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ABSTRACT: The fundamental object for studying a (bio)-
chemical reaction obtained from simulations is the free energy
profile, which can be directly related to experimentally determined
properties. Although quite accurate hybrid quantum (DFT
based)-classical methods are available, achieving statistically
accurate and well converged results at a moderate computational
cost is still an open challenge. Here, we present and thoroughly
test a hybrid differential relaxation algorithm (HyDRA), which
allows faster equilibration of the classical environment during the
nonequilibrium steering of a (bio)chemical reaction. We show and
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discuss why (in the context of Jarzynski’s Relationship) this method allows obtaining accurate free energy profiles with smaller
number of independent trajectories and/or faster pulling speeds, thus reducing the overall computational cost. Moreover, due to
the availability and straightforward implementation of the method, we expect that it will foster theoretical studies of key

enzymatic processes.

1. INTRODUCTION

Computer simulation of molecular systems is currently an
invaluable and ubiquitous tool for the study of chemical and
biochemical reactions and their underlying mechanisms. For
those reactions occurring in solution (or in an enzyme) at near
room temperature, the central object to be determined is the
free energy profile (FEP) along the reaction (or the potential of
mean force), since it can be directly related to the
experimentally determined properties such as reaction rates
and equilibrium constants, and thus their kinetic and
thermodynamic behavior. Even though quite accurate compu-
tation of enthalpies for a given system configuration is
straightforward, determination of free energies requires
extensive sampling to account for the large number of
meaningful conformations, in particular, in complex environ-
ments such as solvated biomolecules.

To properly describe chemical reactivity, the reactive system
must be described using quantum mechanics (QM) methods,
such as Density Functional Theory (DFT). Due to the
nonlinear increase of their computational cost with system
size, the treatment of systems larger than a few hundreds of
atoms at the QM level is computationally expensive and an area
of ongoing development. A possible way of overcoming this
drawback is to use cheaper QM methods or the so-called
divide-and-conquer type of strategies, resulting in linear scalin
and thus allowing to treat an entire protein at the QM level.'~
Another, and possibly the most widely used strategy to
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overcome the size limit but nonetheless retain the ability to
describe large molecular systems (such as an enzymatic reaction
or a chemical reaction in aqueous solution), is to employ hybrid
quantum mechanical/molecular mechanical (QM-MM)
schemes. These allow the detailed investigation of chemical
events that take place in a certain region of a large system,
which is modeled using ab initio techniques (QM region),
while the remainder of the system (MM region) is treated at
the less expensive classical, force-field based level. Although this
type of methods has been extensively and successfully used in
the last decades,®” it is important to note that due to the large
degree of configurational sampling that is necessary to obtain
accurate free energies and the high computational expense of
the QM-MM implementations (mainly required to compute
the QM energy and forces), the development and validation of
free energy determination strategies that properly balance
accuracy and computational efficiency is a very active research
area.

To determine the FEP along a given selected reaction
coordinate (here called 1), either using a QM, QM-MM, or
pure classical method, enhanced or biased sampling strategies
are usually used. The oldest most common and well-known of
these is possibly the umbrella sampling strategy,” but more
recently, other methods such as Metadynamics,” Adaptive
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Biasing Force,'° Free Energy Perturbation,'’ and Orthogonal
Space Random Walk'* have also been applied to these type of
studies. A very potent quite novel strategy for this purpose is
based on performing multiple steered molecular dynamics
(MSMD) simulations, which drive the system along the desired
reaction coordinate under nonequilibrium conditions, using an
external force. For each MSMD, the work performed by the
force is determined (W,(1)), and they are combined using
Jarzynski’s Relationship (JR)'® (eq 1) to determine the
corresponding FEP (G(4)),

G(2) = —p " In(e W)y (1)

where G(A) represents the FEP as a function of the reaction
coordinate, ff = 1/k,T, where k;, is Boltzmann’s constant and T
is the system temperature, and the brackets represent the
average of the function within them. The JR thus relates a
system’s nonequilibrium dynamics to its equilibrium properties
and has been validated both using computer simulations and
single molecule pulling experiments using optical tweezers.'*
The MSMD strategy has been described in more detail
elsewhere and will be presented here only briefly, focusing on
the key aspects related to the present work. The first important
note is that the brackets in eq 1 represent an average taken over
the ensemble of molecular dynamics trajectories each starting at
different snapshots extracted from an equilibrated run at the
initial value of the reaction coordinate. The equality holds when
the average is properly converged, which is formally true only
when an infinite number of trajectories or works have been
performed. In practice, a finite sampling is performed (defined
by the number of independent performed trajectories, NT),
and thus, the free energy is a statistical estimator. The other key
aspect of JR is that, in theory, there is no requirement as to how
fast the system is driven from reactants to products. In the
simplest implementation, the external force, F is applied as a
harmonic potential whose minimum moves at a constant
velocity (v), along the reaction coordinate 4, according to eq 2,

F=—k(d =4y — vdt) @)

where J is the starting value of the reaction coordinate, which
together with v defines the center of the well of the total
harmonic potential in each MD step. The velocity, also called
pulling speed, thus determines the amount of steps (and
computational cost) needed to perform each trajectory. Using
this type of external force, the work is simply computed by
numerically integrating the force.

