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Robust Adaptive Predictive Fault-Tolerant Control Integrated To a
Fault-Detection System Applied to a Nonlinear Chemical Process

David Zumoffen,† Marta Basualdo,*,† Mario Jordá n,‡ and Alejandro Ceccatto

Centro Internacional Franco Argentino de Ciencias de la Informacio´n y Sistemas (CIFASIS)
(CONICET-UNICAM III-UNR), BV. 27 de Febrero 210 Bis, S2000EZP Rosario, Argentina

Most of the control schemes for chemical plants are developed under the assumption that the sensors and the
actuators are free from faults. However, the occurrence of faults will cause degradation in the closed-loop
performance, having an impact on safety, productivity, and plant economy. In this work, the main novelty is
given by the enhancement produced through the integration of the fault detection and identification (FDI)
system over a robust adaptive predictive control (RAPC) strategy specially thought to turn it as a fault-
tolerant control (FTC) scheme. Additionally, the FDI itself is original because of the sensor and actuator
faults treatment. The biases in sensors are detected and quantified by using wavelet decomposition and the
extra delays in actuators by applying online identification techniques to appropriately modify the controller
action. It is important to remark that the extra time delay, detected particularly at the actuators, is a problem
that occurs frequently in practice; however, the academic community has mostly omitted it up to now. This
methodology can improve the overall performance for nonlinear stable plants because the FDI is specifically
designed as a complement of those aspects that RAPC cannot handle at all. The control technique involves
a commutation of a linear time-varying robust filter in the feedback path of the control loop in synchronization
with an adaptive predictive controller. Through simulation studies of a continuous stirred tank reactor (CSTR)
with jacket, where the integration between FDI and FTC has been implemented, it can be shown that the
proposed methodology leads to significant improvement in comparison with the same control scheme without
FDI, particularly when the fault magnitude increases.

1. Introduction

The rising demands of product quality, effectiveness, and
safety in modern industries have encouraged the research on
fault diagnosis for dynamic systems. It has received more and
more attention and has developed quickly in the past three
decades. Most of the works in the literature only analyze the
design problem of the fault diagnosis system (FDS). Generally,
these works are focused in the monitoring systems design
without considering any integration with the control policy. In
general, the FDS allows the detection and isolation of changes
in the process states that can arise by faulty behavior in the
process components (sensors, actuators, etc.) and/or by distur-
bances. The FDS developed in this work belongs to the category
of process history based according to the classification given
by Venkatasubramanian et al.1-3 Two specific faults, such as a
bias at the sensor and an extra time delay at the actuator, were
chosen. While the former was largely studied,4 the latter was
only tackled by a few people, even when time delay exists
widely in practice,5 specially in many chemical processes where
they are induced by a great number of reasons. They might cause
control performance deterioration up to closed-loop instability.
Because of this, in the work described in this paper, it is
considered that the development of fault-diagnosis methods for
systems with time delay is very important to analyze. In this
context, Wei et al.6 discussed an adaptive predictive control
based on transfer function model continuously updated by means
of plant-model error minimization via regressive methods,

addressed in the variable-delay problem. Another approach to
overcome the multiple discrete time delays in both states and
outputs is presented by Jiang and Zhou7 where the fault detection
and identification system (FDIS) is based on an adaptive
observer.

The study of fault-tolerant control (FTC) for nonlinear time-
varying systems is still an open problem and has become a very
active research topic for both theoretical and practical reasons.
Since the faults are obviously time varying, it becomes natural
to study FTC in this context. Traditionally, FTC methods have
been classified into two categories:8 the first group is based on
fault detection and isolation and the second one is independent
of fault diagnosis (active and passive methods, respectively).
Recently, different strategies appeared in the literature that can
overcome the classical conflict between performance and
robustness in the traditional feedback framework. Campos-
Delgado and Zhou9 proposed an FTC strategy from a robust
control perspective by applying the recently introduced gen-
eralized internal model control (GIMC) architecture. The
authors proposed an FTC design consisting of two parts: a
nominal performance controller and a robustness controller,
working in such a way that, when a sensor failure is detected,
the controller structure is reconfigured by adding a robustness
loop to compensate the fault. The commutation between two
controllers is carried out by measuring the plant-model filtered
error.

Few works that present a link between FDS and FTC for
chemical processes can be found; one of them is by Tao et al.,10

where the problem of adaptive compensation for actuator failures
is addressed. Zhang et al.11 presented a methodology for
integrating both FDS and FTC by using two fault-tolerant
controllers designed under backstepping and adaptive tech-
niques. Another integrated fault detection (FD) and FTC
approach can be found by El-Farra;12 it is able to handle both
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constraints and control actuator faults. In that case, different
tools are considered such as state feedback, FD based on a
reduced-order model, spatially distributed feedback, and super-
visory control. All these strategies support an appropriate
switching between different actuator configurations in the event
of faults by means of control reconfiguration logic. The proposed
approach is applied to a diffusion-reaction process. More
recently, Patwardhan and co-workers13,14 presented a model
predictive control (MPC) algorithm integrated with a model-
based FDS. A complete state estimator development is proposed
for multivariable systems13 in which unknown dead time and
nonmeasured disturbances are considered. The proposed strategy
is based on generalized orthonormal basis filters (GOBF), and
new off-line estimation algorithms are implemented. Thus, the
optimal state estimator can be directly used in both MPC and
FDS. The approach is applied to the benchmark shell control
problem as well as to an experimental pilot plant. Patwardhan
et al.14 presented a reformulated version of a previous multi-
variable FTC design.15 There, the control algorithm is based
on MPC and the FDS is implemented using the generalized
likelihood ratio (GLR) principle. The controller as well as the
FDS are designed based on the state-space model identified
using the algorithms developed in a previous work13 and the
GOBF strategy. In these last works, bias in sensors and actuators
are considered as common faults.

