 we obtain

3∑
i=1

ηi (a4 γα2+α3+α4 ∧ γθ + a5 γα1+α2+α3 ∧ γθ′) ∧ γαi
=

n−3∑
i=1

fi
(
t1i γαi

∧ γαi+1+αi+2+αi+3
+ t3i γαi+αi+1+αi+2

∧ γαi+3

)
∧ γθ

+fn−2(t
1
n−2γαn−2 ∧ γαn−1+2αn + t2n−2γαn−2+αn−1+αn ∧ γαn) ∧ γθ

+
n−3∑
i=1

gi
(
t1i γαi

∧ γαi+1+αi+2+αi+3
+ t3i γαi+αi+1+αi+2

∧ γαi+3

)
∧ γθ′

+gn−2(t
1
n−2γαn−2 ∧ γαn−1+2αn + t2n−2γαn−2+αn−1+αn ∧ γαn) ∧ γθ′ (27)

−
n−2∑
i=1

(
diν1 γαi+αi+1+αi+2

∧ γα1 ∧ γθ′ + diν2 γαi+αi+1+αi+2
∧ γα4 ∧ γθ

)
−dn−1ν1 γαn−1+2αn ∧ γα1 ∧ γθ′ − ν2dn−1γαn−1+2αn ∧ γα4 ∧ γθ

+
n−2∑
i=1

diµ1 γαi+αi+1+αi+2
∧ γα3 ∧ γθ′ − dn−1µ1 γαn−1+2αn ∧ γα3 ∧ γθ′ .

Being careful and comparing term by term we deduce that r2 = r3 = 0 and
fi = di = 0 for all i ≥ 2. Comparing one more time we reach r1 = 0 and therefore
σ = 0. As before, this implies E0,2

∞ (n) = 0.

If g = so(7,C) or g = so(9,C) then the intermediate cohomology groups
E0,2
∞ (n) were proved to be zero throughout a computational program.
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Proof. Part (4) of Lemma 4.3. The family of simple Lie algebras so(2n,C) is
defined for n ≥ 4.

Let h be the Cartan subalgebra for which corresponds the following set of
positive roots 4+ = {ei ± ej : 1 ≤ i < j ≤ n} . Hence dim n = n(n− 1). The set
of simple roots is 40 = {αi := ei − ei+1 : i = 1, . . . , n − 1, αn := en−1 + en} and
the maximal root αmax is e1 + e2 and can be obtained as αmax = α1 + 2

∑n−2
i=2 αi +

αn−1 +αn . Then n is 2n−3-step nilpotent. Define k = 2n−3. As in the previous
case dimLk−1 = 1 and the root of level k−1 is δ = α1+α2+

∑n−2
i=2 2αi+αn−1+αn .

If n ≥ 6, then the proof of the previous case applies. Actually, the root
system corresponding to so(2n,C) has two different roots of level k− 2 which are
ρ = α1 + α2 + α3 + 2

∑n
i=4 αi + αn−1 + αn and ρ′ = α2 +

∑n
i=3 2αi + αn−1 + αn .

There are two roots of level three if n ≥ 6 and in there is only one
in other case; this is why we add the hypothesis n ≥ 6 to repeat the proof
made for the family so(2n + 1,C). In this case the roots of level k − 3 are
θ = α1+α2+α3+α4+2

∑n−2
i=5 αi+αn−1+αn and θ′ = α2+α3+2

∑n−2
i=4 αi+αn−1+αn .

For these roots the same relations as for the last case hold:

αmax = δ + α2, αmax = ρ+ (α2 + α3) = ρ′ + (α1 + α2)

αmax = θ + (α2 + α3 + α4) = θ′ + (α1 + α2 + α3).

Then Eq. (20) is valid, and so are Eqns. (22) and (23). The roots of level
two, three and four are

` = 2 : αi + αi+1, i = 1, . . . , n− 2 and αn−2 + αn.

` = 3 : αi + αi+1 + αi+2, i = 1, . . . , n− 2 and αn−3 + αn−2 + αn.

` = 4 : αi + αi+1 + αi+2 + αi+3, i = 1, . . . , n− 3 and αn−4 + αn−3 + αn−2 + αn.

Notice that the differentials of the elements of the basis of L∗2, L
∗
3 and L∗4 do

not coincide with those in the previous case. Nevertheless, they have the same
behavior. Proceeding in an analogous manner we obtain also in this case that
E0,2
∞ (n) = 0.

For n = 4 and n = 5 we used a computational program to verify that
E0,2
∞ (n) = 0 in both cases.

From the proof of the classification Theorem we can state the following:

Corollary 4.5. For a nilpotent Lie algebra n as in Theorem 4.4 of dimension
greater or equal than 2 the followings conditions are equivalent:

1. any even dimensional trivial extension Rs ⊕ n is symplectic,

2. E0,2
∞ (n) 6= 0,

3. g = sl (3,C) or g = so (5,C).
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(Grenoble), 37(4) (1987), 77–97.

[8] Helgason, S., ”Differential geometry, Lie groups, and symmetric spaces” Pure
and Applied Mathematics (80), Academic Press Inc., 1978.

[9] Knapp, A., ”Lie Groups, Lie algebras, and cohomology” Princeton University
Press, 1988.

[10] Kostant, B., Lie algebra cohomology and the generalized Borel-Weil theorem,
Ann. of Math. (2), 74 (1961), 329–387.

[11] Millionschikov, D., Graded filiform Lie algebras and symplectic nilmanifolds,
Amer. Math. Soc. Transl. Ser. 2, 212 (2004), 59–279.

[12] Mostow, G.D., Cohomology of topological groups and solvmanifolds, Ann. of
Math. (2), 73 (1961), 20–48.

[13] Nomizu, K., On the cohomology of compact homogeneous spaces of nilpotent
Lie groups, Ann. of Math. (2), 59 (1954), 531–538.

[14] Pouseele, H. and P. Tirao, Compact symplectic nilmanifolds associated with
graphs, J. Pure Appl. Algebra, 213 (2009), 1788–1794.



20 del Barco

[15] Salamon, S.M., Complex structures on nilpotent Lie algebras, J. Pure Appl.
Algebra, 157 (2001), 311–333.
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