To understand how pulling speed and number of trajectories
are related to the convergence of the exponential average and
the free energy profile estimate, it is useful to consider some
extreme cases. First, we can expect that the obtained
distribution of work values is roughly Gaussian (this require-
ment is not needed but makes explanations clearer). Under
near-equilibrium conditions (ie., extremely slow pulling), the
distribution of work values is very nearly a delta function and,
thus, the external work equals the free energy, as required by
the second Law of thermodynamics. However, when the pulling
speed is increased, the average work gets larger and the width of
the work distribution increases. Since to obtain the free energy
using JR requires a converged exponential average, the works
that need to be sampled are those in the lower tail of the
Gaussian distribution. Thus, faster conversion rates (larger v)
result in the need of a larger number of trajectories to be
performed, in order to properly converge the nonexponential

average. Another important aspect of the work distribution
when performing MSMD is that, at any given pulling speed, the
distribution is wider the further from the starting conditions,
which were at equilibrium. Thus, when using a constant
number of trajectories, more accurate free energy estimates are
obtained closer to the starting conformations. Usually, both
forward and backward transformations are performed starting
from equilibrated reactants and product simulations, and the
complete free energy profile is obtained by combining both
estimates.'>'¢

Wider work distributions for higher transformation speeds,
and further from the start values, are due to the system having
been driven further away from equilibrium. Thus, any strategy
that would retain the system closer to its equilibrium at each
point along the transformation is expected to result in a narrow
distribution of work values and hence a better free energy
estimate with a smaller number of trajectories. In the present
work, we develop such a strategy by allowing differential
relaxation of the MM environment in a QM-MM MSMD free
energy determination.

The use of differential sampling of the phase space in QM-
MM simulations was implemented several years ago within the
PAW ab initio molecular dynamics package using the Carr
Parrinello method'” by Woo et al,'® based on the multiple-
time-step algorithm of Tuckerman et al,'”*° and is based on
the use of different masses and time steps for the QM and MM
subsystems. The MM subsystem was sampled with a time step
of dt/n, with dt being the dt used for the propagation of the
QM system, and n was set to 20. Masses of the classical atoms
were scaled using different schemes in the 1/10 to 1/100 range.
The authors showed that the multiple time step method
method generated the same trajectory as a standard MD
simulation and allowed faster (about 2 times) convergence of
the average force applied on a geometrical restraint, which
could be used in a thermodynamic integration scheme. No free
energy profile was computed.

In the present work, we have developed, validated, and
applied a Hybrid QM-MM Differential Relaxation Algorithm—
HyDRA—which allows efficient equilibration of the classical
environment during a steering process that drives the QM
system along a desired reaction at faster than the equilibrium
(or reversible) required velocity. Our results show the method
results in accurate free energy profiles estimates, which require
a smaller number of independent nonequilibrium simulations
and/or can be steered faster than those using conventional
QM-MM schemes. Thus, the HyDRA (hybrid differential
relaxation algorithm) method allows for the determination of
QM-MM reaction free energy profiles at a smaller computa-
tional cost, especially in those cases where the relative QM to
MM calculation cost is large.

In this article, we present the method, describe the condition
under which it works, and make an argument as to why it
works, while also testing and applying it to a number of
systems.

2. METHODOLOGY

2.1. Theoretical Basis. In the present method, we present
an approach inszpired on the works performed by Woo et al.'®
and Ozer et al.”' We use a differential relaxation scheme that
allows the MM system to relax for a given number of MM
steps, while the QM region remains fixed (or frozen), and then,
both systems move together for another joint (or QM-MM)
step. The ratio between the MM and the joint steps is called the
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Differential Relaxation Algorithm ratio (DRAr), and thus, a
DRAr ratio of 1 is equivalent to conventional QM-MM MD
simulation, while a DRAr of 4 implies that for each QM step, 4
MM steps are performed. The key to this implementation is the
correct calculation of the forces and what actually represents a
given structure/conformation after a joint QM-MM or only
MM relaxation step. The proposed strategy is shown
graphically in scheme 1 for a DRAr = 4. When the MD starts
both the QM and MM systems are synchronized. For this
conformation (subscript 0), all contribution to forces are
computed as usual in QM-MM simulations. The forces acting
on the QM atoms have contributions from the atoms in the
QM subsystem in the initial conformation (upper figure) and
also from the atoms in the MM region in this conformation. In
our force notation, these are described as Fqy,(QM, MM,).
The equivalent is true for the forces acting on the MM
subsystem, Fy(QM, MM,). With this set of forces, the
program performs a first dynamics step, leading to
conformation i (right figure). Then, a pure MM step is
performed: pure MM forces and QM-MM forces acting on
MM atoms are computed as usual, considering the frozen QM
coordinates in conformation i, thus the MM system moves in a
fixed QM field arriving to i + 1 conformation (Figure 1). Forces

YFou(QMo,MM,)
"-.,.‘FMM(QMD,MMO)

Fou=0
Fum(QM;,MM, ;)

Fou=0
Fum(QM;,MM;)

Fom=
Fum(QM; ,MM,, ;)

Figure 1. Hybrid Differential Relaxation Algorithm scheme for a DRAr
of 4.

acting on the QM subsystem are zero-ed out, and thus, the QM
subsystem remains fixed in the i conformation. After the MM
subsystem has evolved, another two MM only steps are
executed, arriving finally at MM,,; conformation (circular
figure). Now, the system performs again a joint step. The forces
acting on the system for this step are calculated considering the
i + 3 structure for the MM subsystem and the i structure for the
QM subsystem. At this point, the cycle has started once again.
In this algorithm, each structure/conformation after a joint step
is similar to any given QM-MM MD snapshot, while any
structure after all MM steps have been performed represents a
structure where the MM regions was allowed to relax or
accommodate slightly to the frozen QM conformation.