In this work, a new FTC strategy to compensate specific faults
effects and to improve the overall performance for nonlinear
stable plants is applied. The FTC approach involves a com-
mutation between a linear time-varying robustness filter in the
feedback path of the control loop and an adaptive predictive
controller (APC). The decision of which of both modes has to
work is based on specific indicators that will be described in
the following sections. They are closely related to the operation
conditions, which are checked every sampling time. This
strategy is developed in a modular way composed by two stages.
On one side, the good asymptotic performance of the APC
system is reached. On the other side, the adaptive robustness
filter (APRF) is accounted if sudden dynamic changes affect
significantly the closed-loop behavior and APC cannot achieve
good performance in these cases. The principal advantage of
using this methodology is that a stable asymptotic behavior
without extra tuning parameters is always achieved. The
convergence and stability of the control system is analyzed in
detail by Jorda´n and co-workers.16,17 However, if the faults
significantly change the system dynamics, the speed of adapta-
tion may be inadequate. By taking this into account, the faults
presented here have been chosen as those that cannot be handled
well by that control structure. In this context, it is thought that
the integration with the FDI would ensure a real improvement
for the overall system. For example, a bias at the sensor cannot
be detected by any controller, classical or advanced. Another
important problem to be solved is the variable time delay in
control loops. It affects the control performance, causing
instability, and loses in product quality. Therefore, with the help
of the FDS, the FTC will work more actively and effectively.
The faults in the process elements are characterized by an abrupt
bias measurement for sensors and an extra time delay in the
control loop for actuators; unmeasured disturbances are also
accounted. The FDS design is based on signal processing topics
such as the wavelet transform and the recursive dead-time
estimation. The sensor faults are recognized by a novel robust
wavelet processing approach that is useful to detect and estimate
the fault based on a multiresolution filtering. In this case, a set-
point compensation is generated. For time delay, the online

estimation method, known as the explicit time-delay parameter,18

is proposed based on an autoregressive with exogenous input
(ARX) discrete model19 used for emulating the actuator
behavior. To compensate this fault, the controller parameters
must be updated online according to the correct value estimated
by this identification methodology. Several tests have been done
on a continuous stirred tank reactor (CSTR) with jacket. The
selected simulation results are presented as an indicator of the
effectiveness of the proposed strategy.

2. Online Approximation-Based Adaptive Predictive
Control With Robust Filter

2.1. Adaptive Predictive Approach.Consider a single-input,
single-output system with linearizable dynamic for every
operation point in the working region. Therefore, the predictive
controller structure can be obtained by minimizing the energy
criterion in eq 1 applied at every stepk.

wheree(k) is a tracking error between a desired trajectoryyr(k)
and the predicted system outputŷ(k) evaluated on a so-called
prediction horizon [N1, N2] via model,y(k) andu(k) are the past
values of the system output and control action, respectively,
anduj(k) is the future control action calculated over the so-called
control horizon [0,Nu - 1]. Equation 1 can be accompanied
with restrictions ony(k) andu(k). The future output trajectory
is originally calculated by means of a FIR model (finite impulse
response:ĝ(i), i ) 1, ...,N) of the system. The optimal control
sequenceuj(k) can be easily deduced for the unconstrained case
by searching for the global minimum ofJ(k) with respect to
uj(k) over Nu. Because the functional of eq 1 is quadratic, the
minimum can be analytically calculated as a linear optimization
problem without restrictions.

Considering the FIR model and the process operation point
[u00, y00], the model prediction of the plant can be expressed as
it is presented in eq 2.

whereu(k + i) is the control signal,ŷ(k + i) is the model
prediction,η̂(k + i) ) y(k) - ŷ(k) is the plant-model mismatch
(disturbances estimation), andcĝl ) y00 - ∑j)d+1

N ĝ(j)u00 is the
plant parameter, fori ) N1...N2.

The tracking error vector (eq 3) in the prediction horizon can
be expressed using the future and past actions control vectors,
eqs 6 and 7, respectively.

with

J(k) ) ∑
i)N1

N2

Ri
2e2(k + i) + ∑

i)0

Nu-1

âi
2uj2(k + i) (1)

ŷ(k + i) ) ∑
j)1+d

N

ĝ(j)[u(k + i - j) - u00] + y00 + η̂(k + i)

) ∑
j)1+d

N

ĝ(j)u(k + i - j) + cĝl + η̂(k + i) (2)

e(k) ) yr(k) - η̂(k) - T1GT2uj(k) - T3ST4ψ(k) (3)

yr(k) ) [yr(k + N1), ‚‚‚, yr(k + N2)]
T (4)

η̂(k) ) [1, ‚‚‚, 1]T(y(k) - ŷ(k)) (5)
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and

The transformation matricesT1, T2, T3, andT4 allow one to
select specific parts ofG andS, and they are functions of the
prediction horizon [N1, N2], the control horizonNu, and the FIR
model orderN. The matricesA ) diag(RN1, ..., RN2) andB )
diag(â1, ..., âNu) are penalty coefficients of the energies ofe(k)
anduj(k), respectively.

Using eqs 3 and 7, the functional of eq 1 in the matrix form
can be expressed as

Then the control structure (control law) can be obtained by
means of ∂J/∂u ) 0, and considering that only the first
component of the optimal future control actions vector will be
applieduj(k) in this sample time, in eq 11 this control law is
expressed in terms of thez variable.

where

and

From eqs 11, 13, and 14, it is evident that the control law
u(k) requires static compensation for achieving zero static error.
Then the gain compensation factorKoffs is given by

A prefilter for smoothing thew(k) reference signal so as to
generate a flat reference trajectoryyr(k) is included; a simple
algorithm can be used for this purpose (eq 16)

whereRr is a smoothing coefficient between 0 and 1, which
can handle the closed loop dynamic.Rr is selected close to the
limit 0 for achieving a rapid response and vice versa when it is
closed to limit 1. Implementing the control structure shown in
eq 11 and considering eqs 15 and 16, the control scheme of
Figure 1 is obtained.

As can be appreciated from eqs 11-14, this structure is
suitable for the design of adaptive controllers. By making an
online adaptation of the linear FIR model and rewriting eq 2,
the following results

where

From eq 18, it can be noted that the parameters vectorθ̂(k)
is constituted by two components (augmented form). The vector
[ĝ(1, k), ..., ĝ(N, k)] contains theN FIR coefficients and a scalar
cĝl(k) named the plant parameter for each sampling timek. The
parameter cĝl(k) has information of the process operation point
[y00, u00] and its modifications. Then the online estimation
process allows one to obtain the FIR coefficients and the
working point updated simultaneously.

