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Abstract. A critical radius function ρ assigns to each x ∈ Rd a positive

number in a way that its variation at different points is somehow controlled by
a power of the distance between them. This kind of function appears naturally

in the harmonic analysis related to a Schrödinger operator −∆ + V with V a

non-negative potential satisfying some specific reverse Hölder condition. For
a family of singular integrals associated to such critical radius function, we

prove boundedness results in the extreme case p = 1. On one side we obtain

weighted weak (1, 1) results for a class of weights larger than Muckenhoupt
class A1. On the other side, for the same weights, we prove continuity from

appropriate weighted Hardy spaces into weighted L1. To achieve the latter

result we define weighted Hardy spaces by means of a ρ-localized maximal heat
operator. We obtain a suitable atomic decomposition and a characterization

via ρ-localized Riesz Transforms for these spaces. For the case of ρ derived from

a Schrödinger operator, we obtain new estimates for of many of the operators
appearing in [16].

1. Introduction

Let us consider the Schrödinger operator L = −∆ + V in Rd, d ≥ 3, where V is
a non-negative locally integrable function satisfying a reverse Hölder condition for
q > d/2,

(1)

(
1

|B|

ˆ
B

V (y)q dy

)1/q

≤ C

|B|

ˆ
B

V (y) dy,

for every ball B ⊂ Rd. It is well known that if in addition V is not identically zero,
the function

(2) ρ(x) = sup

{
r > 0 :

1

rd−2

ˆ
B(x,r)

V ≤ 1

}
, x ∈ Rd,

is non-zero and finite and for some constants cρ, k0 ≥ 1, the following property
holds

(3) c−1
ρ ρ(x)

(
1 +
|x− y|
ρ(x)

)−k0
≤ ρ(y) ≤ cρρ(x)

(
1 +
|x− y|
ρ(x)

) k0
k0+1

for all x, y ∈ Rd, (see Lemma 1.4 in [16]).
Since the pioneering work of Shen (see [16]) many authors deal with the harmonic

analysis associated to Schrödinger operators under the above assumptions (see for
example [3], [8], [9], [10], [12], [17]).
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From now on, we shall call a critical radius function any continuous function
ρ : Rd 7→ (0,∞) satisfying (3). Let us point out that even the left inequality may
be deduced from the other, we choose to write it in this way for future references.

Associated to such function ρ, we introduce in Section 2 two classes of opera-
tors, Sρ0 and Sρ, different singular integrals appearing in the Schrödinger setting
(see [16]).

The first class Sρ0 consists of operators associated to kernels satisfying some
special size and smoothness point-wise conditions. In particular, they are classical
Calderón-Zygmund kernels with an extra decay at infinity related to the function
ρ.

Examples of this kind of operators are Schrödinger Riesz transforms ∇(−∆ +
V )−1/2, provided V satisfies a reverse-Hölder condition (1) for some q ≥ d. However,
when (1) is satisfied only for q such that d/2 ≤ q < d, those Riesz transforms fail to
be Calderón-Zygmund. In fact, they are bounded on Lp only for p in a finite interval.
Anyway, their kernels still satisfy some integral size and smoothness conditions.

To cover such case and that of other operators associated to the Schrödinger
semi-group, we also deal with the family Sρ (see Section 2 for the definition).

Let us mention that weighted Lp estimates for both kind of operators and p > 1
can be derived from the results obtained in [2] (see Proposition 7 below)

In this work we concentrate our attention on weighted inequalities for both classes
of operators at the extreme case p = 1. In this sense, in Section 2, we analyze weak
type (1, 1) weighted inequalities for classes of weights larger than Muckenhoupt class
A1. Then we turn into the study of boundedness on appropriate weighted Hardy
spaces. To this end we introduce in Section 3 weighted Hardy spaces associated
to ρ defined in terms of ρ-localized maximal operator associated to the usual heat
kernel. For the Schrödinger case we identify such spaces with those given in terms
of the maximal operator of the semi-group as defined in [9] in the unweighted case
and in [17] for A1 Muckenhoupt weights.

As in those papers, we obtain in Section 4 an atomic decomposition of the
spaces and we also give a characterization in terms of ρ-localized classical Riesz
transforms. With these tools at hand we obtain in Section 5 boundedness results
for the ρ-singular integrals over these weighted Hardy spaces.

Finally, we apply all our results to the Schrödinger setting, obtaining continuity
properties for p = 1 of many of the operators appearing in [16]. We also derived
the corresponding characterization of the Schrödinger-Hardy spaces in terms of
Schrödinger Riesz transforms, extending the results in [9] and [17] to a wider class
of weights.

Let us introduce the classes of weights we are going to deal with. We recall that
a weight is in the Ap class of Muckenhoupt, 1 < p <∞, if the inequality

(4)

(ˆ
B

w

)1/p(ˆ
B

w−
1
p−1

)1/p′

≤ C|B|

holds for any ball B ⊂ Rd.
For case p = 1, a weight w is in the Muckenhoupt A1 class, if the inequality

(5)

ˆ
B

w ≤ C|B| inf
x∈B

w

holds for any ball B ⊂ Rd.
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Given a critical radius function ρ we shall consider two families of weights. We
introduce the Aρ,loc

p class of weights as those w satisfying (5) or (4) for ρ-local balls,
that is, B = B(x, r) with r ≤ ρ(x). Also, given θ > 0 and 1 < p < ∞ we will say
that w ∈ Aρ,θp if the inequality

(6)

(ˆ
B

w

)1/p(ˆ
B

w−
1
p−1

)1/p′

≤ C|B|
(

1 +
r

ρ(x)

)θ
holds for all balls B = B(x, r).

For p = 1 we define Aρ,θ1 as the set of weights w such that

(7)

ˆ
B

w ≤ C|B|
(

1 +
r

ρ(x)

)θ
inf
x∈B

w.

holds for all balls B = B(x, r).

Remark 1. It is not difficult to see that in (7) it is equivalent to consider cubes
instead of balls, due to (3).

We denote Aρp = ∪θ>0A
ρ,θ
p , for 1 ≤ p < ∞. It is clear that Ap ⊂ Aρp ⊂ Aρ,loc

p

and it is easy to check that for ρ ≡ 1, the inclusions are strict. In fact the weight
wγ(x) = (1 + |x|)γ belong to Aρp for any γ > d(p− 1) but they do not lie in Ap. On

the other hand, w(x) = exk , for any k = 1, . . . , d, are weights in Aρ,loc
p but not in

Aρp. Also, observe that in the limiting case V ≡ 0, the above classes coincide.

Classes Aρp are intimately connected with the family of maximal operators Mθ
ρ

defined by

(8) Mθ
ρf(x) = sup

r>0

(
1 +

r

ρ(x)

)−θ
1

|B(x, r)|

ˆ
B(x,r)

|f |,

for any θ > 0. In fact, for 1 < p <∞ they are bounded on Lp(w), provided w ∈ Aρp
(see Proposition 3 in [1]).

There are some useful facts about weights in these classes that we shall use in
the sequel.

Proposition 1. (see [3]) If w ∈ Aρ,loc
1 then for any β > 1, w ∈ Aβρ,loc

1 .

With this in mind, it is easy to get the following property for these weights.

Proposition 2. Let w ∈ Aρ,loc1 and B0 = B(x0, ρ(x0)) for a fixed x0 ∈ Rd. Then
there exists a weight v ∈ A1 such that v|B0 = w|B0 and moreover the constant of v

in A1 depends only on the constant of w in Aρ,loc1 .

Proof. We use the fact that if a weight satisfies inequality (5) for all balls contained
in B0, it is possible to find such extension of w (see [3]). To check that w|B0

satisfies
such property, let B = B(x, r) ⊂ B0. By (3) it holds that c1ρ(x0) ≤ ρ(x) ≤ c2ρ(x0)
and therefore if r ≤ ρ(x0) we have r ≤ ρ(x)/c1 and by the above property w ∈
A
ρ/c1,loc
1 , then inequality (5) is true for the ball B. �

Remark 2. Since by Proposition 1, w ∈ Aρ,loc
1 implies w ∈ Aβρ,loc

1 , we may also find
an A1-extension of w|βB0

for any fixed β > 1 according to Proposition 1.

The next proposition is a consequence of Lemma 5 in [3] which resembles a
reverse Hölder property.
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Proposition 3. If w ∈ Aρp, 1 ≤ p < ∞, then there exist positive constants δ, η
and C such that(

1

|B|

ˆ
B

w1+δ

) 1
1+δ

≤ C
(

1

|B|

ˆ
B

w

)(
1 +

r

ρ(x)

)η
,

for every ball B = B(x, r). Moreover, if w ∈ Aρ,θ1 then η depends only on θ and the
constants appearing in (3).

Also, as in the Muckenhoupt case we have the following (see [4]).

Proposition 4. If w ∈ Aρp, 1 < p <∞, then there exists ε > 0 such that w ∈ Aρp−ε.

Another property of weights in Aρ1 that resembles A1 is presented in the following
result (see [4]).

Proposition 5. If w ∈ Aρ1, then there exists ν > 1 such that wν ∈ Aρ1.

Finally, let us recall a very useful tool to work with critical radius functions.
For a proof we refer to [9]. Even though the proof is given for ρ in the context of
Schrödinger operators, the only property used is inequality (3).

Proposition 6. There exists a sequence of points xj, j ≥ 1, in Rd, so that the
family Qj = B(xj , ρ(xj)), j ≥ 1, satisfies

i) ∪jQj = Rd.
ii) For every κ ≥ 1 there exist constants C and N1 such that,

∑
j χκQj ≤ CκN1 .

2. Weak type (1, 1) of singular integrals of ρ-type

In [2] some special kind of singular integrals have been considered in a way that
when ρ comes from a Schrödinger operator, several Riesz transforms associated to
L fall under that scope. Moreover weighted strong inequalities can be derived from
the results therein.

In this section we introduce appropriate classes of singular integrals related to
critical radius function ρ and prove weighted weak type (1, 1) inequalities for a wide
class of weights.

First we deal with the class Sρ0 consisting of singular integrals T given by a kernel
K(x, y) satisfying

(a) T is bounded on Lp for any p > p0, for some p0 ≥ 1.
(b) For each N > 0, there exists CN > 0 such that

|K(x, y)| ≤ CN
1

|x− y|d

(
1 +
|x− y|
ρ(y)

)−N
.

(c) There exists 0 < λ < 1 such that for each M > 0

|K(x, y)−K(x, y0)| ≤ CM
|y − y0|λ

|x− y0|d+λ

(
1 +
|x− y0|
ρ(y0)

)−M
,

for every x, y ∈ Rd, provided |y − y0| ≤ |x−y0|2 .