An important point to discuss is what type of approximation
we have made with this differential relaxation algorithm, and
when will it hold and when will it fail. From Jarzynski’s original

ideas, it is clear that only work done onto the system by an
external force is to be counted toward the free energy estimator,
while heat dissipated or added should not. Only instances when
the coordinate of choice is being moved should count toward
the work associated with the free energy estimator. Instances
where the bath coordinates move but the reaction coordinate
does not count as heat and hence do not matter for the free
energy calculation. This means that if the HyDRA procedure
was applied to a single distance with everything moving,
followed by a small number of steps where said distance is kept
fixed while the rest moves; then, the procedure would be exact
and no approximation would have been made. This has already
been shown analytically by Ozer.”' In the present manuscript,
we are in a slightly different regime. While relaxing the bath, we
keep fixed not just the reaction coordinate but the whole QM
region. This is an approximation, which we need to study. The
results in the next sections validate our approach. This
approximation works well when most of the dissipative work
is associated with the MM region (e.g,, solvent) and not due to
local strains in the QM region.

2.2. Implementation. The hybrid differential relaxation
algorithm was implemented in the SANDER module of the
AMBER 12** program package. The corresponding code was
modified to allow computing the QM-MM contribution to the
forces acting on the MM atoms, at the fixed QM structure
Fum(QM;) every DRAr steps, and subsequently allow
propagating only the MM subsystem for the corresponding
steps. The modified subroutine files and user’s instructions are
available upon request to the author.

2.3. Classical Force Field and Parameters. All classical
parameters for both, pure classical equilibration simulations and
the MM part in the QM-MM dynamics were taken from the
Amber force field, ff99SB for the 20 amino acid residues® and
TIP3P for the water molecules.”* Classical parameters for the
reactants (chorismate, prephenate, methylthiol, and hydrogen-
peroxide) were taken from previous works from our
group.zs_27 Simulations were performed at constant temper-
ature using the Berendsen thermostat as implemented in
SANDER, using periodic boundary conditions and either
constant volume or constant pressure. Ewald Sums were used
to treat long-range electrostatics in the chorismate—prephenate
systems, while a direct cutoff method was used for the
methyltiol reaction performed at the DFT-PBE level (see
below), where Ewald sums are not available.

2.4. QM Parameters and QM-MM Scheme. The QM-
MM simulations were carried out using two different theory
levels: Density Functional Tight Binding (DFTB)*** as
implemented in the sander module of AMBER,** and a pure
DFT method with the Perdew, Burke, and Erznheof (PBE)
exchange and correlation functional, as developed in our
group® >* and implemented in the SANDER module.*

2.5. Set up of the System, Equilibration, and
Simulation Strategy. 2.5.1. Chorismate in Solution. The
system consists of chorismate solvated with an octahedral box
of 1483 water molecules. First, we performed a complete
geometry optimization using the AMBER default algorithm
followed by a pure classical Molecular Dynamics (MD)
simulations to equilibrate the system density at the desired
temperature (300K). For this sake, the system was first gently
heated to 300 K during 1 ns at constant volume (ie, NVT
ensemble), followed by another 1 ns long constant pressure
(i, NPT ensemble) simulation, both using a time step of 1 fs
and without the addition of any restraints. Subsequently, a
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hybrid QM-MM MD—considering the solute as quantum—
was performed to equilibrate the system with the new
Hamiltonian, which consisted of first a 200 ps NVT simulation,
followed by a 2 ns long production simulation, which was
performed restraining the chosen reaction coordinate at their
desired equilibrium values (see below). Al QM-MM MD
simulations were performed using a 0.5 fs time step. From this
run, 20 different starting structures were selected for the
MSMD production runs. The chosen reaction coordinate was
dec — deo (Figure 2), which has been shown to adequately

(|ZOO'

OOC¥icc 000G, \_FO0
I N ‘,
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— — 5
o) CO0" dco z
H H OH

Figure 2. Employed reaction coordinate for the chorismate to
prephenate reaction in solution and in the chorismate mutase enzyme.
The distance between the two carbons, dc(, is shown in blue, while
dco is shown in red.

[elll]

. . 25,26,35—37 .
represent the process in previous work and was varied

from —3.26 to +1.99 A. In order to obtain the desired free
energy profiles and thus analyze the HyDRA efficiency,
different set of production runs were performed, varying the
pulling speed (v), the MM steps to QM steps ratio (called the
DRAr), the number of trajectories, and the initial conditions.