Defining the prediction errorε(k) ) y(k) - ŷ(k) and
minimizing V ) (∑1

N
ε2(k))/N with respect toθ, the least-

square (LS)19 estimate can be obtained as

This structure allows one to update the estimateθ̂ online, for
example, updating in a recursive way the covariance matrix16,19

P ) U*D*U*
T. As an alternative, it can be implemented by

means of the UD-factorization algorithm,

uj(k) ) [u(k), ‚‚‚, u(k + Nu - 1)]T (6)

ψ(k) ) [u(k - 1), ‚‚‚, u(k - N + N1)]
T (7)

G ) [ĝ(1) 0 ... 0
ĝ(2) ...

... l
l ... ĝ(1) 0

ĝ(N) ... ĝ(2) ĝ(1)

0 ... l ĝ(1) + ĝ(2)

l ... ĝ(N) l
0 ... 0 ∑1

Nĝ(i)
] (8)

S ) [ĝ(2) ĝ(3) ĝ(4) ... ĝ(N)
ĝ(3) ĝ(4) l ..

.
0

ĝ(4) l ĝ(N) ..
.

0
l ĝ(N) ..

.
..

.
l

ĝ(N) >0 0 ... 0
] (9)

J(k) ) eT(k)A2e(k) + ujT(k)B2uj(k) (10)

D(z-1)U(z) ) zN1R(z)Yr(z) - R(1)(Y(z) - Ŷ(z)) (11)

D(z-1) ) 1 + d1z
-1 + ... + dN-N1

z-(N-N1)

R(z) ) r1 + r2z + ... + rN2-N1+1z
(N2-N1) (12)

[d1

d2

l
dN-N1

]T

) [r1, r2, ..., rN2-N1+1]T3ST4 (13)

[r1

r2

l
rN2-N1

+1]T

)

[1, 0, ..., 0][T2
TGTT1

TA2T1GT2 + B2]-1[T2
TGTT1

TA2]
(14)

Koffs )
1

∑
i)1

N

ĝ(i)

(15)

yr(k) ) Rryr(k - 1) + (1 - Rr)w(k) (16)

ŷ(k) ) ψ(k)Tθ̂(k) + η(k) (17)

ψ(k) ) [u(k - 1), ...,u(k - N), 1]T

θ̂(k) ) [ĝ(1, k), ..., ĝ(N, k), cĝl(k)]T (18)

θ̂N
LS ) [∑

k)1

N

ψ(k)ψT(k)]-1 [∑
k)1

N

ψ(k)y(k)] (19)

θ̂(k) ) θ̂(k - 1) + U*(k)D*(k)U*
T(k)ψ(k)ẽ(k)

ẽ(k) ) y(k) - ψ(k)Tθ̂(k - 1)
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whereλ is the forgetting factor,ẽ(k) is an a priori estimation
error, andfU* and fD* are recursive formulas that will provide
U* andD*, respectively. As a result, both the FIR model and
the controller are updated online.

2.2. Adaptive Predictive Robust Filter Approach. In the
case of a process-model mismatch∆G ) G - Ĝ * 0, the
parallel compensation structure provides a direct way to achieve
robustness of the closed loop by including a filter in the feedback
path. The basic idea consists of making a correction of the
predictions given by a nominal FIR modelG0(z-1) by means
of an adaptive modification. Consider that

where

The nominal FIR modelG0(z-1) is available by the off-line
identification procedure, its coefficients areg0(i) ) [h(i) - h(i
- 1)]/∆u(k), andh(k) is the plant response to a step change in
the control signalu(k). This nominal model generates a stable
controller (D0(z-1), R0(z), Koffs) and leads to rewriting the FIR
model prediction as

Following similar steps as those described in the previous section
with an identical structure as appears in eq 17, the same
regressor,ψ(k) are obtained, while considering that the estimate
parameter vector and the prediction error, in this case, are,
respectively, as follows:

Then, applying the recursive algorithm (eq 20) again, an online
model updating for the robust filter is available∆Ĝ(z-1).

Under these conditions, the static compensation must be

This control strategy is initially based on a stable nominal
controller, obtained from the nominal stable FIR modelG0(z-1)
identified off-line. By accounting eqs 23-25 and 11, the control
structure shown at Figure 2 can be implemented.

The asymptotic performance of the adaptive control system
is, in general, better than that obtained by a robust filter system,
mainly if the particular tuning coefficients allow the adaptive

control to guarantee asymptotic steady-state stability. Therefore,
if sudden dynamic changes affect significantly the closed-loop
response behavior, they may be much more efficiently damped
down by a robust-filter system. Additionally, an asymptotically
stable and good performance behavior is achievable without
extra tuning parameters. It must be noted that a suitable
synchronization of both approaches is useful in order to share
the manifested advantages of both modes.16

2.3. Adaptive Predictive Control With Robust Filter. In
order to improve the performance, a proper synchronization
between both the adaptive predictive control and the adaptive
robust filter approaches has to be done. It is carried out by means
of an appropriate indicator function (mode) that enables the
commutation between both algorithms automatically. It is
schematically presented at Figure 3.

It is well-known that adaptive control systems may suffer
from long-term instability when the manipulated variableu(k)
is not rich enough in order to ensure a good persistent excited
regressorψ(k) in the spaceRN. In order to supervise this
probable misbehavior, the use of proper indicators is recom-
mended in case it would be necessary to stop the estimation at
any time. For instance, the eigenvalues evolution ofU*(k)D*-
(k)U*

T(k) or D*(k) is found to be suitable to detect a future
degradation of the estimatesθ̂(k). Another useful indicator is
the real variable16,20

where 0e zN e 1, indicating a good excited system when it is
close to 0 and a poorly excited system when it is next to 1. In
addition, the second indicator defined as it is shown in eq 27 is
very useful16,20

Finally, a set of equations is accounted that is able to detect
the excitation richness and, thus, to make a determination with
respect to updating (or not) the vector of parameters. In addition,
a supervision of the control loop stability in adaptive predictive

Figure 1. Adaptive predictive control (APC) structure. Figure 2. Adaptive predictive robust filter (APRF) structure.