Remark 3. Let us observe that from inequality (3) it is easy to get that

(9) 1 +
|x− y|
ρ(x)

≤
(

1 +
|x− y|
ρ(y)

)k0+1

,
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for any x, y ∈ Rd. In particular, condition (b) is equivalent to ask the same in-
equality but with ρ(y) replaced by ρ(x).

Operators in the class Sρ0 appear in the Schrödinger context when the potential V
satisfies a reverse Hölder inequality of order q ≥ d. Nevertheless, when d/2 < q < d,
even Riesz transforms are not in Sρ0 . For example, they are bounded on Lp only
for a limited rage of p.

To deal with those cases we introduce the class Sρ as the operators T associated
to a kernel K satisfying for some s > 1, the following properties.

(a’) T is bounded on Lp, 1 < p < s.
(b’) For each N > 0 there exists CN > 0 such that(ˆ

R<|x−x0|≤2R

|K(x, y)|sdx
)1/s

≤ CNR−d/s
′
(

1 +
R

ρ(x0)

)−N
,

for every y ∈ B(x0, r) and R ≥ 2r.
(c’) For every θ > 0, there exists Cθ such that

∑
k≥1

(2kr)d/s
′
(

1 +
2kr

ρ(x0)

)θ (ˆ
2k+1B\2kB

|K(x, y)−K(x, x0)|sdx
)1/s

≤ Cθ,

for every ball B = B(x0, r) with r ≤ ρ(x0) and every y ∈ B.

Using results from [1] and [2] we have the following proposition concerning strong
weighted inequalities for operators in Sρ0 and Sρ.

Proposition 7. (i) If T ∈ Sρ0 then T is bounded on Lp(w) with 1 < p <∞ and
any w ∈ Aρp.

(ii) If T ∈ Sρ, then T is bounded on Lp(w) with 1 < p < s and any weight w,

w−
1
p−1 ∈ Aρp′/s′ .

Proof. We start with the proof of (ii) since it is more delicate. Let us fix p, with 1 <

p < s and w−
1
p−1 ∈ Aρp′/s′ . From Proposition 4 there exists s1 with p < s1 < s such

that w−
1
p−1 ∈ Aρp′/s′1 . Besides, assumptions (b)’ and (c)’ also hold for s1 instead of

s. Therefore, the adjoint operator T ∗ satisfies the hypothesis of Theorem 5 of [2]
with s = s1. Consequently,

(10)

ˆ
Rd
|T ∗f(x)|qv(x)dx ≤ C

ˆ
Rd
|Mθ

ρ,s′1
f(x)|qv(x)dx,

for any θ > 0 and every v ∈ Aρ,loc
∞ = ∪q≥1A

ρ,loc
q .

By Proposition 3 in [1] the operator Mθ
ρ,s′1

is bounded in Lq(v) for v ∈ Aρq/s′1
with q > s′1. Inequality (10) and a duality argument imply that T is bounded on

Lq(v), 1 < q < s1, for v−
1
q−1 ∈ Aρq′/s′1 , particularly on Lp(w).

The proof of (i) is easier using Theorem 6 in [2] instead of Theorem 5.
�

In order to get weighted weak type (1, 1) inequalities for operators in Sρ0 and Sρ
we use an adapted version of Calderón-Zygmund decomposition lemma.
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Lemma 1. (See [4]) For any θ ≥ 0 there exists an at most countable family of
cubes {Pj}, Pj = P (xj , rj) such that for all λ > 0

(11)

(
1 +

rj
ρ(xj)

)θ
λ ≤ 1

|Pj |

ˆ
Pj

|f | ≤ C λ

(
1 +

rj
ρ(xj)

)k0θ
,

where k0 is the constant appearing in (3). Moreover,

(12) |f(x)| ≤ λ, a.e. x /∈ ∪jPj .

Now we are in position to state and prove the main result of this section.

Theorem 1. (i) If T ∈ Sρ0 and w ∈ Aρ1, then T is of weak type (1, 1) with respect
to w.

(ii) If T ∈ Sρ and ws
′ ∈ Aρ1, then T is of weak type (1, 1) with respect to w.

Proof. We use an argument close to the proof of Theorem 3 in [4]. We start showing

statement (ii). If w satisfies that ws
′ ∈ Aρ1, then ws

′ ∈ Aρ,β1 , for some β ≥ 0. In

this case it is also true that w ∈ Aρ,θ1 with θ = β/s′.
Given f ∈ L1(w), let us consider Pj = P (xj , rj) the Calderón-Zygmund decom-

position given in Lemma 1 associated to θ. We define the set of indexes

J1 = {j : rj ≤ ρ(xj)}, J2 = {j : rj > ρ(xj)},
and

Ω1 = ∪j∈J1Pj , Ω2 = ∪j∈J2Pj .
Now we split f = g + h+ h′, as

g(x) =


1
|Pj |

´
Pj
f, if x ∈ Pj , j ∈ J1,

0, if x ∈ Pj , j ∈ J2,

f(x), if x /∈ Ω,

with Ω = Ω1 ∪ Ω2,

h(x) =

{
f(x)− 1

|Pj |
´
Pj
f, if x ∈ Pj , j ∈ J1,

0, otherwise,

and therefore h′(x) = χΩ2f .

Let P̃j = Pj(xj , 2
√
n rj) and Ω̃ = ∪jP̃j . Now,

(13) w({x : |Tf |(x) > λ} ≤ w(Ω̃) + w({x /∈ Ω̃ : |Tf |(x) > λ}.
The first term of the last expression, can be controlled using (11) and the fact

that w ∈ Aρ,θ1 (see Remark 1), as

w(Ω̃) ≤
∑
j

w(P̃j) .
1

λ

∑
j

w(P̃j)

|P̃j |

(
1 +

rj
ρ(xj)

)−θ ˆ
Pj

|f |

.
1

λ

∑
j

inf
Pj
w

ˆ
Pj

|f | . 1

λ

ˆ
Rd
|f |w.

(14)

For the second term of (13), we estimate I = w({x : |Tg(x)| > λ}), II =

w({x /∈ Ω̃ : |Th(x)| > λ}) and III = w({x /∈ Ω̃ : |Th′(x)| > λ}).
To deal with I first notice that, from Lemma 1 it follows that |g| . λ. Now,

from ws
′ ∈ Aρ1 we get ws

′ν ∈ Aρ1 for some ν > 1 (see Proposition 5) and taking p
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such that p(1− s′) + s′ = 1
ν it is easy to check that w−

1
p−1 ∈ Aρp′/s′ with 1 < p < s.

Then from Proposition 7 (item (ii)) it follows that T is bounded on Lp(w).
Therefore,

w({x : |Tg(x)| > λ}) . 1

λp

ˆ
Rd
|g|p w . 1

λ

∑
j∈J1

w(Pj)

|Pj |

ˆ
Pj

|f |+
ˆ

Ωc
|f |w

 .

(15)

Since w ∈ Aρ1 and for j ∈ J1, rj ≤ ρ(xj) we have
w(Pj)
Pj
. infPj w, and hence the

last expression in (15) can be easily bounded by 1
λ

´
Rd |f |w.

In order to deal with II we apply Tchebysheff’s inequality to get

II ≤ 1

λ

ˆ
(Ω̃)c
|Th(x)|w(x) dx ≤ 1

λ

ˆ
(Ω̃)c

∣∣∣∣ ∑
j∈J1

ˆ
Pj

K(x, y)h(y) dy

∣∣∣∣w(x) dx

≤ 1

λ

ˆ
(Ω̃)c

(∑
j∈J1

ˆ
Pj

|K(x, y)−K(x, xj)||h(y)|dy
)
w(x) dx

≤ 1

λ

∑
j∈J1

ˆ
Pj

|h(y)|
(ˆ

(P̃j)c
|K(x, y)−K(x, xj)|w(x) dx

)
dy,

(16)

where we used that h has zero average on Pj , j ∈ J1.
The inner integrals may be estimated splitting into square annuli and applying

Hölder’s inequality with exponent s. In this way, setting P kj = P (xj , 2
k
√
n rj) we

have

ˆ
(P̃j)c
|K(x, y)−K(x, xj)|w(x) dx

≤
∑
k≥1

(ˆ
Pk+1
j \Pkj

|K(x, y)−K(x, xj)|sdx
)1/s(ˆ

Pk+1
j

w(x)s
′
dx

)1/s′

. inf
Pj
w
∑
k≥1

(2krj)
d/s′
(

1 +
2krj
ρ(xj)

)θ(ˆ
Pk+1
j \Pkj

|K(x, y)−K(x, xj)|sdx
)1/s

,

(17)

since ws
′ ∈ Aρ,β1 and θ = β/s′. In the last expression we may apply Hörmander’s

type condition (c’), since P k+1
j \ P kj ⊂ Bk+2

j \ Bkj , where Bkj = B(xj , 2
k
√
n rj), to

obtain

II .
1

λ

∑
j∈J1

inf
Pj
w

ˆ
Pj

|h| . 1

λ

∑
j∈J1

ˆ
Pj

|f |w . 1

λ

ˆ
Rd
|f |w.

Finally, we take care of III which involves h′ = fχΩ2 . Proceeding as for II,

(18) III ≤ 1

λ

∑
j∈J2

ˆ
Pj

|h′(y)|
(ˆ

(P̃j)c
|K(x, y)|w(x) dx

)
dy.

Now, for each j ∈ J2 we bound the inner integral splitting into square annuli
and applying Hölder’s inequality as in (17). Then from condition (b’) and the fact
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that P k+1
j \ P kj ⊂ B

k+2
j \Bkj we obtain

ˆ
(P̃j)c

|K(x, y)|w(x) dx ≤
∑
k≥1

(ˆ
Pk+1
j \Pkj

|K(x, y)|sdx
)1/s(ˆ

Pk+1
j

w(x)s
′
dx

)1/s′

.
∑
k≥1

(
1 +

2krj
ρ(xj)

)−N(
1

|P k+1
j |

ˆ
Pk+1
j

w(x)s
′
dx

)1/s′

. inf
Pj
w
∑
k≥1

(
1 +

2krj
ρ(xj)

)−N+ β
s′

. inf
Pj
w,

(19)

with a choice of N large enough.
Therefore, the right hand side of (18) can be bounded by a constant times

1

λ

∑
j∈J2

inf
Pj
w

ˆ
Pj

|h′| . 1

λ

∑
j∈J2

ˆ
Pj

|f |w . 1

λ

ˆ
Rd
|f |w.