2.5.2. Chorismate/Prephenate in Bacillus subtilis Choris-
mate Mutase. To study the chorismate to prephenate reaction
in Bacillus subtilis chorismate mutase (BsCM), we began with
the crystal structure of the corresponding wild type enzyme
trimer bound to prephenate (PDB ID 1COM),*® also
employed in our previous works on QM/MM studies of
Bacillus subtilis chorismate mutase reaction mechanism using
SIESTA HYBRID method.”*’

Hydrogen atoms were added with the tleap module of the
Amber Program package. Standard protonation states were
assigned to titrable residues (D and E are negatively charged, K
and R positively charged). Histidine protonation was assigned
favoring formation of hydrogen bonds in the crystal structure.
The resulting protein complex was immersed in a truncated
octahedral box of TIP3P water, and consisted of ca. 15000
atoms. The system was first optimized using a conjugate
gradient algorithm for 2000 steps, followed by 200 ps long
constant volume pure classical MD where the temperature of
the system was slowly raised to 300 K. The heating was
followed by additional 200 ps long constant temperature and
constant pressure MD simulation to equilibrate the systems
density. During this equilibration, the o carbons of the protein
were restrained with an harmonic potential to their initial
position using a 1 kcal/mol-A> force constant. Finally, the
system was subjected to an NPT run for 5 ns, in a pure classical
MD without restraints. Snapshots of this run were selected as
starting points for QM/MM equilibrium simulations. One of
the prephenate molecules was selected as the QM subsystem.
First, a QM/MM optimization of the QM subsystem was
performed to allow the system to adapt to the new Hamiltonian
smoothly. This was followed by 50 ps long QM/MM
equilibration simulation at constant temperature and constant
volume. Finally, 500 ps long QM/MM production simulations
were performed to select snapshots for the Pre to Cho MSMD
simulations. To obtain equilibrated snaphots of the BsCM

bound to chorismate, the last structure of a QM/MM MSMD
simulation, where the Pre to Chor reaction occurred, was
subjected to 50 ps long QM/MM equilibration simulation at
constant temperature and constant volume and then to another
500 ps long QM/MM production simulations to select
snapshots for the MSMD simulations of the Chor to Pre
MSMD simulations.

2.5.3. Thiol Oxidation by Hydrogen Peroxide. The thiol
oxidation by hydrogen peroxide in aqueous solution was
recently studied using QM/MM methods and the umbrella
sampling strategy.”” The quantum solute consisting of the
negatively charged methyl thiolate and hydrogen peroxide
(CH;S™ + H,0,) was embedded in a box containing 4290
classical TIP3P water molecules. We first performed a pure
classical equilibration of the system temperature and density
followed by a 50 ns QMMM MD where the solute was treated
at the DFTB semiempirical level. Selected snapshots for the
MSMD simulations were relaxed for 1 ps QM/MM MD using a
DFT level of theory (PBE) as described above.

The chosen reaction coordinate consists in the difference
between the O1—02 and the S—O1 distances, as depicted in
Figure 3. The reaction was sampled from —1.7 to +1.2A.
Details about the strategy used for the final determination of
the FEP using MSMD are described in the Results section.

01
-~ Ht é
A 02

Figure 3. Reacion coordiante for the thiol oxidation by hydrogen
peroxide.

3. RESULTS

The results are organized as follows. First, we study the
chorismate to prephenate reaction in order to test and validate
our methodology. We calculated several FEP for the Chor to
Pre reaction in solution and in the enzyme. Results for the
forward (Chor to Pre) reaction are shown in the next sections.
Information about the backward (Pre to Chor) reaction can be
found in the Supporting Information. We also model the thiol
oxidation by hydrogen peroxide at the hybrid MM/DFT-PBE
level, computing several FEP employing JR. Finally, to test the
acceleration of the method, we performed hybrid MM/DFT-
PBE MD for several systems with varying number of QM and
MM atoms, previously studied in our group,’”*”* and
compared their computational cost.

3.1. Chorismate to Prephenate Reaction. We use the
chorismate to prephenate reaction, at the DFTB/MM level of
theory, as test case since it allow us to generate a quite accurate
reference free energy profile to set as reference. We can then
study many different protocols (varying the key HyDRA
parameters) at a moderate computational cost and analyze its
accuracy and relative computational cost.

3.1.1. Reference Free Energy Profile in Solution. We begin
our analysis by determining a reference FEP for the Chor to
Pre conversion in solution with the QM(DFTB)/MM
methodology. During the equilibrium simulation, the CO
distance is almost constant (since it corresponds to a chemical
bond), while the CC distance is free to explore a wider range.
Previous studies on Chor have shown that the reactive
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structure, called the diaxial conformation, displays a CC
distance of ca. 4.7A; thus, we restrained the reaction coordinate
at —3.0A position in the equilibrium simulations of Chor. We
performed three very slow conversions (quasistatic) under
these conditions. Figure 4 shows the corresponding work

= 207+
[=}
£
g w0
>
20
] 0F Prephenate
o
g Chorismate
= ~10
-2 -1 0 1 2

Reaction Coordinate (A)

Figure 4. Work and FEP for the Chor to Pre conversion at the
QM(DFTB)/MM in solution. The thin lines corresponds to work
profiles obtained at a pulling speed of 0.02 A/ps repeated three times
from different initial conditions. The thick line corresponds to
Jarzynski’s estimator.

profiles (thin lines, repeated three times from different initial
conditions) and the FEP (thick line, computed through the JR)
vs reaction coordinate, determined at a pulling speed of 0.02 A/
ps. The results shows that the three work profiles barely differ
(less than 1 kcal/mol) and thus were performed close to
equilibrium rate, yielding a quite accurate estimation of the
FEP. The resulting FEP (shown in bold in Figure 4) will be
considered for the remaining of the present work as the
reference FEP for this reaction, with a AG®° of —10 kcal/mol
and an activation free energy barrier, AG* of 21 kcal/mol. The
values are in good agreement with experimental data.