Figure 3. Adaptive predictive control with robustness filter (APCWRF)
structure.

zN ) λ
λ + ψT(k)U*(k - 1)D*(k - 1)U*

T(k - 1)ψ(k)
(26)

S1(k) )

{0.7S1(k - 1) + 0.3zN
2(k), if S1(k - 1) e 0.8zN(k)

0.99S1(k - 1) + 0.01zN
2(k), in another case }

(27)

U*(k) ) fU*
(U*(k - 1), ψ(k), λ)

D*(k) ) fD*
(D*(k - 1), ψ(k), λ) (20)

Ĝ(z-1, k) ) ∆Ĝ(z-1, k) + G0(z
-1) (21)

∆Ĝ(z-1, k) ) ∆ĝ(1, k)z-1 + ‚‚‚ + ∆ĝ(N, k)z-N (22)

ŷ(k) ) ∑
i)1

N

∆ĝ(i)u(k - i) + ∑
i)1

N

g0(i)u(k - i) + cgl + η(k)

(23)

∆θ̂(k) ) [∆ĝ(1, k), ...,∆ĝ(N, k), cĝl(k)]T

ε(k) ) [y(k) - y0] - ψT(k)∆θ̂(k) (24)

Koffs(k) ) 1
(∆Ĝ(1, k) + G0(1))

(25)
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control mode must be done. It can be made by analyzing the
roots of the polynomialD(z-1, k) at each sampling time. Thus,
a complete set of conditions for developing the synchronization
rule is available.

In Figure 4, a representative flow chart of how the synchro-
nization algorithm works is shown. The binary variable mode
indicates which control algorithm must be executed. For each
step time, the mode variable is analyzed; mode) 0 indicates
that the APC approach was executed in the previous step time,
before the stability of the controllerD(z-1, k) is evaluated by
following this approach. In the stable case, the excitation degree
is checked through conditionzN(k) < S1(k), and if it is true, the
APC approach is run again in the next sampling time and the
controller matrices are updated. On the other hand, if the
polynomialD(z-1, k) is unstable or the excitation degree is not
enough, the APC algorithm is switched off and the APRF
approach begins working with the mode) 1 indicating this
situation. The APRF algorithm runs during a determined time
(N samples) before returning to the APC approach and updating
the controller matrices. The recursive estimation of the complete
FIR model is avoided in the case of poor excitation degree;
under this condition, APRFC is switched on. In the APRF
method, a nominal stable controller is used together with the
nominal FIR model (both computed off-line). In this case, the
recursive estimation of the model residuals is always made
without considering the excitation degree, since minimal
modifications around the nominal FIR model are produced. The
interconnection of the two methods is carried out as is shown
in Figure 4.

3. Case Study: CSTR With Jacket Process

The system studied21 consists of a constant-volume, constant-
density, cooled CSTR with a first-order, irreversible reaction
A f B. Even though this model is quite simple, it contains
most of the relevant issues surrounding an open-loop, nonlinear
reactor. In Figure 5 can be appreciated the control strategy for
the mentioned plant; this system is rigorously modeled by one
component balance and one energy balance,

and the energy balance for the jacket,

where QJP is the interchanged heat. The definitions of the
variables are given in Table 1. The control structure keeps the
reactor temperature (T1) (controlled variable) under a specific
range by manipulating the coolant flow to the jacket (FJ0).
Therefore, theCA composition is indirectly controlled since it
has a strong relationship withT1. In addition, the disturbance
variables such asCinA, TinA, andFinA (concentration, temperature,
and flowrate of reactant A, respectively) can vary during the
time and could produce several changes in the plant operation
point. In the paper by Primucci and Basualdo21 can be found
more details about this process.

4. Fault-Diagnosis System Design

The most common faults in a chemical process can be defined
as several types of malfunctions in actuators and/or sensors.
Both of them are considered here, such as a bias at the sensor
and extra time delay at the actuator. The reason for this choice
is because time delay exists widely in practice induced by long-
distance transportation and communication or mechanical faults
in valves. Another reason for this selection is because it might
cause the closed-loop systems instability and control perfor-
mance deterioration, so the FTC represents a valuable tool for
support for these kind of abnormal events. However, only a
few works analyze these type of faults. The (APC) algorithm
working without the FDS cannot modify the controller matrix
sizes, in the presence of the extra delays in the closed loop, so
stability cannot be guaranteed for this faulty behavior. In order
to handle this problem, it is necessary to update the controller
parameters such as the prediction horizon online, particularly
the beginning of the prediction horizonN1. Therefore, the size
of the transformation matricesT1, T2, T3, andT4 are modified
properly according to the right estimated time delay.

On the other hand, a common problem reported in sensors is
when an abrupt offset appears in a specific measurement. This
kind of fault in the controlled variable measurement can
generally be compensated in order to achieve zero tracking error.
Obviously, this incorrect measurement affects the process by
modifying the normal operation point. The APC and APC with
robustness filter(APCWRF) approaches do not have any way
to detect and avoid this fault propagation into the process. An
alternative for solving this problem is an additive compensation

Figure 4. APCWRF synchronization algorithm.

dCA

dt
) -k0 e-P/T1CA +

FinA

V1
(CinA0 - CinA) (28)

dT1

dt
) k1 e-P/T1CA +

FinA

V1
(TinA - T1) +

QJP

FPcPV1
(29)

Figure 5. CSTR with jacket process.

Table 1. Variables in CSTR with Jacket Process

variables definition units

FinA, FJ0, FJ, F1 flows m3/s
TinA, TJ0, TJ, T1 temperatures K
CinA, CA concentrations mol/m3

dTJ

dt
)

FJ0

VJ
(TJ0 - TJ) -

QJP

FJcJVJ
(30)
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at the set-point policy, for which sign and magnitude are
provided by the FDS. This correction could be done on the
measurement; in any case, the results are absolutely the same.