Now, let us see the statement (i). Let w ∈ Aρ1, more precisely w ∈ Aρ,θ1 , for some
θ ≥ 0. Proceeding as for (ii), we obtain from (13) and (14) the inequality

w({x : |Tf |(x) > λ} ≤ w(Ω̃) + w({x /∈ Ω̃ : |Tf |(x) > λ}

.
1

λ

ˆ
Rd
|f |w + w({x /∈ Ω̃ : |Tf |(x) > λ}.

As before it is enough to estimate IV = w({x : |Tg(x)| > λ}), V = w({x /∈
Ω̃ : |Th(x)| > λ}) and V I = w({x /∈ Ω̃ : |Th′(x)| > λ}).

To deal with IV we observe that (15) holds since Aρ1 ⊂ Aρp.
To estimate V as for (16) we get

V ≤ 1

λ

∑
j∈J1

ˆ
Pj

|h(y)|
(∑
k≥1

ˆ
Pk+1
j \Pkj

|K(x, y)−K(x, xj)|w(x)dx

)
dy.(20)

Since for each k ≥ 1, x ∈ P k+1
j \ P kj and y ∈ Pj it follows |y − xj | ≤ |x−xj |2 and

then, according to condition (c) we obtain for some 0 < δ < 1 and M > 0,

|K(x, y)−K(x, xj)| ≤ CM
|y − xj |δ

|x− xj |d+δ

(
1 +
|x− xj |
ρ(x0)

)−M
≤ CM

2−kδ

|P k+1
j |

(
1 +

2krj
ρ(xj)

)−M
.

(21)
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From (21), and the fact that w ∈ Aρ,θ1 ,∑
k≥1

ˆ
Pk+1
j \Pkj

|K(x, y)−K(x, xj)|w(x)dx

.
∑
k≥1

2−kδ
(

1 +
2krj
ρ(xj)

)−M
1

|P k+1|

ˆ
Pk+1

w(x)dx

.
∑
k≥1

2−kδ
(

1 +
2krj
ρ(xj)

)−M+θ

inf
Pkj

w

. inf
Pj
w
∑
k≥1

2−kδ
(

1 +
2krj
ρ(xj)

)−M+θ

.

If we choose M > θ the last sum is finite.
Therefore, we can estimate the inner integral of (20) to get

V .
1

λ

∑
j∈J1

inf
Pj
w

ˆ
Pj

|h(y)|dy . 1

λ

∑
j∈J1

ˆ
Pj

|f |w . 1

λ

ˆ
Rd
|f |w.

Finally, V I is estimated in the same way as III, observing that for each y ∈ Pj
we have ρ(y) ' ρ(xj). Hence, from condition (b) we obtain for j ∈ J2

ˆ
(P̃j)c

|K(x, y)|w(x) dx ≤ CN
∑
k≥1

( ˆ
Pk+1
j \Pkj

1

|x− y|d

(
1 +
|x− y|
ρ(y)

)−N
w(x) dx

)

.
∑
k≥1

(
1 +

2krj
ρ(xj)

)−N(
1

|P k+1
j |

ˆ
Pk+1
j

w(x) dx

)
.

. inf
Pj
w
∑
k≥1

(
1 +

2krj
ρ(xj)

)−N+θ

. inf
Pj
w,

choosing N > θ.
�

3. Weighted Hardy spaces associated to ρ

Given a function ρ we introduce the following two maximal operators

W ∗ρ f(x) = sup
0<t<ρ2(x)

|Wtf(x)|

and

W ∗,0ρ f(x) = sup
0<t<ρ2(x)

|W loc
t f(x)|

where Wt is the classical heat kernel

Wt(x, y) =
1

(4πt)d/2
e−
|x−y|2

4t

and W loc
t is the integral operator associated to the kernel

W loc
t (x, y) = Wt(x, y)χB(x,ρ(x))(y).
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When ρ comes from a Schrödinger operator L = −∆ + V with V ∈ RHq for
q > d/2, we shall also consider two other maximal operators, namely

T ∗f(x) = sup
t>0
|Ttf(x)|

and

T ∗,0f(x) = sup
t>0
|T loc
t f(x)|

where Tt is the semi-group operator with infinitesimal generator L. It is known
that Tt is an integral operator with a kernel that, by abuse of notation, we denote
Tt(x, y). Moreover, since V is non-negative, we have 0 ≤ Tt(x, y) ≤ Wt(x, y) (see
[9]). Analogously, T loc

t is the integral operator against the kernel

T loc
t (x, y) = Tt(x, y)χB(x,ρ(x))(y).

In what follows our aim is to prove that any of these maximal operators applied
to a certain function f are bounded below by |f |. To this end we want to check
that, for appropriate weights w, they are the maximal operators associated to some
approximations of the identity in L1(w), in the a.e. sense.

First we shall see that W ∗ρ as well as T ∗ are controlled by any maximal function
of the type

Mθ
ρf(x) = sup

r>0

(
1 +

r

ρ(x)

)−θ
1

|B(x, r)|

ˆ
B(x,r)

|f |,

with θ ≥ 0, while the local operators W ∗,0ρ and T ∗,0 are bounded by

M loc
ρ f(x) = sup

0<r<ρ(x)

1

|B(x, r)|

ˆ
B(x,r)

|f |.

In fact the following proposition holds

Proposition 8. Let f ∈ L1
loc. Then, there exist constants Cθ and C such that

a) W ∗ρ (|f |) ≤ CθMθ
ρf and T ∗(|f |) ≤ CθMθ

ρf , for any θ > 0.

b) W ∗,0ρ (|f |) ≤ CM loc
ρ f and T ∗,0(|f |) ≤ CM loc

ρ f .

Proof. For the first inequality in a) we write for some N > d + 1, and Bk =
B(x, 2k

√
t)

Wt(|f |)(x) =

ˆ
Rd
Wt(x, y)|f(y)| dy

≤ C 1

td/2

ˆ
Rd

(
1 +
|x− y|√

t

)−N
|f(y)| dy

≤ C 1

td/2

∑
k≥0

ˆ
Bk+1\Bk

(
1 +
|x− y|√

t

)−N
|f(y)| dy

+ C
1

td/2

ˆ
B(x,

√
t)

(
1 +
|x− y|√

t

)−N
|f(y)| dy.
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The first term is bounded by a constant times∑
k≥0

1

td/2
1

(1 + 2k)N

ˆ
Bk+1

|f(y)| dy

≤ C
∑
k≥0

2−k
(1 + 2k)−N+d+1

|Bk+1|

ˆ
Bk+1

|f(y)| dy.

Now if t ≤ ρ(x)2 we have 2(1 + 2k) ≥ 1 + 2k+1
√
t

ρ(x) and hence the last expression is

bounded by MN−d−1
ρ f(x). Taking N large enough we can reach any θ > 0.

To deal with second term observe that if t ≤ ρ(x)2 we have 2−θ ≤ (1 +
√
t

ρ(x) )−θ

for any θ > 0. Therefore

1

td/2

ˆ
B(x,

√
t)

(
1 +
|x− y|√

t

)−N
|f(y)| dy

≤ 1

td/2

ˆ
B(x,

√
t)

|f(y)| dy

≤ C
(

1 +

√
t

ρ(x)

)−θ
1

|B(x,
√
t)|

ˆ
B(x,

√
t)

|f(y)| dy

≤ CMθ
ρf(x).

Next observe that the first inequality in b) follows with the same steps but now
the sum is extended up to k0−1 with k0 = max{k : 2k

√
t < ρ(x)} and also appears

the term

C
1

td/2

ˆ
B(x,ρ(x))\B(x,2k0

√
t)

(
1 +
|x− y|√

t

)−N
|f(y)| dy

Thus, having in mind that (1 + 2k)−N+d+1 < 1 and 2k0
√
t ' ρ(x) we obtain

W loc
t |f |(x) .

k0∑
k=0

2−k
 
B(x,2k

√
t)

|f(y)| dy + 2−k0
 
B(x,ρ(x))

|f(y)| dy,

and the inequality follows since the radius of the balls are at most ρ(x). Notice
that we do not use t ≤ ρ(x)2 here.

As for the second inequality in b) the fact that 0 ≤ Tt(x, y) ≤ Wt(x, y) and the
remark above give

(22) T ∗,0|f |(x) = sup
t>0

T loc
t |f |(x) ≤ sup

t>0
W loc
t |f |(x) ≤M loc

ρ f(x).

Finally the remaining inequality follows from (20) in [3] which gives for any
N > 0,

(Tt − T loc
t )|f |(x) ≤ 1

ρ(x)d

∑
k≥0

2−kN
ˆ
B(x,2kρ(x))

|f |

≤ C
∑
k≥0

2−k
(

1

1 + 2k

)N−d−1
1

|B(x, 2kρ(x))|

ˆ
B(x,2kρ(x))

|f |

≤ CMN−d−1
ρ f(x).

This, together with (22), gives the desired estimate since M loc
ρ ≤ 2θMθ

ρ for any
θ ≥ 0.
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�

It is known that M loc
ρ is of weak type (1, 1) with respect to the weight w if and

only if, w ∈ Aρ,loc
1 (see [3], Theorem 1).

As we mentioned before, in [1], Lp-weighted inequalities were studied for the
operator Mθ

ρ whenever 1 < p < ∞. Following the ideas developed there, it is not

hard to see the behavior of Mθ
ρ for p = 1.

Proposition 9. Given a weight w ∈ Aρ1, the maximal function Mθ
ρ is of weak type

(1, 1) with respect to w, for θ large enough.

Proof. Assume w ∈ Aσ1 for some σ > 0. Let Qk = B(xk, ρ(xk)), k ≥ 1, be a
covering of Rd as in Proposition 6. Following the proof of Proposition 3 in [1], we
can write

Mθ
ρf(x) ≤M loc

ρ f(x) + Mθ,2
ρ f(x),

where

Mθ,2
ρ f(x) = sup

r>ρ(x)

(
1 +

r

ρ(x)

)−θ
1

|B(x, r)|

ˆ
B(x,r)

|f |.

Since M loc
ρ is of weak type (1, 1) for w ∈ Aρ,loc

1 and Aρ1 ⊂ Aρ,loc
1 , it is enough to

bound Mθ,2
ρ f .