We will now analyze the accuracy of the FEP determination
for the chorismate to prephenate conversion reaction using
nonequilibrium MSMD simulations and JR, and if (and how)
they improve with the HyDRA scheme. Usually, in this
approach, each transformation is performed 10 to 500 times
faster than the time required to perform the reaction in quasi
equilibrium conditions and S to 40 independent trajectories are
performed. Given the aim of the present work, we will
systematically analyze how the different simulation parameters
(number of trajectories, pulling speed, and DRA ratio) affect
the accuracy of the obtained FEP.

3.1.2. Effect of the DRA Ratio. In order to analyze how the
DRA ratio affects the obtained FEP we performed 10
nonequilibrium trajectories, with pulling speed of 1 A/ps (50
times faster than our reference), with DRA ratios of 1, 4, 10,
and 20, respectively. Figure Sa presents the results, together
with the reference FEP, while Figure Sb shows the barrier
(AG?) and reaction free energy (AG®) values as a function of
DRAr.

The results show, as expected, that nonequilibrium FEP
significantly over estimates both AG® and AG* when compared
to the reference. Interestingly, these results clearly show that
when using the HyDRA method with a DRAr greater than one
and the same number of QM steps, more accurate FEPs are
obtained (AG* and AG® closer to reference values). Note-
worthy is the fact that increasing the DRA ratio from 4 to 10
improves the accuracy, although further increase (to 20) does
not produce a significant effect. This observation is also not
unexpected since there must be a limit to the classical

o
=

30
g
E 20}
=
)
= 10 L 4
2 Prephenate
2
5 0
3 Chorismate
= o-10 |
-2 -1 0 1 2
b Reaction Coordinate (A)
30
E 5P e AGH
Ei ° °
£ 2 ‘ L
>
o0 .
2 0 e
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-10 (] S I-|
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Figure S. FEP for the Chor to Pre reaction, obtained through 10
nonequilibrium dynamics with a pulling speed of 1 A/ps, and reference
FEP. (a) Free energy profiles for the reaction in solution with a DRA
ratio of 1, 4, 10, and 20, shown in black, orange, magenta, and red
curves, respectively. The green curve is reference FEP. (b) AG* and
AG?® for the FEP shown in part a. Circles represent values for FEP
with different DRAr, and the squares are the values for the reference
profile.

relaxation, for a given amount of perturbation performed to
the QM subsystem.

The use of HyDRA also affects the standard deviation
between work traces for different trajectories. As DRAr
increases, the trajectories become similar in terms of work
values, which decreases the standard deviation and improves
convergence (data shown in the Supporting Information).

3.1.3. Effect of Pulling Speed. To further analyze the
potential of the DRA strategy, we repeated the FEP
determinations, using the same four DRA ratios, but using
faster and slower pulling speeds. The first thing to be noted is
that for any given speed larger DRAr results in smaller (more
accurate) barriers and lower reaction free energies. The other
key observation is that DRA effect is larger for faster speeds.
For example, for a pulling speed of 0.5 A/ps (25 times faster
than the reference run) DRAr of 1 slightly overestimates (3
kcal/mol) the barrier and reaction free energy and higher DRAr
only moderately improve these results, while for a pulling speed
100 times faster that the reference reaction (2 A/ps) the DRAr
effect (with values of 10 —20) is notorious, being able to obtain
barrier and free energy values in reasonable agreement with the
reference, while for regular dynamics—DRAr = 1—the
depicted behavior in even thermodynamically wrong (AG® >
0) and the barrier is overestimated by more than 10 kcal/mol.
Thus, the faster the pulling speed, the bigger the impact of
using the HyDRA strategy. It is also interesting to compare the
FEPs obtained through different pulling speeds but equal
DRAr. As expected for DRAr = 1, the improvement in the
accuracy of the FEP when decreasing the pulling speed is
notorious going from a completely wrong to a reasonable
prediction. For a DRAr = 4, too fast pulling speeds still results
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in too high barriers and wrong prediction of the reaction free
energy, but moderate pulling speeds (1A/ps) already yield
meaningful results. Higher DRA ratios (10 or 20) strikingly
show almost no difference between the FEPs obtained with
different pulling speeds yielding pretty good results even at fast
speeds. In summary, DRA allows to significantly increase the
pulling speed used to drive the reaction, being nonetheless able
to yield accurate FEP (see Table 1).

Table 1. Relevant Values of the FEP for the Chor to Pre
Reaction in Solution, Obtained with Different
Methodologies®

pulling speed trajectories DRAr AGH AG°

0.02 3 1 21 -10

0.5 10 1 24.6 7.0

4 18.4 -10.3

10 22.6 —-8.1

20 20.6 —12.8

1 S 1 25.1 —-0.6

4 25.1 —-7.8

10 21.1 -9.9

20 22.6 -9.9

10 1 259 -0.9

4 25.5 —6.5

10 21.6 -9.5

20 21.6 —-11.3

15 1 25.6 -0.9

4 25.1 -=7.5

10 21.1 -9.9

20 214 —-11.5

20 1 25.2 —-1.6

4 25.1 -=7.0

10 21.1 -9.9

20 21.1 —-11.9

2 10 1 33.8 8.4

4 29.0 —-0.2

10 23.6 —6.3

20 23.4 -9.1

“Pulling speed in A/ ps and AG in kecal/mol.