Hence, the proposed FDS is thought to provide the precise
information about the type, time, and magnitude of each fault
expected to occur. This information is accounted for by doing
the proper control configuration in order to make it fault tolerant.

4.1. Valve Fault Detection and Estimation.The dead-time
detection in process (or time-delay estimation, TDE) is a widely
studied problem. During the last few years, several strategies
with different performances have arisen according to the
application cases. These methods can be classified as follows:
(1) time-delay approximation model, (2) explicit time-delay
parameter, (3) area and moment, and (4) higher-order statistics
(HOS).18

It must be noted that the FIR adaptive model, described in
previous sections, is updated just under specific conditions when
the APC algorithm is active. It is thought to capture the existing
process nonlinearities between the reaction temperature (output)
and the coolant incoming flow (input) to the jacket. Otherwise,
when APRF is working, the FIR nominal model (not adaptive)
is adopted and∆G accounts for a range of possible plant
variations. The input-output delay in this control loop could
be estimated directly from the FIR coefficients updated by the
thresholding approach. Using this strategy, several problems
exist:

• The delay estimation is poor and would produce both false
detection and misdetection.

• The fault detection instant is very influenced by the
convergence time of the recursive estimation algorithm.

• The identified delay cannot be adjudged to the actuator only.
It could be produced by other elements in the loop such as the
transmission lines, the sensors, and the process itself.

It is clear that, independently of which of both modes are
working, the correct estimation of the extra delay caused by a
faulty behavior needs to be done with the help of the FDS.
Therefore, it justifies the need for this system designed to
compensate these specific faults and working externally to the
control scheme.

In order to efficiently detect the extra time delay at the
actuator, the autoregressive with extra input (ARX) valve model
is developed.19 This model ties the control signal (input) and
the measured coolant flow (output). When the valve works
normally within a specific range, it behaves approximately as
a linear system and obviously facilitates the monitoring and
estimation tasks. The estimated delay, provided by the ARX
model, is used for updating the controller matrix dimensions,
avoiding stability problems.

The dead-time estimation is done based on the methodology
cited as explicit time-delay parameter. The discrete model of
the valve is given by eq 31;y(k) is the measured coolant flow,
u(k) is the control signal calculated by the controller algorithm,
and ŷ(k) is the coolant flow estimated by the ARX model.

where na and nb are the orders of the denominator and the
numerator, respectively, andd is the delay present in the input-
output model. The off-line least-squares identification process
using the ARX model can be carried out by expressing the
output prediction in the linear regression form

where

Then the least-square estimate, as shown in eq 19 but now
using the regression model of eqs 33 and 34, can be found.
The model employed here has been selected, withna ) 1, nb )
1, andd ) 0, obtaining the following parameters:a1 ) 0.0067
and b1 ) 0.9933. In the identification procedure, it used
historical data under normal conditions (zero delay).

It is assumed that the faulty valve operation only modifies
the delay between input and output. The objective of this method
is to make an online search over all the possible discrete dead
times in a moving temporal window namedNw. It tries to
minimize the mean-square error between the valve output and
the model prediction (eq 35). The moving temporal window
Nw allows one to evaluate the cost function and to perform the
online delay search using the valve model. Any modification
in the valve delay is detected only in the transient response (set-
point changes or disturbance rejection) analyzing the data from
the actual time up to the previousNw samples.

where

is a possible model set assuming that the remaining parameters
of the model do not change. By means of the discrete valve
model, a continuous monitoring is performed. Thus, any
modification in the true delay of the valve is detected, estimated,
and reported on line. This approach allows the development of
an effective FDS able to help with properly adapting the
controller parameters, such as the prediction horizonN1, which
is crucial in the closed-loop stability issue. It is updated by an
additive compensation based on the delay estimation given by
the FDS measured at samples when the criteriaV(k) in eq 35 is
minimized overNw. This moving temporal window has been
adopted for the CSTR example equal to 200 samples for both
APC and APCWRF approaches.

4.2. Sensor Fault Detection and Estimation.This fault is
characterized by an abrupt change in the measurement, which
is seen by the controller as a disturbance effect. Therefore, this
kind of sensor fault only can be detected in the transient
response. So, it is necessary to design a fast FDS able to detect
the quick changes in the measured signal. It is found that the
discrete wavelet transform (DWT), developed by Mallat,22 is a
valuable tool applied to signals of temperature measurement. It
can be decomposed in low- and high-pass multiresolution filters.
These filters are defined as functions of a selected wavelet
family as well as of its corresponding scaling function (more
details can be found in ref 22).

GVm(z-1) )
b1 + b2z

-1 + ‚‚‚ + bnb
z-nb+1

1 + a1z
-1 + ‚‚‚ + ana

z-na
z-d (31)

ŷ(k) ) - ∑
i)0

na

aiy(k - i) + ∑
i)1

nb

biu(k - i + 1 - d) ) ψT(k)θ

(32)

θ ) [a1, a2, ‚‚‚, ana
, b1, b2, ‚‚‚, bnb

]T (33)

ψ(k) ) [-y(k - 1), -y(k - 2), ‚‚‚, - y(k - na), u(k - d),

u(k - 1 - d), ‚‚‚, u(k - nb + 1 - d)]T (34)

V(k) )
1

Nw
∑
i)1

Nw

[FJ0(k - i) - GVm(z-1, d)u(k - i)]2 (35)

GVm(z-1, d) )
b1z

-d

(1 + a1z
-1)

(36)
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In the wavelet transform, the basis functions are little waves
called waVelets. They are a family of basis functions whose
time-frequency localization or scale are unique in the entire time-
frequency domain. Thus, wavelets present multiscale character
and are able to adjust their scale to the nature of the signal
features. The term wavelet refers to the sets of functions given
by

They are formed by the dilations, which are controlled by
the positive real numberd, and the translations, which are
controlled by the real numbert, of a single functionΨ(x) often
recognized as the mother wavelet. Visually, the mother wavelet
appears as a local oscillation. If the dilation and translation
parametersd and t are chosen asd ) 2j and t ) k2j, wherej
andk are integers, then there exist waveletsΨ(x) such that the
set of functions given by eq 37 constitute an orthonormal basis
of the space of functions or signals that have finite energy.