As in [1], for x ∈ Qk, setting Qjk = 2jQk, we have

Mθ,2
ρ f(x) . sup

j≥1
2−jθ

1

|Qjk|

ˆ
Qjk

|f | .
∑
j≥1

2−j(θ−σ)

w(Qjk)

ˆ
Qjk

|f |w

.
1

w(Qk)

∑
j≥1

2−j(θ−σ)

ˆ
Qjk

|f |w =
Ak

w(Qk)

where in the second inequality we use w ∈ Aσ1 . Then

w({x ∈ Rd : Mθ,2
ρ f(x) > λ}) ≤

∑
k≥1

w({x ∈ Qk : Ak/w(Qk) > λ})

≤ 1

λ

∑
j≥1

2−j(θ−σ)
∑
k≥1

ˆ
Qjk

|f |w

≤ 1

λ

ˆ
Rd
|f |w

(∑
j≥1

2−j(θ−σ−N1)

)
.

and the proposition follows taking θ > σ +N1.
�

Remark 4. The operators W ∗ρ and T ∗ are of weak type (1, 1) with respect to Aρ1-

weights. The same holds forW ∗,0ρ and T ∗,0 with respect to Aρ,loc
1 -weights. The truth

of these statements can be seen as a consequence of Proposition 8 and Proposition 9

and the weak type (1, 1) of M loc
ρ for weights in Aρ,loc

1 (see [3], Theorem 1). In

particular, the first two operators applied to functions in L1(w), w ∈ Aρ1, are finite
almost everywhere and the same is valid for the other two for functions in L1(w),

w ∈ Aρ,loc
1 .

Lemma 2. If f ∈ C0, the continuous functions of compact support, then Wtf , Ttf ,
W loc
t f and T loc

t f converge point-wisely to f when t goes to zero.
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Proof. The statement is well known for the heat semi-group. For the remaining
cases we shall prove that their differences with Wt go to zero. In fact

|(Wt −W loc
t )f(x)| ≤

ˆ
|x−y|>ρ(x)

Wt(x, y)|f(y)| dy

≤ C‖f‖∞
ˆ
|z|>ρ(x)/2

√
t

e−z
2

dz.

(23)

Since ρ(x) > 0 for all x, the last integral goes to zero with t.
Also from the estimate given in [10] (see Proposition 2.16) for t ≤ ρ(x)2

|Tt(x, y)−Wt(x, y)| ≤
( √

t

ρ(x)

)ε
1

td/2
g

(
x− y√

t

)
where g is a positive Schwartz function and ε > 0, we obtain the result for Ttf .

Finally we observe that

|(Tt − T loc
t )f(x)| ≤ (Wt −W loc

t )|f |(x)

which follows from the point-wise estimate Tt(x, y) ≤Wt(x, y) between the kernels.
Now proceeding as above in (23) the proof is finished.

�

With these observations we may prove the next result.

Proposition 10. The following inequalities hold a.e.

i) |f | ≤W ∗ρ f and |f | ≤ T ∗f for f ∈ L1(w) and w ∈ Aρ1.

ii) |f | ≤W ∗,0ρ f and |f | ≤ T ∗,0f for f ∈ L1(w) and w ∈ Aρ,loc
1 .

Proof. As a consequence of Remark 4, the previous lemma and the density of C0

in L1(w), by standard arguments, we obtain the a.e. convergence to f of Wtf , Ttf ,
W loc
t and T loc

t for f as stated. Using that the limit is bounded by the supremum
and that ρ(x) > 0 we get i) and ii).

�

For any given ρ satisfying (3) and a weight w, we may define the Hardy spaces

H1
ρ(w) =

{
f ∈ L1(w) : ‖W ∗ρ f‖L1(w) <∞

}
,

and
H1
ρ,0(w) =

{
f ∈ L1(w) : ‖W ∗,0ρ f‖L1(w) <∞

}
,

If w ∈ Aρ1, by Proposition 10 the quantity ‖W ∗ρ f‖L1(w) becomes a norm and the

same occurs when w ∈ Aρ,loc
1 for ‖W ∗,0ρ f‖L1(w). Therefore, in such cases we set

‖f‖H1
ρ(w)

.
= ‖W ∗ρ f‖L1(w) and ‖f‖H1

ρ,0(w)
.
= ‖W ∗,0ρ f‖L1(w).

Moreover we have ‖f‖L1(w) ≤ ‖f‖H1
ρ(w) and ‖f‖L1(w) ≤ ‖f‖H1

ρ,0(w) for w ∈ Aρ1
and w ∈ Aρ,loc

1 respectively.
When ρ is associated to some L = −∆ + V (through (2)) we may also define

H1
L(w) =

{
f ∈ L1(w) : ‖T ∗f‖L1(w) <∞

}
,

and
H1
L,0(w) =

{
f ∈ L1(w) : ‖T ∗,0f‖L1(w) <∞

}
,

with norms given by

‖f‖H1
L(w)

.
= ‖T ∗f‖L1(w) and ‖f‖H1

L,0(w)
.
= ‖T ∗,0f‖L1(w).
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Analogous considerations hold for these spaces

‖f‖L1(w) ≤ ‖f‖H1
L(w), for w ∈ Aρ1,

and

‖f‖L1(w) ≤ ‖f‖H1
L,0(w), for w ∈ Aρ,loc

1 .

Let us remark that the spaces H1
L(w) with w = 1 was introduced by Dziubański

and Zienkiewicz in [9] as the natural Hardy spaces in the Schrödinger context and
also this definition appears in [17] for w ∈ A1.

Our first result deals with some relationships among these spaces. We point out
that the first statement of item b) of next theorem was obtained in [10] for the
unweighted case, although with a different proof.

Theorem 2. Given ρ and a weight w, we have

a) H1
ρ(w) = H1

ρ,0(w) for w ∈ Aρ1 with equivalent norms.

b) When ρ comes from a Schrödinger operator, H1
ρ(w) = H1

L(w) for w ∈ Aρ1 and

H1
ρ,0(w) = H1

L,0(w) for w ∈ Aρ,loc
1 with equivalent norms in both cases.

In particular, the four spaces coincide when ρ comes from L and w ∈ Aρ1.

Proof. In view of Proposition 10 it will be enough to show

i) |W ∗ρ −W ∗,0ρ | . S1,

ii) |T ∗ − T ∗,0| . S1,
iii) |W ∗,0ρ − T ∗,0| . S2,

with S1 bounded on L1(w) for weights w ∈ Aρ1, and S2 bounded on L1(w) for

w ∈ Aρ,loc
1 .

Let Qk = B(xk, ρ(xk)), k ≥ 1, be a covering of Rd as in Proposition 6 and
w ∈ Aρ,σ1 .

For i) we observe that given N ≥ d,

|(W ∗ρ −W ∗,0ρ )f(x)| ≤ sup
t≤ρ2(x)

ˆ
|x−y|>ρ(x)

e−
|x−y|2

4t

td/2
|f(y)| dy

. sup
t≤ρ2(x)

t(N−d)/2

ˆ
|x−y|>ρ(x)

|f(y)|
|x− y|N

dy

. ρ(x)(N−d)
∑
j≥0

ˆ
|x−y|'2jρ(x)

|f(y)|
|x− y|N

dy

.
∑
j≥0

2−j(N−d)

|B(x, 2jρ(x))|

ˆ
B(x,2jρ(x))

|f(y)| dy

= S1f(x).

From (3) it is easy to check that there exists a fixed dilation such thatB(x, ρ(x)) ⊂
Q̃k = CQk, for any x ∈ Qk, just taking C = cρ2

k0 + 1. Since ρk = ρ(xk) ' ρ(x),



SCHRÖDINGER TYPE SINGULAR INTEGRALS: WEIGHTED ESTIMATES FOR p = 1 15

using that w ∈ Aρ,σ1 ,ˆ
Rd
S1f w ≤

∑
k≥0

w(Qk)
∑
j≥0

2−j(N−d)

|2jQ̃k|

ˆ
2jQ̃k

|f |

.
∑
j≥0

2−j(N−d)
∑
k≥0

w(2jQ̃k)

|2jQ̃k|

ˆ
2jQ̃k

|f |

.
∑
j≥0

2−j(N−d−σ)
∑
k≥0

ˆ
2jQ̃k

|f |w

.
ˆ
Rd
|f |w

∑
j≥0

2−j(N−d−σ−N1)

 .

The estimate is achieved taking N large enough.
As for ii), we use estimate (20) in [3] obtaining, for any N ≥ d,

|(T ∗ − T ∗,0)f(x)| . ρ(x)−d
∑
j≥1

2−jN
ˆ

2jB(x,ρ(x))

|f(y)| dy . S1f(x).

Finally to check iii), let w ∈ Aρ,loc
1 and observe that

|(W ∗,0ρ − T ∗,0)f(x)| ≤ sup
t>0
|(W loc

t − T loc
t )f(x)| + sup

t>ρ(x)2
|(W loc

t f(x)|

= S2,1f(x) + S2,2f(x).
(24)

For the first term we use the estimate (see (3.2) in [9])

|Wt(x, y)− Tt(x, y)| ≤ C
(
|x− y|
ρ(x)

)ε
1

|x− y|d
,

when |x− y| < ρ(x).

As before if x ∈ Qk, then B(x, ρ(x)) ⊂ Q̃k = CQk, and ρk ' ρ(x). Therefore,

S2,1f(x) ≤ Cρ−εk
ˆ
Q̃k

|f(y)|
|x− y|d−ε

dy

and thus ˆ
Qk

S2,1f(x )w(x) dx ≤ Cρ−εk
ˆ
Q̃k

|f(y)|
(ˆ

Qk

w(x)

|x− y|d−ε
dx

)
dy

Since y ∈ Q̃k, the ball Qk ⊂ B̃ = B(y,Mρ(y)) with M = cρ(C + 1)k0+1, and
ρ(y) ' ρk, the inner integral is estimated byˆ

B̃

w(x)

|x− y|d−ε
dx ≤ Cρεk

∑
j≥0

2−jε

|2−jB̃|

ˆ
2−jB̃

w(x) dx

≤ Cρεk
∑
j≥0

2−jε inf
2−jB̃

w

≤ Cρεkw(y),

where in the second inequality we use that Aρ,loc
1 = AMρ,loc

1 .
Therefore, ˆ

Qk

S2,1f w ≤ C
ˆ
Q̃k

|f | w,
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for some constant C that depends only on the constants of (3). By the finite
overlapping property of the covering, the sum in k givesˆ

Rd
S2,1f w ≤ C

ˆ
Rd
|f | w.