3.2. FEP for the Chorismate to Prephenate Reaction in
Bacillus subtilis Chorismate Mutase Enzyme. To further
explore the potential of the presented strategy, we now turn our
attention to the Cho to Pre interconversion reaction performed
by the Bacillus subtilis chorismate mutase (BsCM). The
resulting key energetic values obtained from the corresponding
FEPs are presented in Table 2. As for the case in solution, we
computed a reference FEP using a very slow pulling speed of
0.02 A/ps. Nonequilibrium simulations with and without
HyDRA were performed 50 to 200 times faster. The results
show the same tendency as in solution, although differences
seem slightly smaller. The value of AG®, for example, decreases
systematically when using HyDRA, even at the slowest pulling
speeds (1 and 2 A/ps), while for the fastest the difference is
more notorious.

For AG* the increment of the value of DRAr leads, as
expected, to lower free energy barriers. Indeed, it is possible to
obtain a profile showing very similar barrier compared to the
reference for all speeds using DRAr of 10, while for non-DRA
simulations it is overestimated by several kcal/mol.

We can compare the obtained results together with those of
Table 1 with available experimental and theoretical data from

Table 2. Relevant Values of the FEP for the Reaction of
Chorismate to Prephenate in BsCM Enzyme, Obtained with
10 Trajectories and Different Pulling Speed and DRAr*

pulling speed trajectories DRAr AGH AG’

0.02 3 1 9.6 —16.5
1 10 1 12.2 —-11.4
4 10.1 —-154

10 8.3 -15.6

2 10 1 15.2 -9.5
4 12.5 —-12.6

10 9.9 —-12.4

4 10 1 15.4 -52
4 11.8 =7.5

10 9.6 —12.0

“Pulling speed in A/ps and AG in kcal/mol.

the literature. Experimental studies of the chorismate to
prephenate conversion in solution showed that reaction has
an activation free energy of 24.5 kcal/mol (Andrews et al.*'). In
BsCM the activation free energy is reduced to 15.4 kcal/mol
(Kast et al.>®), thus resulting in a barrier lowering of 9.1 kcal/
mol, which makes BsCM a very efficient enzyme. Kast et al.*®
also determined the reaction free energy of the reaction
yielding a value —13.4 kcal/mol.

From the computed reaction free energy presented in Table
2, we see that slow speeds produce values close to the
experimental values, even without DRA. However, for faster
speeds, the effect of DRA is crucial. Concerning the barrier, it is
well-known that DFTB tends to underestimate their
magnitude;*>* thus, the best way to asses the accuracy of
the FEPs is comparing the change in the free energy barriers
between protein and solution (AAGY). Taking our best
solution estimate for the barrier of 21 kcal/mol, and for
BsCM of 9.6 kcal/mol, we obtain an enzyme efficiency of 11.4
kcal/mol, thus slightly overestimating the experimental value.

The data in Table 2 show that, for the slowest speed
(without DRA), the simulations already yields values in that
range (AAG* of 12.4 kcal/mol), while using DRA simulations
the value gets closer to the that obtained using the reference
FEP for slow and moderate speeds and is only slightly larger
(14 kcal/mol) for the fastest speeds and DRAr of 10.

In summary, the results for the study of CM reaction show
that the use of the DRA strategy result in lower and more
accurate barriers and reaction free energies and more so at fast
pulling speed. These results are important, since they show the
potential of the DRA strategy for the study of enzymatic
reactions.

3.3. Thiol Oxidation by Hydrogen Peroxide in
Aqueous Solution. To have another and possibly more
stringent test of the potential of the HyDRA strategy, we used it
to compute the free energy profile of the methanethiolate
oxidation reaction by hydrogen peroxide in aqueous solution

CH,S™ + H,0, » CH,SO™ + H,0

which was recently studied using the umbrella sampling
strategy.27

The reaction involves significant changes in the solvation
properties of the participating groups as well as a proton
transfer, and thus, we expect to significantly benefit from the
differential relaxation of the classical environment. The reaction
was studied using a high level of theory, taking advantage of our
own QM-MM implementation, based on a pure GGA-DFT,
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that uses the Exchange Correlation functional proposed by
Perdew, Burke, and Erznheof (PBE), which has been
extensively used to study chemical reactions®*>® but requires
significantly more computational cost compared to the DFTB
semiempirical method used for the previous reaction. Table 3

Table 3. Relevant Values of the FEP for the Methanethiolate
Oxidation Reaction by Hydrogen Peroxide in Aqueous
Solution, Obtained with 10 Trajectories and Different
Pulling Speed and DRAr”

pulling speed DRAr AG* o AG°® o°
0.5 1 12.7 6.1 -35.9 11.4
4 12.0 2.5 —-34.8 8.6
10 10.1 1.1 -35.9 5.6
1 1 14.3 6.6 -27.0 9.5
4 11.7 5.6 -31.0 9.4
10 122 4.5 -31.9 9.4

“Pulling speed in A/ ps and AG in kecal/mol.

shows the relevant values of the free energy profiles obtained
with JR, combining 10 trajectories, for the corresponding
reaction using DRA ratios of 1, 4, and 10 with pulling speeds of
1 A/ps (left), and with DRA ratio of 1, 4, and 10 with a pulling
speed of 0.5 A/ps (right), and their corresponding standard
deviations. The results again show that increasing the DRA
ratio, results in lower barriers and reaction free energies.
Indeed, DRA ratios of 4 and 10 show a barrier for the fastest
pulling, which is slightly lower than that obtained using half the
velocity and ratio of 1. The standard deviation presented shows
that the SD diminishes with increasing DRAr. What is more
interesting is that for the slower pulling (0.5 A/ps), even when
the results in the FEP do not differ significantly for different
DRAr, the SD value analysis reveals that larger DRAr possibly
result in better convergence and thus a better estimate.