This transform can be implemented as low- and high-pass
multiresolution filters of the measured signal (the Mallat
algorithm).22 The Mallat algorithm for DWT is, in fact, a
classical scheme for the signal-processing community, known
as a two-channel subband coder using quadrature mirror filters
(QMF). These filters are specifically designed and are functions
of the selected wavelet familyΨ(x) as well as of its corre-
sponding scaling functionΦ(x). In other words, the localization
for both time and frequency domains of the scalingΦ(x) and
waveletΨ(x) functions can be chosen by selecting correctly
the quadrature mirror filtersh(k) (low-pass FIR filter) andg(k)
(high-pass FIR filter). The low and high-pass filtering versions
are called approximation signalA and detail signalD, respec-
tively.

Fortunately, numerous family types of wavelet and scaling
functions are available; some of them are as follows: Harr,
Daubechies, Morlet, Meyer, and Mexican Hat. For more details
to obtain a new wavelet basis, see the paper by Mallat.22 In
Figure 6 is presented the Daubechies wavelet family of sixth
order.

The Mallat algorithm is presented in Figure 7. For a given
level j (Figure 7a), this algorithm makes the low- and high-
pass filtering by convolving the approximation at levelj (Aj)

with the FIR filtersh(k) andg(k), respectively. It follows this
by doing a downsampling of two (keeping the even indexed
elements), which generates the approximation and details signals
at level j + 1, Aj+1 andDj+1, respectively. The decomposition
tree whenj ) 3 is shown in Figure 7b, wheres is the original
signal.

For the application considered here, the Daubechies wavelet
family of third order was used and the decomposition scale was
selected to be equal to one. The Mallat algorithm is applied to
the reactor temperature measurement (T1) shown in Figure 8.
Three arbitrary sensor offsets have been introduced in a step
change emulating a faulty behavior: att ) 200 s, an offset of
-1 K; at t ) 400 s, and offset of 0.5 K; and att ) 600 s, an
offset of 2 K. Then the reactor temperature measurement in
Figure 8a is analyzed via a multiresolution filter up to level 1.
Figure 8b shows the low-pass filter output, called approximation
at level 1 from the input signal, and Figure 8c shows the high-
pass filter output, which has information about the details of
this signal (named details at level 1). The detail signal pictures
give precise information about the magnitude and direction of
the sensor offset present in the signal. This information is used
to make proper corrections on the temperature set point,
according to the FDS recommendation, in order to compensate
this sensor faulty behavior.

Because the wavelet transform is a multiresolution filtering,
it is possible to obtain different approximations from the same
original signal. Each approximation or details at different scales
maximize or minimize the original frequency content of the
signal. Thus, details at high scales will be rich in high-frequency
content, and the respective approximations will be rich in low-
frequency content (coarse version). The faults in the sensor
considered here as abrupt bias (like step change) produces a
transient process response with high-frequency content, which
can be isolated by some details scale. On the other hand, process
disturbances are rejected by the controller according to the
dynamic system characteristics (nonabrupt), like set-point track-

Figure 6. Daubechies wavelet family of sixth order.

Ψd,t(x) ) |d|-1/2Ψ (x - t
d ) (37)

Figure 7. Multiresolution filtering (Mallat algorithm).

Figure 8. Wavelet decomposition at levelj ) 1 with Daubechies family
of third order.
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ing. Thus, its high-frequency content results in being enough
lower than that produced by the fault to be easily recognized
as an abnormal event by the FDS. In Section 5, where different
tests are performed, it will be demonstrated how DWT is able
to distinguish perfectly between the set-point changes, the
disturbances, the additive noise, etc. with respect to the sensor
fault effects analyzed in the scale of the detail chosen for this
example. The multiresolution decomposition can isolate the
noise effect in other details, depending on the frequency content.
Each time that the ratio between noise and signal is very closed
will produce a more difficult fault detection and identification.

4.3. Integration To Active FTC. In this section, both the
system-identification and signal-processing techniques described
above are used for developing the reliable FDS able to be
integrated with the control structure working in the process. This
integration with the APCWRF results in an active FTC strategy,
improving the overall performance and the safety conditions
of the plant. In Figure 9, the active FTC scheme is shown.

The control algorithms are based on the tracking error
between set-point policy and process output (or its predictions,
for model based); in other works, the control signalu(k) is a
specific functionF(.) of this tracking error, such thatu(k) )
F(sp(k) - y(k)). If the measured output is wrong because it is
influenced by a bias,y(k) ) ytrue(k) + bias, then the control
algorithm will reject this bias similarly as when a disturbance
at the output occurs and tries to achieve a zero tracking error
as quick as possible; the fault effect virtually disappears from
the measured signal, as is shown in Figure 8a. Some possible
solutions could be as follows:

(i) additive compensation to the output measurementy(k) with
the identified bias;

(ii) additive compensation to the estimationŷ(k), avoiding
the plant-model mismatch (disturbance estimation);

(iii) additive compensation to the set-point policy online
according to the bias magnitude.

This last approach is performed in the case study analyzed
here with certain advantages such as (i) from the monitoring
point of view, the set-point update can be more informative
and (ii) this approach is independent of the control algorithm
that is used. Even though a single-input, single-output (SISO)
case is tested in this work, the extension to a multivariable plant
model could be done supported by an advanced control structure
such as model predictive control (MPC). The set-point updating
drives the system to another working point caused by the faulty
measurement, maintaining the real process output variable inside
the expected working range.