For the second term in (24) we have

sup
t>ρ(x)2

|W loc
t f(x)| ≤ sup

t>ρ(x)2

1

td/2

ˆ
B(x,ρ(x))

|f(y)| dy

≤ 1

ρ(x)d

ˆ
B(x,ρ(x))

|f(y)| dy,

thus, with the same notation as above,ˆ
Rd
S2,2f(x)w(x) dx ≤

∑
k≥1

ˆ
Qk

1

ρ(x)d

(ˆ
B(x,ρ(x))

|f(y)| dy
)
w(x) dx

≤ C
∑
k≥0

w(Q̃k)

|Q̃k|

ˆ
Q̃k

|f(y)|dy

≤ C
∑
k≥0

inf
x∈Q̃k

w(x)

ˆ
Q̃k

|f(y)|dy

≤ C
∑
k≥0

ˆ
Q̃k

|f(y)|w(y) dy

≤ C
ˆ
Rd
|f(y)|w(y) dy.

�

4. Atomic decomposition

In this section we are going to obtain two characterizations for the weighted
Hardy spaces just introduced: one in terms of (ρ, w)-atoms and the other by means
of ρ-localized Riesz transforms. Both results will be carried out in the context of

the space H1
ρ,0(w), with w ∈ Aρ,loc

1 defined in the previous section in terms of the
classical ρ-localized heat semi-group. In view of Theorem 2 we shall obtain the
corresponding characterizations for the other spaces. In particular when ρ comes
from a Schrödinger operator we get a generalization of the atomic decomposition
given in [9] and [17]. As for the Riesz Transforms characterization we do not recover
that given in [9] and [17] since it involves Schrödinger Riesz Transforms which can
not be expressed in terms of ρ. Nevertheless, we shall go back to this issue later on
(see Theorem 5 below).

In order to obtain the atomic decomposition of H1
ρ,0(w) we shall proceed as in

[9] and [17], starting from the one presented in [6] by Bui for local Hardy spaces
with weights in A1. Recall that those spaces were defined as

h1(w) =
{
f ∈ L1(w) : sup

0<t<1
|Wtf |(x) ∈ L1(w)

}
,

a particular case of H1
ρ(w) with ρ ≡ 1. Moreover, defining for R > 0,

h1
R(w) =

{
f ∈ L1(w) : sup

0<t<R2

|Wtf |(x) ∈ L1(w)
}
,
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and applying Theorem 2, we get

‖f‖h1
R(w) = ‖W ∗ρ f‖L1(w) ' ‖W ∗,0ρ f‖L1(w),

for ρ ≡ R and w ∈ A1.
Given R > 0 and a weight w, following [6], we define an h1

R-atom as a function
a satisfying that there exists x0 and r such that supp a ⊂ B(x0, r), and

i) ‖a‖∞ ≤ 1
w(B) ;

ii)
´
B
a = 0, if r < R

2 .

Theorem 3 (Theorem 5.2 in [6]). Let w ∈ A1. A function f belongs to h1
R(w) if

and only if there exists a sequence of h1
R–atoms {ai} and numbers {λi} such that

f =
∑
i

λiai,

in the sense of L1(w) and
∑
i |λi| <∞. Further,

‖f‖h1
R(w) ' inf

{∑
i

|λi| : f =
∑
i

λiai, for ai h
1
R-atom

}
.

Remark 5. In [9] and [17] it also appears the following property of that decompo-
sition: if f ∈ h1

R(w) is such that supp f ⊂ B(x, r) with r ≥ R, then the atoms may
be chosen with supports contained in B(x,C0r) for a constant C0 independent of
f and r.

The proof of Theorem 3 appears in [6] for R = 1. With respect to Remark 5,
although it was cited in [9] as proved in [6] we were not able to found that result
there. In fact Bui obtains the atomic decomposition as a consequence of an analog
result for H1(w), the classical weighted Hardy space and the following equivalence:
f ∈ h1

1(w) if and only if f −ψ ∗ f ∈ H1(w), where ψ belongs to the Schwartz class,´
ψ = 1 and with null moments of higher order.
It is worth noting that an arbitrary atomic decomposition of a compactly sup-

ported f ∈ h1
1(w) may not share the property in Remark 5. Also, the decomposition

constructed in [6] for functions in H1(w) with compact support does not seem to
enjoy that property either. To our believe a suitable atomic decomposition should
be provided. To this end a crucial step is building the atoms with supports in the
level sets of a smaller grand maximal function that involves convolutions only with
compactly supported functions ψ.

That such grand maximal function characterizes the space h1(w) follows from
the next observation.

Proposition 11. Let w ∈ A1. Then f ∈ h1
1(w), if and only if, MAf(x) =

supt<1,ψ∈A |ψt ∗ f(x)| ∈ L1(w), where A is a subclass of B1.

Here, B1 is the class given in [6] and the proof of the proposition is a direct
consequence of Corollary 1 there.

Then for a fixed constant c, we may choose A = {ψ ∈ B1 : suppψ ⊂ B(0, c)}.
It turns out that a construction of atoms can be carried out with a similar pattern
to that given in [6] for H1(w) but with some variants adapted to the local nature
of the spaces, and as long as c is taken large enough.

Nevertheless, c is a constant that depends only on the dimension. In this con-
struction atoms are built supported on cubes contained in Ω0 = {x : MAf(x) >
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0}. The advantage is that when f is supported in B(x0, r), with r ≥ 1, then
Ω0 ⊂ B(x0, r + c) ⊂ B(x0, (1 + c)r). Calling C0 = 1 + c, Remark 5 follows for
R = 1.

Let us point out here that in [18] (in a more general setting) the author introduces
weighted local Hardy spaces by means of a grand maximal function involving also
convolutions with functions ψ of compact support. He also obtains an atomic
decomposition proceeding very much in the spirit we just outlined.

For R 6= 1, the problem can be reduced to R = 1 by means of the following
observation.

Remark 6. A function f ∈ h1
R(w) if and only if f(R ·) belongs to h1

1(w1/R), where,

as usual, w1/R(x) = w(Rx)/Rd. Moreover, the mapping f 7→ f(R ·) is an isometry.
Also, we point out that w1/R belongs to A1 if and only if w ∈ A1 and with the
same constant. This allows to show that the equivalence between the atomic and
maximal norms given in Theorem 3 can be written with constants independent of
R.

In what follows we will denote by γ the constant

γ = γ(ρ, d) = 2cρC0(1 + 2C0)k0

where C0 is the constant of Remark 5, cρ and k0 are the constants of ρ given in (3).
With this notation we may introduce the notion of (ρ, w)-atoms.

Definition 1. An integrable function a is said to be a (ρ, w)-atom if it satisfies:

(i) There exists a ball B(x0, r) with r ≤ γρ(x0) such that supp a ⊂ B(x0, r).
(ii) ‖a‖∞ ≤ 1

w(B(x0,r))
.

(iii)
´
Rd a = 0 whenever r < γ−1ρ(x0).

Now we are ready to state and prove the following characterization of the space
H1
ρ,0(w).

Theorem 4. Let ρ be a function satisfying (3) and w ∈ Aρ,loc
1 . Then a function

f ∈ H1
ρ,0(w) if and only if there exist a sequence of (ρ, w)-atoms {ai} and scalars

{λi} such that

f =
∑
i

λiai,

in the sense of L1(w). Further,

‖f‖H1
ρ,0(w) ' inf

{∑
i

|λi| : f =
∑
i

λiai, ai (ρ, w)-atom

}
Proof. First we show that for any decomposition of f we have ‖f‖H1

ρ,0(w) ≤
∑
i |λi|.

By standard arguments it is enough to show that for any (ρ, w)-atom a we have
a ∈ H1

ρ,0(w) and moreover there is a fixed constant C such that

‖a‖H1
ρ,0(w) ≤ C.

So let a and B0 = B(x0, r) as in Definition 1, that is, supp a ⊂ B(x0, r), r ≤
γρ(x0). We shall evaluate the norms ‖W ∗,0ρ a‖L1(λB0,w) and ‖W ∗,0ρ a‖L1((λB0)c,w),
for some λ > 1 to be chosen later.

Clearly, since Wt ≥ 0 and ‖Wt(x, ·)‖L1 = 1, W ∗,0ρ a ≤ ‖a‖∞ and then

‖W ∗,0ρ a‖L1(λB0,w) ≤
w(λB0)

w(B0)
≤ C,
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where C depends on λ, γ and the Aρ,loc
1 constant of w (see Proposition 1).

To estimate ‖W ∗,0ρ a‖L1((λB0)c,w), let us remind that

W ∗,0ρ a(x) = sup
t<ρ2(x)

∣∣∣∣∣
ˆ
B(x,ρ(x))∩B0

Wt(x, y)a(y)dy

∣∣∣∣∣ .
Therefore, W ∗,0ρ a(x) > 0 implies |x − x0| < r + ρ(x) ≤ (γ + (2 + γ)k0cρ)ρ(x0) =
γ̃ρ(x0). Hence,

‖W ∗,0ρ a‖L1((λB0)c,w) =

ˆ
λr<|x−x0|<γ̃ρ(x0)

W ∗,0ρ a(y)dy.

Choosing λ = γγ̃ ≥ 2, it follows that we have to consider only the case r ≤
ρ(x0)/γ and therefore we have

´
Rd a = 0. Using that property and that |x−x0| ≥ λr

and |y − x0| < r imply |x− x0| ' |x− y|, the mean value theorem gives,

W ∗,0ρ a(x) ≤ sup
t>0

ˆ
|y−x0|<r

|Wt(x, y)−Wt(x, x0)| |a(y)|dy

. ‖a‖∞
(

r

|x− x0|

)d+1

,

where we have used that |∇W |(z) . 1
|z|d+1 . Therefore, choosing j0 such that

2j0−1r < γ̃ρ(x0) < 2j0r it follows that

‖W ∗,0ρ a‖L1((λB0)c,w) ≤ ‖a‖∞rd+1

ˆ
2r<|x−x0|<γ̃ρ(x0)

w(x)

|x− x0|d+1
dx

. ‖a‖∞
j0∑
j=2

1

2j(1+d)

ˆ
|x−x0|<2jr

w(x)dx

.
|B0|
w(B0)

inf
B0

w

j0∑
j=2

2−j . 1,

(25)

where we have used that w ∈ Aβρ,loc
1 for β = 2γ̃.

In order to prove the converse let us consider a covering {Qk}k by balls of critical
radius Qk = B(xk, ρ(xk)) as in Proposition 6. Related to this covering, there is a
partition of unity {ψk}k that may be chosen to satisfy (see [8])

i) 0 ≤ ψk ≤ 1, suppψk ⊂ 2Qk.
ii) ψk ∈ C1(Rd) with |∇ψk| ≤ C

ρk
, where ρk = ρ(xk).

iii)
∑
k ψk = 1.