3.4. Computational Cost of HyDRA. Another important
point for the evaluation of the benefits of using the HyDRA
algorithm is to evaluate how much computational cost (i.e.
overhead time) is added by performing the classical relaxation
steps, since it must be overcompensated by the gain in accuracy
or reduction in the number of trajectories and/or pulling speed.
Lets perform first a theoretical analysis of the whole
computational cost. Our first assumption is that iy = atqy,
where tyg, its the consumed time when performing only one
classical step, tqy is the time consumed in performing a joint
(or QM/MM) step, and « is a scaling parameter (a < 1) that
relates both costs and is system dependent. In conventional
non-HyDRA simulations, each step thus requires fq, time.

With this notation the total time consumed in one trajectory of
ng (quantum) steps is

L= ”s[tQM + (DRAr — 1)typ] 3)
where tqy is the non-DRA time, and (DRAr — 1) typ is the
overhead time.

The number of steps can be related with the pulling speed
through n, = 5v™', where § is the ratio between whole reaction
coordinate length and the dt employed. Replacing this
expression in equation number 3, and multiplying for the
number of total trajectories, N, used to obtain the final FEP,
we obtain the total simulation time, T, employed in the
determination of a given FEP using JR and HyDRA, according

to
T= 5(
4)

where we have divided the different contributions to the total
time employed in three terms: , which is the same in all cases
compared; SS, which is the value that depends on the
simulation strategy (number of trajectories and speed); and
Sy, which is the term that contains contributions that depend of
each system (the tqu consumed, the DRAr used, and a). To
compare the computational cost of HyDRA with conventional
simulations, we define the relative total time as

T S8y
- T° - SO'SYO

I\LT) (tqu(1 + a(DRAT — 1)) ) = 5:85:Sy

T

) s)
where the superscript o indicates the values for a reference
simulation. In other words, 7y represents the relative time
needed to obtain a given FEP between two different
simulations schemes considering all the relevant parameters
(pulling speed, number of trajectories, system, and DRAr).

In order to analyze 7y, we will first look at those cases where
SS is the same (i.e., the only variation is thus the DRAr) and
determine the corresponding value. To this end, we performed
plain MD for 1 ps with and without HyDRA and with different
DRArs in six different systems: nitrate in water, methanethio-
late in hydrogen peroxide, chorismate in water, chorismate in
BsCM enzyme, myoglobin and extracellular signal-regulated
kinase- displaying different number of both QM and MM
atoms, and treated at the DFT-PBE level. The dynamics were
performed with an Intel Core i3 processor in a single work
station. The obtained average values for 7z and S, are
summarized in Table 4.

The results show that for most systems with DRAr of 4, 73
values are 1.1, which means that the HyDRA simulation
requires ca. 10% additional computational cost compared to a

Table 4. Computational Cost of the Different QM/MM Calculations Schemes Using HyDRA at a DFT Level of Theory, This
Calculation Was Performed with an Intel Core i3 Processor in a Single Work Station®

system NOj3 water CH;S™ + H,0,
no. QM atoms 4 9
no. MM atoms 2070 8808
Sy° 7.2 9.8
7x(DRAr = 4) 1.1 1.1
7x(DRAr = 10) 1.4 1.5
7x(DRAr = 20) 19 2.2

Chor water Chor BsCM Mb ERK
24 24 42 S5
9834 40763 18758 53478
185.0 209.1 1059.4 776.8
1.2 1.1 1.1 1.1
1.3 1.4 1.2 1.3
1.6 1.7 1.5 1.5

“Sy° is the average time (in seconds) required to perform a joint step in a standard (i.e, DRAr = 1) QM/MM-MD simulation. 7 (DRAr) is the ratio
between the average time (in seconds) required to perform a complete QM/MM HyDRA cycle with respect to Sy°.

G
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conventional QM/MM run. For DRAr of 10 to 20, values of 7
are still bellow 2, except for those systems having a small QM
region. Generally speaking the relative increase in computa-
tional cost, 7y, is smaller the larger the QM region, for example
for a QM/MM calculation of Myoglobin, which includes in the
QM system the iron contained in the heme group, only an
additional 20% of computational cost is paid for DRAr of 10.

It is clear now that any improvement in the total
computational cost required to calculate a FEP will depend
on the concerted variation of SS and Sy. We analyzed these
variations employing the results for the reaction of Chor to Pre,
summarized in Tables 1 and 4. We will approach to this subject
calculating 7 for different examples.

There is no FEP that differs by less than 1 kcal/mol from the
reference when using DRAr = 1. The best estimate from DRAr
=1 (ie., 10 conventional trajectories with a pulling speed of 0.5
A/ps) differs in approximately 3 kcal/mol from the reference
and has a 7 of 0.1. Instead, for DRAr = 10, we obtain a 7 =
0.04, that is, five trajectories and a pulling speed of 1 A/ps,
which shows a clear gain in computational time, while achieving
the desired accuracy.