In Figure 8c can be observed the signatures (patterns) caused
by three different fault magnitudes (-1 K, 0.5 K, and 2 K),
which sequentially occur. These patterns contain the information
about the direction and magnitude of the faults. As can be

observed, positive deviations (pics) correspond to negative bias
in the sensor and vice versa. On the other hand, it is
experimentally checked that the absolute value reached by the
peak,|peak|, is directly related to the magnitude of the present
fault. Thus, a mapping can be performed to estimate the fault
magnitude. For the example studied here, this mapping is a linear
relationship by means of the proportional factorδ, expressed
asô(k) ) δ|peak|. Therefore, both the magnitude and the sign
estimation are given by the DWT, and this information is used
to redefine a new set-point (reference) policy according to eq
38

wherew0(k) is the original reference trajectory andô(k) is the
actual sensor-fault (offset) estimation given by the FDS.

On the other hand, the coolant valve faults (extra delay by
mechanical malfunction) are detected and estimated by the FDS
using system-identification techniques (delay estimation); the
correct delay estimation is used for reconfiguring the control
parameters by means of the starting point for the prediction
horizon according to eq 39

whered̂(k) is the delay estimation.
In this case,N1 ) N̂1(k) is assumed, allowing the controller

matrix reconfiguration such as,T1, T3, T4, and A. In other
words, an alternative way of control law updating is accounted.
Therefore, the first update is made by the control scheme via
recursive FIR model estimation (dynamic update), and the
second is done via prediction horizon actualization (orders
update) with the help of the FDS integrated to the control
structure. The FIR modeling used in the control structure
corresponds to the input-output (coolant flow-reaction tem-
perature) process model. On the other hand, the ARX modeling
between control signal and coolant flow, used in the FDS design,
models the valve at normal behavior.

In the multivariable scenario, those critical sensors could
include a particular wavelet multiresolution decomposition
according to the signal to be processed. Thus, when an offset
occurs, the information is given in order to compensate by the
set-point trajectory. By means of the discrete-valve model, a
continuous monitoring is performed. Thus, any modification in
the true delay of the valve is detected, estimated, and reported
online. This approach can be extended to the multivariable case,
simply monitoring at least the most critical actuators. In both
cases, the specific plantwide control structure must be accounted.
A similar strategy has been tested with good results on the most
complex multivariable plants, such as wastewater treatment23

Figure 9. FDS integrated to robust adaptive predictive fault-tolerant control.

w(k) ) w0(k) + ô(k) (38)

N̂1(k) ) d̂(k) + 1 (39)
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and pulp mill process,24 where decentralized control structure
was implemented.

5. Simulation Results

In this section, a proposed set of simulations for visualizing
the operation of the FTC strategy is discussed. For the sake of
comparison, the behavior of the APC and APCWRF with and
without FDS integration was evaluated considering that both
reactor temperature sensor and coolant valve faults occur. The
simulations have been performed by considering the controller
parameters for the APC and APCWRF are those shown in Table
2. The FDS design is implemented accounting the parameters
shown in Table 3. Because of the integration with the FDS, the
active FTC scheme is available; then some controller parameters
are modified when specific abnormal events occur. In the FTC
case,N1 ) N̂1(k) andN2 ) N̂1(k) + 4, whereN̂1(k) is estimated
by the FDS.

First, in Figure 10, the responses of both APC and APCWRF
approaches can be appreciated when the process is working at
a normal condition. In parts a and b of Figure 10, the reactor
temperature (controlled variable) and the coolant flow to the
jacket (manipulated variable), respectively, can be seen for a
variable reference policy. In parts c and d of Figure 10 can be
seen the same variables and the regulation effect of the controller
when a step disturbance of∆TinA ) -2 K at t ) 400 s occurs.
The APC strategy demonstrates more aggressive control actions
than the APCWRF approach, even though it improves the
robustness conditions. Both approaches show a good disturbance
rejection.

In Figure 11 can be observed the controlled system behavior
implementing APC, with and without FDS, when a valve fault
of an extra delay of 10 s att ) 0 takes place. In parts a and b
of Figure 11 can be appreciated the controlled and manipulated
variables behavior, respectively. Without FDS information, the
dynamic update via recursive FIR estimation only can guarantee
stability for some specific reference trajectory. For those zones
where the control strategy itself is not able to update the model,
the FDS provides the information for adopting a newN1 (Figure
11c) and allows one to stabilize the control loop, improving
the global performance. Additionally, Figure 11c shows the
correct fault detection done in time and magnitude by the FDS.

Analogously, Figure 12 shows the dynamic behavior of the
process controlled by APCWRF strategy, with and without FDS.
In this case, the magnitude of the fault is greater than that in
the previous case, delay) 15 s att ) 0, thanks to the superior
robustness characteristics of the APCWRF in comparison to the
APC approach; a clear advantage is demonstrated since the
correct setting ofN1 improves the tracking performance. In parts
a and b of Figure 12, the controlled and manipulated profiles
are shown for this fault type, respectively, while in Figure 12c,
the delay estimation given by the FDS is presented.

In both APC and APCWRF approaches with FDS, the coolant
valve fault has been quickly detected and estimated (Figures
11c and 12c) in the transient response, allowing a suitable
prediction horizon update. It can be seen how this update makes
an effective improvement for analyzing the integral absolute
error (IAE ) ∫t1

t2 |e(t)| dt) between the reference trajectory
policy and the controlled process variable; see Table 4.

In Figures 13 and 14, the behavior of the controlled process
variable with APC and APCWRF approaches, respectively,

Table 2. Controller Parameters Settings

approach Ts N N1 N2 Nu Rr A B λ

APC/APCWRF 2 20 3 7 1 0.001 diag(1, ..., 1) 0.65/0 0.99/0.95

Table 3. FDS Parameters Settings

approach Ts wavelet family decomposition level Nw a1 a2 δ

APC/APCWRF 1 Daubechies, 3rd order 1 200 0.0067 0.9933 3

Figure 10. APC and APCWRF approach: Normal (a,b) and disturbanced
behavior (c,d). Figure 11. APC approach (coolant valve fault with and without FDS).

7160 Ind. Eng. Chem. Res., Vol. 46, No. 22, 2007



when a fault in the temperature sensor appears can be analyzed
with and without FDS. Att ) 400 s, the temperature measure-
ment presents an abrupt offset of 2 K.