Associated with such covering, there exists also a sequence {wk}k of weights in
the class A1 such that wk|2C0Qk = w|2C0Qk , according to Remark 2 (where C0 is
the constant of Remark 5). In particular, all the weights wk have a A1 constant
independent of k. Clearly, f =

∑
k fψk since by the finite overlapping property

of {2Qk} the sum has a finite number of non-zero terms for each x. Moreover, we
shall prove the following claim:

If f ∈ H1
ρ,0(w), then fψk ∈ h1

ρk
(wk) and for some constant C, we have∑

k

‖fψk‖h1
ρk

(wk) ≤ C‖f‖H1
ρ,0(w).
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To prove the claim first observe that since supp fψk ⊂ 2Qk the function W ∗,0ρk
(fψk)

is supported in 3Qk and for x ∈ 3Qk we have

W ∗,0ρk
(fψk)(x) = sup

t<ρ2k

∣∣∣∣∣
ˆ
|x−y|<ρk

Wt(x, y)f(y)ψk(y)dy

∣∣∣∣∣
. sup
t<ρ2k

ˆ
|x−y|<ρk

Wt(x, y)|f(y)| |ψk(y)− ψk(x)|dy

+ sup
t<ρ2k

∣∣∣∣∣
ˆ
|x−y|<ρk

Wt(x, y)f(y)dy

∣∣∣∣∣ψk(x)

= A1
k(x) +A2

k(x).

Using that |ψk(x)− ψk(y)| . |x−y|ρk
and that Wt(x, y) . 1

|x−y|d we have

A1
k(x) .

1

ρk

ˆ
|x−y|<ρk

|f(y)|
|x− y|d−1

dy.

Since C0 ≥ 2 we have wk = w on 3Qk and hence

(26)

ˆ
3Qk

A1
k(x)w(x) dx .

1

ρk

ˆ
4Qk

|f(y)|
ˆ
|x−y|<ρk

w(x)

|x− y|d−1
dx dy

We decompose dyadically the inner integral and we bound it by

ρk
∑
j≥0

2−j

(2−jr)d

ˆ
B(y,2−jρk)

w . ρk
∑
j

2−j inf
B(y,2−jρk)

w

. ρkw(y)

(27)

for every y ∈ 4Qk, where we have taken into account that w ∈ Aρ,loc
1 . Therefore,

from the finite overlapping property of {4Qk} given in Proposition 6 we obtain∑
k

ˆ
3Qk

A1
k w .

∑
k

ˆ
4Qk

|f |w .
ˆ
Rd
|f |w . ‖f‖H1

ρ,0(w).

Coming back to A2
k and having in mind that is supported in 2Qk, and for some

constants c1 and c2 depending only on ρ, we have c1ρk ≤ ρ(x) ≤ c2ρk for any
x ∈ 2Qk,

A2
k(x) . ψk(x) sup

t>0

ˆ
c1ρk<|x−y|<c2ρk

Wt(x, y)|f(y)|dy

+ ψk(x) sup
t<ρ2k

∣∣∣∣∣
ˆ
|x−y|<ρ(x)

Wt(x, y)f(y)dy

∣∣∣∣∣
= A2,1

k (x) +A2,2
k (x).

For x ∈ 2Qk, calling c̃2 = c2 + 2 we have

A2,1
k (x) .

1

ρdk

ˆ
c̃2Qk

|f(y)|dy

and hence,

(28)

ˆ
2Qk

A2,1
k (x)w(x)dx .

w(2Qk)

ρdk

ˆ
c̃2Qk

|f(y)|dy .
ˆ
c̃2Qk

|f(y)|w(y)dy,
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where we used that w ∈ Aβρ,loc
1 for β = c̃2. Again, the sum over k is bounded by

‖f‖L1(w).
Finally for x ∈ 2Qk we also have

A2,2
k (x) . ψk(x) sup

t<ρ(x)2

∣∣∣∣∣
ˆ
|x−y|<ρ(x)

Wt(x, y)f(y)dy

∣∣∣∣∣
+ ψk(x) sup

c1ρ2k<t<c2ρ
2
k

ˆ
|x−y|<ρ(x)

Wt(x, y)|f(y)|dy

Clearly the sum over k of the first terms gives W ∗,0ρ f(x) and then ‖W ∗,0ρ f‖L1(w) =
‖f‖H1

ρ,0(w).

On the other hand, the second term is bounded by

1

ρdk

ˆ
c̃2Qk

|f(y)|dy

for each x ∈ 2Qk, and the estimate follows as in (28).
The proof of the claim is now complete. Next, since each wk belongs to A1

and fψk ∈ h1
ρk

(wk) we may apply Theorem 3 to obtain for each k sequences of

h1
ρk

(wk)-atoms {akj } and scalars {λkj } such that

fψk =
∑
j

λkj a
k
j ,

in the sense of L1(wk) and ∑
j

|λkj | . ‖fψk‖h1
ρk

(wk),

where in the last inequality the constant is independent of k.
Therefore, f =

∑
j,k λ

k
j a
k
j in the sense of L1(w). Moreover, by the claim,∑

j,k

|λkj | .
∑
k

‖fψk‖h1
ρk

(wk) . ‖f‖H1
ρ,0(w).

It only remains to prove that each akj is a (ρ, w)-atom.

Assume k if fixed. Since akj are h1
ρk

(wk)-atoms they satisfy

(a) supp akj ⊂ Bkj = B(xkj , r
k
j ),

(b) ‖akj ‖∞ ≤ 1
wk(Bkj )

,

(c) if rkj ≤ 1
2ρk then

´
Rd a

k
j = 0.

Moreover, by Remark 5, since fψk is supported in B(xk, 2ρk) we have B(xkj , r
k
j ) ⊂

B(xk, 2C0ρk). Therefore

(29) |xkj − xk| < 2C0ρk and rkj ≤ 2C0ρk

From inequality (3) it follows that

ρk = ρ(xk) ≤ cρ(1 + 2C0)k0ρ(xkj )

and hence
rkj ≤ 2cρC0(1 + 2C0))k0ρ(xkj ) = γρ(xkj ).

Then condition (i) in the Definition 1 is satisfied.
Next, since B(xk, 2C0ρk) = 2C0Qk and w and wk coincide there, we have

wk(B(xkj , r
k
j )) = w(B(xkj , r

k
j )) and thus (ii) follows from (b).
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Finally, let us assume that rkj < ρ(xkj )/γ. From (29) and inequality (3) we deduce

ρ(xkj ) ≤ cρ(1 + 2C0)k0/(k0+1)ρ(xk) ≤ 1

2
γρk.

Therefore, rkj <
1
2ρk and by (c) we arrive to

´
Rd a

k
j = 0 as we wanted.

�

Remark 7. Let us remark that when ρ(x) = R, Theorem 4 gives an extension of
Bui’s result, stated as Theorem 3 above.

In fact, when w ∈ AR1 we showed that h1
R(w) coincides with h1

R,0(w) and since

AR1 ⊂ AR,loc
1 we get an atomic decomposition for the space h1

R(w) when w ∈ AR1 ,
that is, for some θ ≥ 0 it satisfies

w(B(x, r))

|B(x, r)|
.
(

1 +
r

R

)θ
inf

B(x,r)
w.

It is not hard to see that weights of the kind w(x) = 1 + |x|β satisfy the above
inequality but they may not be A1 weights.

Remark 8. From the proof of the above theorem it follows that

‖f‖H1
ρ,0(w) '

∑
k≥1

‖fψk‖h1
ρk

(wk).

One of the inequalities is contained in the claim. For the other, taking the atomic
decomposition given in the proof, it holds

‖f‖H1
ρ,0(w) .

∑
k,j

|λkj | ≤
∑
k

∑
j

|λkj | .
∑
k

‖fψk‖h1
ρk

(wk).

An advantage of having an atomic decomposition of some space X is the possi-
bility of reducing the proof of boundedness of a linear operator T from X into some
Banach space Y to check that for any atom and a fixed constant A,

(30) ‖T (a)‖Y ≤ A.

It is worth mentioning that such reduction is not always possible for every operator
T when, for instance, X = H1(Rd), Y a Banach space and ∞-atoms are used in
the decomposition (see [5], [13], [14], [15]). Nevertheless, for the case X = H1(Rd),
Y = L1(Rd) and T a Calderón-Zygmund operator, condition (30) suffices to extend
T to a bounded operator from H1(Rd) into L1(Rd). A proof of this fact can be
found, for instance, in [11].

In the next proposition we adapt Grafakos’ argument to our situation.

Proposition 12. Let T be a linear operator of weak type (1, 1) with respect to a

weight w ∈ Aρ,loc
1 . If there exists a constant C such that

(31) ‖Ta‖L1(w) ≤ C,

for every (ρ, w)-atom a, then T is bounded from H1
ρ,0(w) into L1(w).

Proof. Let f ∈ H1
ρ,0(w), by Theorem 4 there exist sequences {aj} and {λj}, such

that

(32) f =
∑
j

λjaj ,
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in the sense of L1(w) and a constant C independent of f satisfying

(33)
∑
j

|λj | ≤ C‖f‖H1
ρ,0(w).

Let us observe that since f ∈ L1(w) then Tf belongs to L1,∞(w) and hence is
finite almost everywhere. Also, by (31) and (33), the series

∑
j λjTaj converges in

L1(w) and hence it is finite almost everywhere.
Thus, given δ > 0 and N ∈ N, using the weak type (1, 1) and Tchebysheff’s

inequality, we have

w({|Tf −
∑
j

λjTaj | > δ}) ≤ w({|Tf −
N∑
j=1

λjTaj | > δ/2})

+ w({|
∞∑

j=N+1

λjTaj | > δ/2})

.
1

δ

∥∥∥∥∥∥f −
N∑
j=1

λjaj

∥∥∥∥∥∥
L1(w)

+
1

δ

∥∥∥∥∥∥
∞∑

j=N+1

λjTaj

∥∥∥∥∥∥
L1(w)

.

The first term goes to zero since the sum converges in L1(w). The second term
also goes to zero since the series converges in L1(w).

Therefore Tf =
∑
j λjTaj a.e. and thus

‖Tf‖L1(w) ≤
∑
j

|λj |‖Taj‖L1(w) .
∑
j

|λj | . ‖f‖L1(w).

�

Remark 9. For a weight w ∈ Aρ1, the above proposition holds true substituting
H1,0
ρ (w) by H1

ρ(w), according to Theorem 2.

To finish this section we give a characterization of the Hardy space H1
ρ,0(w) in

terms of ρ−local Riesz transforms.
Let η be a smooth function, η ∈ C∞0 (Rd) radial, 0 ≤ η ≤ 1, supp η ⊂ B(0, 2) and

η ≡ 1 in B(0, 1). For the classical Riesz transforms Rj with kernel kj(z) = zj/|z|d+1

we consider the ρ−localized operators

Rρjf(x) = p.v.