Concerning the estimates of BsCM catalytic power (AAG? is
9.1 kcal/mol), leaving aside the solution reference FEP already
discussed and considering only those profiles which yield
correct trends in the reaction free energy, our best non-DRA
estimate of AAG* can be performed combining values of v =
0.5 A/ps in solution and v = 1 A/ps in BsCM, with 10
trajectories in both cases, which yield a value for AAG of 12.4
kcal/mol. Using DRA best estimates for DRAr of 10, v = 1 A/
ps, S trajectories in solution and v = 4 A/ps and 10 trajectories
in BsCM we obtain a AAG* value of 10.5 kcal/mol, which is
closer to the experimental value and with a 7 of 0.34.

This results indicate that when using HyDRA fewer
trajectories or fastest pulling speed can be used to achieve
the same FEP, when comparing with conventional SMD at a
DEFT level of theory.

We have also analyzed the time gain when employing the
DFTB level of theory. Because DFTB is optimized in order to
reduce the time of the QM calculations, the time consumed for
a QM step is comparable with an MM step. Our results with
DFTB show that the gain obtained from the SS term
(previously discussed for DFT) does not compensate the
overhead that is due Sy (that is DRAr times bigger that for the
case with no HyDRA), resulting in no gain in total
computational cost (this data can be found in Supporting
Information).

4. DISCUSSION

The present work presents our Hybrid Differential Relaxation
Algorithm (HyDRA), which allows for selective relaxation of
the classical environment in QM/MM simulations of chemical
and/or enzymatic reactions, thus resulting in faster (in terms of
computational time) convergence of free energy profiles in the
context of Jarzynski’s relationship. We study the chorismate to
prephenate conversion, where HyDRA allowed us to obtain
accurate reaction free energies at less than 10% the computa-
tional cost. In essence, these observations reflect the expected
behavior of using HyDRA, which results in trajectories that are
closer to the equilibrium even for relatively fast (over 100 faster
than quasi-static) pulling speeds.

From a statistical-mechanics point of view, our results also
highlight some interesting properties of the behavior of
nonequilibrium trajectories and their work profiles in relation

to common simulation strategy parameters, such as pulling
speed and number of trajectories. The present results and our
previous experience in the subject’?**>* systematically show
that it is very difficult to get accurate FEP when the pulling
speed is too fast, no matter how many trajectories are
performed (unless very big numbers are considered). Thus, it
seems clear that if the system evolves far from equilibrium and
the standard deviation (o) of the work values is much larger
than k, T, it is very difficult to get meaningful results. This effect
has been theoretically analyzed by Pohorille et al.** who
estimated that if 6 = k,T, /4 of the trajectories samples values
close to the real G(r) and thus allow good convergence and
accurate results. The value decreases to '/, trajectories for ¢ =
2k, T and to 1/3.000.00 if ¢ = Sk, T, strongly biasing the work
values and creating very poor convergence. The HyDRA results
in closer to equilibrium trajectories even at faster pulling
speeds, significantly reducing the standard deviation of the
work values and thus significantly increasing average accuracy
and convergence.

It is also interesting to discuss other sampling schemes based
on JR, which allow for faster or better convergence of the FEP
seeking to reduce the spread, or standard deviation, of the work
trajectories, that could be applied to QM-MM simulations. In
one approach, introduced by Amzel’s group,* the reaction is
divided in segments. After performing the pulling in the first
segment and computing the corresponding work profile,
additional equilibration MD is performed to allow the system
to relax, and then, a new segment trajectory is performed and
the corresponding work profile computed. Each segment work
profile is then joined combinatorially, generating many more
complete reaction work profiles, which are used to compute the
final FEP using JR. Another such approach is the Adaptative
Steered Molecular Dynamics (ASMD) as developed by Ozer et
al.*! In the ASMD method, the range of the reaction coordinate
is divided into stages, but instead of performing equilibrium
dynamics, which require computational cost, the following set
of trajectories corresponding to the adjacent segment are begun
from the trajectory displaying the lowest work (i.e., that which
is expected to be closest to equilibrium). The final FEP is
obtained by joining the FEP obtained for each segment using
JR. So far, and to our knowledge, both these strategies have
been used in pure Classical MD simulations to study biological
processes, such as small peptide folding or ligand binding, and
none of them was tested in a QM-MM scheme to study
chemical or enzymatic reactions. In this context, it could be
interesting to address which strategy is the most cost-effective
for computing reactions in solutions or in enzymes using QM-
MM. Moreover, the HyDRA and ASMD methods could be
combined, since they exploit different pitfalls of JR, possibly
resulting in a synergic effect.

Concerning the additional computational cost that is paid
when increasing the pure MM steps, although the present
detailed analysis of computational cost and accuracy can only
be done for the extensive tested Chor to Pre system of the
present work, the results from Tables 1 and 4, show that using a
DRAr between 4 and 10 have the potential of yielding more
accurate free energy estimates using smaller number of
trajectories and faster pulling speeds, and could thus be used
already from the beginning in QM/MM studies of chemical or
enzymatic reactions.
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5. CONCLUSION

We have presented and thoroughly tested a hybrid differential
relaxation algorithm (HyDRA) to be used in QM/MM
simulations, implemented in the AMBER computer simulation
package, which allows obtaining accurate free energy profiles of
chemical reactions in solution and enzymes at a reduced
computational cost in the context of Multiple Steered
Molecular Dynamics Simulations and Jarzynki's Relationship.
The method power relies in its capacity to allow faster
relaxation of the classical protein/solvent environment to the
reacting QM subsystem. We expect that our method will foster
studies of key enzymatic processes specially those requiring
significant protein reorganization along the chemical step.
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All the FEPs and standard deviation for the chorismate to
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