In the APC structure, Figure 13d shows the correct and quick
offset estimation given by the FDS. This technique for updating
allows the adoption of the reference trajectory policy in a
suitable way. The APC with and without FDS (parts a and b of
Figure 13, respectively) approaches do not present greater
differences with respect to stability conditions. The substantial
enhancement of this reference update is based essentially on
the possibility of rejecting the effect of the sensor offset in the
indirectly controlled variable, the compositionCA (see Figure
13e). This additive fault compensation allows one to return the
CA composition into the normal values and, thus, to maintain
the output product quality under specifications.

In Figure 14 can be seen the results obtained when the
APCWRF approach is implemented. Parts a and b of Figure 14
show the controlled variable dynamic responses with and
without FDS, respectively, for the same sensor fault type. The
APCWRF approach presents more robust characteristics than
the APC structure. In addition, the time evolution of the
variables shows a smooth behavior without oscillations. Again,
from Figure 14d is demonstrated the correct offset detection
and estimation from the faulty measurement. In this case also,
the reference compensation allows for the return of theCA

composition into the normal operating values (Figure 14e).
Another test is included and shown in Figure 15, where one

can observethe overall FTC (APCWRF) approach behavior
when disturbances and sensor faults are present sequentially.
At t ) 200 s, an arbitrary disturbance inTinA appears with a
value of-2 K. Then att ) 400 s appears a sensor fault of 2 K.
In parts a and b of Figure 15 can be observed the effect of
these events on temperature reactor measurement without and
with FTC approach, respectively. The disturbance is rejected
perfectly in both cases, but similarly to the previous simulations,

the main difference is noticed in the fault management. Without
FDS information, the indirectly controlled variableCA in Figure
15e moves toward another operation point; on the other hand,
with the correct fault magnitude estimation shown in Figure
15d, the set-point policy can be corrected on line and the fault
is compensated. In Figure 15f, the wavelet decomposition (detail
at level 1) is presented; here it is clearly demonstrated that this
methodology can distinguish quite well among different events,
such as set-point changes, disturbance effects, and abnormal
situations, without losing the correct isolation and estimation
properties.

The last simulation result considers the disturbance effect and
faults appearing in a sequential way applied to the APCWRF
algorithm. Figure 16 shows the variables evolution when
different abnormal events occur. In this case, the reactor
temperature measurement is affected by additive white noise
with a power of 0.01. Att ) 100 s, the valve begins to fail,
producing an extra delay of 15 s between when the control signal
is generated and when the corresponding coolant flow obeys
it. At t ) 200 s appears a nonmeasured disturbance ofTinA )
-2 K, and finally, a sensor fault att ) 400 s occurs of 2 K. In
Figure 16a can be seen the APCWRF algorithm without FDS
behavior, so the faults are not compensated. The oscillatory
behavior produced by the disturbance effect and because of the
uncompensated extra time delay can be observed. On the other
hand, because the sensor fault is not compensated, the real
temperature displacement to another working point is recorded.

Figure 12. APCWRF approach (coolant valve fault with and without FDS).

Table 4. Performance for Fault in Valve

approach APC (d ) 10 s) APCWRF (d ) 15 s)

with FDS no yes no yes
IAE 5.99 4.09 5.70 4.72

Figure 13. APC approach (temperature sensor fault with and without FDS).
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In Figure 16b, these faults are compensated by integrating the
FDS to APCWRF. Here, the oscillations due to disturbance
rejection are smaller, since the valve fault is compensated with
the delay estimation given by FDS and reconfiguring the
controller properly. In addition, the sensor fault is compensated
through the set-point policy based on the offset estimation given
by the FDS. Thus, the true value of temperature returns to its
normal point. In parts c and d of Figure 16, the FDS outputs
are included (the delay and bias estimation, respectively). On
the other hand, in Figure 16e can be observed howCA is kept
under specification. The APCWRF approach with FDS integra-
tion shows how the process management is correctly done even
though different abnormal events sequentially occur. In Figure
16f, it can be seen that the noise effect is negligible by the
wavelet-decomposition approach. Here, the detail at level 1 is
shown; it is demonstrated to be enough for properly isolating
the fault impact. In the case of the important noise effect, the
decomposition approach must be made by accounting more
levels and/or analyzing among other different wavelet families
for searching which levels minimize the noise influence and
allow one to isolate the fault effect.

The benefit of accounting with the FDS integrated with the
FTC is evident from the application results given in this work.
On the one hand, the FTC system allows one to improve and
guarantee the stability and safety conditions of the controlled
process when variable delays are present in the control loop.

On the other hand, the sensor faults are compensated properly,
keeping the correct output quality performance of the controlled
variables.

6. Conclusions

In this paper, a new FTC structure is shown enhanced with
the integration of a new data-driven FDS. According to the
simulation results given previously, it is demonstrated that the
robust filter included in the adaptive predictive control strategy
allows one to account with a good alternative in the field of
active FTC strategy based on APCWRF algorithm. The design
integrated with the efficient FDS detailed here significantly
improves the overall performance of the controlled nonlinear
plant. This is because of its capacity of quantifying the fault
magnitude. This system allows the detection and estimation of
typical faults at the temperature sensor and at the flow actuator.
The FDS used here is demonstrated to be able to isolate and
estimate correctly, even with the existence of noisy signals, in
the presence of unmeasured disturbances and sequential faults,
without producing false alarms. These important characteristics
make the FDS very useful for updating the controller parameters
online. The sensor bias is detected efficiently by using wavelet
decomposition only, without any other procedure. In addition,
a new solution for the real problem of variable time delay in
the process industry is handled thanks to the FDS integration.

Figure 14. APCWRF approach (temperature sensor fault with and without
FDS). Figure 15. APCWRF approach (temperature sensor fault and disturbance

with and without FDS).
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On the basis of the great number of simulation tests, it is
confirmed that the link with the FDS certainly drives to an
interesting improvement on safety and economical features.
Hence, as future works, the extension to large multivariable
complex chemical plants are planned to be tested with the most
common faults in practice and for different FTC strategies.
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Figure 16. APCWRF approach (noisy measurement, actuator fault, and
sensor fault with and without FDS).
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