ˆ
kj(x− y) η

(
|x− y|
ρ(x)

)
f(y) dy

= p.v.

ˆ
kρj (x− y)f(y) dy.

These operators are known to be bounded on Lp(w), 1 < p < ∞, w ∈ Aρ,loc
p

(see [3]), even if we consider a non-smooth cut function like η = χB(0,1).

In [6] a characterization of the local Hardy space hR1 (w), with w ∈ A1 in terms of
Rρj with ρ = R was given. In fact, it is done for R = 1 but is easily extended to any

R > 0 (see Remark 6). We point out that the constants in the equivalence of the
norms are independent of R and that they depend on the weight only through the

Ap constant. To obtain a Riesz transforms characterization of H1
ρ,0(w), w ∈ Aρ,loc

1

we use a procedure similar to Theorem 4 in order to reduce to the case of hR1 (w).
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Theorem 5. Let ρ be a critical radius function and w ∈ Aρ,loc
1 . Then f ∈ H1

ρ,0(w)

if and only if f and Rρjf , j = 1, . . . , d belong to L1(w) and moreover

‖f‖H1
ρ,0(w) ' ‖f‖L1(w) +

d∑
j=1

‖Rρjf‖L1(w).

Proof. First observe that the operator Rρj is of weak type (1, 1) with respect to

w ∈ Aρ,loc
1 (see [3]). Then, in order to show that Rρj is bounded from H1

ρ,0(w) into

L1(w), according to Proposition 12, it is enough to check

‖Rρja‖L1(w) ≤ C,

where a is a (ρ, w)-atom supported in B = B(x0, r), r ≤ γρ(x0). As before,
for a choice of λ similar to the proof of Theorem 4, we estimate ‖Rρja‖L1(λB,w)

and ‖Rρja‖L1((λB)c,w). For the first one, using the boundedness of Rρj on Lp(w),

1 < p <∞, and w ∈ Aρ,loc
p , we get

‖Rρja‖L1(λB,w) ≤ ‖Rρja‖Lp(w)w(λB)1/p′ . ‖a‖Lp(w)w(λB)1/p′

.

(
w(λB)

w(B)

)1/p′

. 1,

where we used that w ∈ Aλγρ,loc
1 according to Proposition 1.

By the choice of λ, we have as above that Rρja(x) ≡ 0 for x /∈ λB unless

r ≤ γ−1ρ(x0) and hence
´
a = 0. Then

|Rρja(x)| ≤
ˆ
|kρj (x− y)− kρj (x− x0)||a(y)| dy

≤ C‖a‖∞
(

r

|x− x0|

)d+1

where we used |∇kρj (z)| ≤ C/|z|d+1 and that |x − y| ' |x − x0| for y ∈ B and

x /∈ λB.
Hence, following as in (25), we obtain the desired estimate.
For the converse inequality let us assume that f and Rρjf are in L1(w). We shall

prove a similar result to the claim stated in the proof of Theorem 4, namely for
each j

(34)
∑
k≥1

‖Rρkj (fψk)‖L1(wk) . ‖Rρjf‖L1(w) + ‖f‖L1(w)

with the same notation in there.
In fact we set

|Rρkj (fψk)(x)| ≤ |ψk(x)Rρkj f(x)| + |Rρkj (fψk)(x)− ψk(x)Rρkj f(x)|
= I(x) + II(x).

For the second term, by the properties of ψk we obtain

II(x) ≤
ˆ
B(x,2ρk)

|ψk(y)− ψk(x)|
|x− y|d

|f(y)| dy ≤ C

ρk

ˆ
B(x,2ρk)

|f(y)|
|x− y|d−1

dy

and the estimate follows as in (26) and (27), since the function Rρkj (fψk) is sup-
ported in 4Qk and wk ≡ w there.
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Also

I(x) ≤ |ψk(x)(Rρkj −R
ρ
j )f(x)| + |ψk(x)Rρjf(x)| = I1(x) + I2(x).

But for x ∈ 2Qk, since c1ρk ≤ ρ(x) ≤ c2ρk, we have

I1(x) ≤ Cψk(x)

ˆ
c1ρk<|x−y|<2c2ρk

|kj(x− y)||f(y)| dy ≤ Cψk(x)

ρdk

ˆ
cQk

|f(y)| dy,

where c = 2c2 + 3. Continuing as in (28) and having in mind that supp I1 ⊂ 2Qk
we arrive to ‖ψkf‖L1(w).

Therefore, summing over k we get (34).
Next we use the Riesz characterization of hρk1 (wk), being wk an A1 weight given

in [6]. Therefore for each k,

‖fψk‖hρk1 (wk) ' ‖fψk‖L1(wk) +

d∑
j=1

‖Rρkj (fψk)‖L1(wk),

where the constants are independent of k. Therefore, summing over k and using
Remark 8 and (34) we get the remaining inequality, finishing the proof of the
theorem.

�

Remark 10. Arguing as in Remark 7, we may obtain from the above result the
characterization of hR1 (w) in terms of local Riesz transforms for w in AR1 , extending
Bui’s result.

5. Boundedness on ρ-Hardy spaces of singular integrals of ρ-type

Theorem 6. Let T ∈ Sρ0 and w ∈ Aρ1. Then T maps H1
ρ(w) into L1(w) continu-

ously.

Proof. According to Theorem 1 and Proposition 12, it is enough to check that for
any (ρ, w)-atom a, ‖Ta‖L1(w) ≤ C.

Assume that supp a ⊂ B = B(x0, r) with r ≤ γρ(x0). Then if we denote B̃ = 2B

ˆ
B̃

|Ta|w ≤
(ˆ

Rd
|Ta|p

)1/p(ˆ
B̃

wp
′
)1/p′

.

If we choose p large enough such that w satisfies a p′ reverse Hölder inequality (see
Proposition 3) and p ≥ p0 we have

ˆ
B̃

|Ta|w ≤ C
(ˆ

B̃

|a|p
)1/p

|B̃|−1/pw(B̃) ≤ C‖a‖∞w(B̃) ≤ C,

where in the last inequality we use Proposition 1.
Next we observe that for x /∈ B̃ and y ∈ B we have |x− x0| ' |x− y|.
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Setting B0 = B(x0, γ
−1ρ(x0)) we have B̃c = (B̃c ∩Bc0) ∪ (B0 \ B̃). Then, using

ρ(y) ' ρ(x0) for y ∈ B and condition (b) aboveˆ
B̃c∩Bc0

|Ta(x)|w(x) dx .
ˆ
Bc0

w(x)

ˆ
B

‖a‖∞
|x− x0|d

(
|x− x0|
ρ(x0)

)−N
dy dx

. ‖a‖∞
rd

ρ(x0)−N

∑
j≥1

ˆ
2j+1B0\2jB0

w(x)

|x− x0|N+d
dx

.
rd

w(B)

∑
j≥1

2−jN
w(2j+1B0)

|2jB0|

.
rd

w(B)
inf
B
w
∑
j≥1

2−j(N−θ)

. 1,

where θ is such that w ∈ Aρ,θ1 and N is taken large enough.

Now we notice that B0 \ B̃ 6= ∅ if and only if 2r < γ−1ρ(x0) and hence we may

assume
´
a = 0. Therefore for x ∈ B0 \ B̃, using condition (c) above, we get

|Ta(x)| ≤
ˆ
B

|K(x, y)−K(x, x0)||a(y)| dy ≤ C‖a‖∞
(

r

|x− x0|

)d+λ

.

Then for j0 such that 2j0r ' γ−1ρ(x0),

ˆ
B0\B̃

|Ta(x)|w(x) dx ≤ C‖a‖∞rd+λ

j0∑
j=1

ˆ
|x−x0|'2jr

w(x)

|x− x0|d+λ
dx

≤ C rd

w(B)

j0∑
j=1

2−jλ
w(2jB)

|2jB|

≤ C rd

w(B)
inf
B
w

≤ C,

since for any 1 ≤ j ≤ j0, 2jr ≤ γ−1ρ(x0). �

Theorem 7. Let T ∈ Sρ. Then T is bounded from Hρ
1 into L1(w) for w such that

ws
′ ∈ Aρ1.

Proof. From to Theorem 1 and Proposition 12 it is enough to check boundedness
on atoms.

Let a be an atom and B = B(x0, r) its support. In this case we proceed as in
the proof of Theorem 6 cutting the domain of integration. With the same notation
there, we have ˆ

B̃

|Ta|w ≤
(ˆ

|Ta|p
)1/p(ˆ

B̃

wp
′
)1/p′

.

Choosing p < s but close enough, ws
′

would satisfy the reverse Hölder with ex-
ponent p′/s′ and being r ≤ γρ(x0) the quantity above is bounded by a constant
times

|B|
w(B)

(
1

|B̃|

ˆ
B̃

ws
′
)1/s′

.
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Using the Aρ1 condition for ws
′

the estimate follows.

Next, as before, we split B̃c = (B̃c ∩ Bc0) ∪ (B0 \ B̃). Again we observe that

B0 \ B̃ 6= ∅ if and only if 2r < γ−1ρ(x0) and hence we may assume
´
a = 0. Using

that, Hölder inequality and setting j0 so that 2j0r ' γ−1ρ(x0) we have

ˆ
B0\B̃

|Ta(x)|w(x) dx

. ‖a‖∞
j0∑
j≥0

[ws
′
(2j+1B0)]1/s

′
ˆ
B

(ˆ
2j+1B\2jB

|K(x, y)−K(x, x0)|sdx
)1/s

dy

.
|B|
w(B)

inf
B
w,

where we have used that 2jr ≤ γ−1ρ(x0) for j ≤ j0.
For the remaining integral, we decompose the integral dyadically to get

ˆ
B̃c∩Bc0

|Ta(x)|w(x) dx

≤ C‖a‖∞
ˆ
B

(ˆ
Bc0

|K(x, y)|w(x) dx

)
dy

≤ C‖a‖∞
∑
j≥0

[ws
′
(2j+1B0)]1/s

′
ˆ
B

(ˆ
2j+1B0\2jB0

|K(x, y)|sdx
)1/s

dy.

(35)

Now, since 2r < γ−1ρ(x0) we apply condition (b’) with R = 2jγ−1ρ(x0) and using

that ws
′ ∈ Aρ,θ1 , we get

ˆ
B̃c∩Bc0

|Ta(x)|w(x) dx ≤ C‖a‖∞|B|
∑
j≥1

2−j(N−
θ
s′ ) inf

2jB0

w

≤ C |B|
w(B)

inf
B0

w

≤ C |B|
w(B)

inf
B
w

≤ C,

(36)

by taking N > θ/s′.
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On the the other hand, in the case 2r ≥ γ−1ρ(x0), that is r ' ρ(x0) and

B0 \ B̃ = ∅, we proceed as in (35) and (36) but with R = 2jr, to finally obtainˆ
B̃c∩Bc0

|Ta(x)|w(x) dx

≤ C‖a‖∞
ˆ
B

(ˆ
B̃c
|K(x, y)|w(x) dx

)
dy

≤ C‖a‖∞
∑
j≥1

[ws
′
(2jB̃)]1/s

′
ˆ
B

(ˆ
2j+1B̃\2jB̃

|K(x, y)|sdx
)1/s

dy

≤ C‖a‖∞|B|
∑
j≥1

(
1 +

2j+1r

ρ(x0)

)−(N− θ
s′ )

inf
2jB̃

w

≤ C |B|
w(B)

inf
B̃
w

≤ C,

taking N > θ/s′.
�

6. The Schrödinger case

In this section we are going to deal with singular integrals arising from the
Schrödinger differential operator L = −∆ + V , V a non-negative potential and
satisfying a reverse Hölder inequality of order q, q > d/2 and d ≥ 3. So, from now
on, ρ is the function defined by (2) that, as we said, satisfies inequality (3).

As we proved in section 3, when w ∈ Aρ1 the Hardy space H1
L(w) coincides with

H1
ρ(w) = H1

ρ,0(w) so we may apply all the results from previous sections. Therefore

we already have an atomic decomposition for H1
L(w), its characterization by ρ-local

Riesz transforms, as well as boundedness of the associated ρ-singular integrals from
H1
ρ(w) into L1(w). More precisely, we conclude from Theorems 6 and 7 above the

following result.

Theorem 8. If an operator T belongs to Sρ0 (respectively to Sρ) then T maps

H1
L(w) into L1(w) for w ∈ Aρ1 (respectively for ws

′ ∈ Aρ1).

Now we apply these results and those of Section 2 to some operators arising from
L that satisfy the above assumptions.

Theorem 9. Assume V ∈ RHq, q > d. Then the operators ∇(−∆ + V )−1/2,

(−∆ + V )−1/2∇ and ∇(−∆ + V )−1∇ are of weak type (1, 1) and bounded from
H1
L(w) into L1(w) for w ∈ Aρ1. Further, if V ∈ RHq, q > d/2 the same holds for

the operator (−∆ + V )iζ , ζ ∈ R.

Proof. It is enough to check that these operators satisfy conditions (a), (b) and (c)
in the definition of the class Sρ0 .

As it was shown in [16] the above operators are Calderón-Zygmund operators,
so (a) holds. Further their kernels satisfy (b) and (c) (see Theorem 9 and Theo-
rem 10 in [2] and references therein). Then, the result follows from Theorem 1 and
Theorem 8. �
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Theorem 10. Assume V ∈ RHq, q > d/2 and let T1 = V 1/2(−∆ + V )−1/2,

T2 = V (−∆ + V )−1 and T3 = ∇(−∆ + V )−1/2. Then the operators Tj, j = 1, 2, 3
are of weak type (1, 1) and bounded from H1

L(w) into L1(w) for weights such that

ws
′
j ∈ Aρ1 where s1 = 2q, s2 = q and s3 satisfies 1/s3 = 1/q − 1/d provided q < d.

Proof. We need to check conditions (a’), (b’) and (c’) in the definition of the class
Sρ.

From [16] (see Theorem 5.10, Theorem 3.1 and Theorem 0.5), each operator Tj
is bounded on Lp(Rd) for 1 < p ≤ sj , with j = 1, 2, 3.

We denote by Kj the kernel of the operator Tj , j = 1, 2, 3. The proof that K3

satisfies condition (c’) is given in Lemma 6 of [4]. As for K1 and K2 it follows from
the proof of Theorem 11 in [2] (notice that T1 and T2 are the adjoint operators of
those appearing there).

Let us check that K1 and K2 satisfy condition (b’). It is known (see [12]), that if
V ∈ RHq with q > d/2, for any N > 0, there exists CN > 0 such that, for j = 1, 2,

|Kj(x, y)| ≤ CN
(

1 +
|x− y|
ρ(y)

)−N
1

|x− y|d−j
V (x)j/2,

and in view of Remark 3 the above inequality also holds with ρ(x) in place of ρ(y).
Therefore, for y ∈ B(x0, r) and R ≥ 2r, using that |x − x0| ' |x − y| as long as
R ≤ |x− x0| < 2R, we have(ˆ

R≤|x−x0|<2R

|Kj(x, y)|2q/jdx
)j/(2q)

.

(ˆ
R≤|x−x0|<2R

(
1 +
|x− y|
ρ(x)

)−2qN/j
V (x)q

|x− y|(d−j)2q/j
dx

)j/(2q)

.

(
1 +

R

ρ(x0)

)−N/k0+1
1

Rd−j

(ˆ
B(x0,2R)

V (x)qdx

)j/(2q)

.

(
1 +

R

ρ(x0)

)−N/k0+1
R−jd/2q

′

Rd−j

(ˆ
B(x0,2R)

V (x) dx

)j/2
,

where we have also used inequalities (9) and (1).
Finally, according to Lemma 1 in [12],

(37)

ˆ
B(x0,cR)

V (y) dy ≤ CRd−2

(
1 +

R

ρ(x0)

)µ
for some µ > 1 and c > 0. Therefore we obtain
(38)(ˆ

R≤|x−x0|<2R

|Kj(x, y)|2q/jdx
)j/(2q)

. R−d/s
′
j

(
1 +

R

ρ(x0)

)−(N/(k0+1)−µ/2)

.

Since N is arbitrary, the desired estimate follows.
Next, we check that K3 satisfies condition (b’). According to [16] (see page 538)

for every N > 0, there exists CN > 0 such that

|K3(x, y)| ≤ CN
(

1 +
|x− y|
ρ(y)

)−N
1

|x− y|d−1

(
1

|x− y|
+

ˆ
B(y,2|x−y|)

V (z)

|z − x|d−1
dz

)
.
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Proceeding as before for y ∈ B(x0, r) and R ≥ 2r, and R ≤ |x − x0| < 2R, we
have

|K3(x, y)| .
(

1 +
R

ρ(x0)

)−N/k0+1
1

Rd−1

(
1

R
+ I1(χB(x0,3R)V )(y)

)
,

where I1 is the classical fractional integral of order 1. Therefore,(ˆ
R≤|x−x0|<2R

|K(x, y)|s3dx
)1/s3

. R1−d
(

1 +
R

ρ(x0)

)−N/k0+1(
1

R
+ ‖I1(χB(x0,3R)V )‖s3

)
.

From the boundedness of I1, the fact that V ∈ RHq, and inequality (37), we get(ˆ
Rd
I1(χB(x0,3R)V )s3dx

)1/s3

≤ C
(ˆ

B(x0,3R)

|V (x)|qdx
)1/q

≤ CRd/q
′
ˆ
B(x0,3R)

|V (x)|dx

≤ CRd/q−2

(
1 +

R

ρ(x0)

)µ
.

Then, since d/s− 1 = d/q − 2 and d/s′ = d− d/q + 1, we obtain(ˆ
R≤|x−x0|<2R

|K(x, y)|sdx
)1/s

. R1−d
(

1 +
R

ρ(x0)

)−(N/(k0+1)−µ) (
Rd/s−1 +Rd/q−2

)
. R−d/s

′
(

1 +
R

ρ(x0)

)−(N/(k0+1)−µ)

,

and the proof is finished since N is arbitrary.
Then we have proved that the operators Ti, i = 1, 2, 3, belong to the class Sρ

and therefore the result follows from Theorem 1 and Theorem 8.
�

Finally we are going to show that, as in the unweighted case, the space H1
L(w)

can also be characterized in terms of Schrödinger-Riezs transforms, namely by the
components Rj of the vector operator ∇(−∆+V )−1/2. It is worth mentioning that
this kind of result was obtained in [17] only for weights in the classical class A1.

Theorem 11. Let L = −∆ + V with V ∈ RHq and w a weight. Then the equiva-
lence f ∈ H1

L(w) if and only if f,Rjf ∈ L1(w) holds provided either

a) q ≥ d and w ∈ Aρ1.

b) d/2 < q < d and ws
′ ∈ Aρ1 with 1/s = 1/q − 1/d.

Moreover, in both cases,

‖f‖H1
L(w) ' ‖f‖L1(w) +

d∑
j=1

‖Rjf‖L1(w).
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Proof. From the previous theorems we only need to prove that f and Rjf in L1(w)
imply f ∈ H1

L(w).
Our goal is to use the characterization given in Theorem 5. Following the proof

of Theorem 3 in [3] we write

Rρjf(x) = (Rρjf(x)−Rj(fχEx)(x)) + (Rj −Rj)(fχEx)(x) − Rj(fχEcx)(x)

+ Rjf(x) = A1
jf(x) + A2

jf(x) + A3
jf(x) + Rjf(x),

where Rj denotes the corresponding classical Riesz transform and Ex = {y ∈ Rd :
|x− y| < ρ(y)}.

Following the argument in [3], page 13, the L1(w) norm of A2
j and A3

j are bounded

by ‖f‖L1(w) for w ∈ Aρ1 if q ≥ d or ws
′ ∈ Aρ1 if d/2 < q < d.

Now, for A1
j , we observe that B(x, c−1ρ(x)) ⊂ Ex ⊂ B(x, cρ(x)), with c = cρ2

k0 .
Also, since η ≡ 1 in B(0, 1) and η ≡ 0 in B(0, 2)c we obtain,

|A1
jf(x)| .

ˆ
Rd

∣∣∣η( |x− y|
ρ(x)

)
− χEx(y)

∣∣∣ |f(y)|
|x− y|d

dy

.
1

ρ(xd)

ˆ
B(x,(c+2)ρ(x))

|f(y)| dy.

Finally since for x ∈ Qk, ρ(x) ' ρ(xk), the norm ‖A1
jf‖L1(w) is bounded by

‖f‖L1(w) proceeding as in (28) and for any w ∈ Aρ,loc
1 .

Therefore using Theorem 2 and Theorem 5 we get

‖f‖H1
L(w) . ‖f‖H1

ρ,0(w)

. ‖f‖L1(w) +

d∑
j=1

‖Rρjf‖L1(w)

. ‖f‖L1(w) +

d∑
j=1

‖Rjf‖L1(w),

and the result follows. �
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