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In this paper we propose a family of robust estimators for generalized linear models. The
basic idea is to use an M-estimator after applying a variance stabilizing transformation to
the response. We show the consistency and asymptotic normality of these estimators. We
also obtain a lower bound for their breakdown point. A Monte Carlo study shows that the
proposed estimators compare favorably with respect to other robust estimators for
generalized linear models with Poisson response and log link.
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1. Introduction

Generalized linear models (GLMs) are widely used in data analysis. It is well known that the maximum likelihood
estimator for these models is very sensitive to outliers. To overcome this problem, several robust estimators for GLM have
been proposed. Künsch et al. (1989) derived optimal conditionally unbiased bounded influence (CUBIF) estimators. These
estimators are highly robust for a small fraction of outlier contamination. However, Maronna et al. (1979) showed that in the
case of a linear model, the breakdown point of these estimators tends to 0 when the number of regressors tends to infinity.
Cantoni and Ronchetti (2001) defined robust estimators for GLM which can be considered a robustification of the quasi-
likelihood estimators introduced by Wedderburn (1974). These estimators are defined only by the estimating equations and
this forces the use of monotone score functions. As a consequence, as we will see in the Monte Carlo study in Section 8, their
robustness is very limited. Morgenthaler (1992) also proposed a robustification of the quasi-likelihood estimators but using
an l1 measure of fit. Therefore the corresponding score function, the sign function, is monotone too. Bergesio and Yohai
(2011) introduced projection estimators for GLM which are highly robust but their computation requires algorithms of high
complexity. Since these estimators are not asymptotically normal, they propose one-step M-estimators starting at the
P-estimator. These estimators keep most of the properties of the P-estimators and, in addition, they are asymptotically
normal. Another class of estimators are the M-estimators proposed by Bianco and Yohai (1996) and further studied by Croux
and Haesbroeck (2003). Bianco et al. (2013) proposed general M-estimators for GLM for data sets with missing values in the
responses. For GLM models where Fλ is the Bernoulli family of distributions we can also cite works of Carroll and Pederson
(1993), Christmann (1994), Rousseeuw and Christmann (2003), Bondell (2005) and Čížek (2008).

In this paper we introduce a rather simple and highly robust family of estimators for GLM. The proposed estimators are
redescending M-estimators applied to transformed responses. The purpose of transforming the responses is to stabilize
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their variances to an almost constant value and so allowing a correct scaling of the loss function used to define the
M-estimator.

The proposed estimators are not applicable to the case that Fλ is the Bernoulli family of distributions. It is easy to see that
in this case the proposed estimator coincides with an ordinary M-estimator where y is not transformed.

In Section 2 we introduce the M-estimators based on transformations (MT) and the weighted M-estimators based on
transformations (WMT) and obtain the variance stabilizing transformations required for some families of distributions. In
Sections 3 and 4 we study the consistency and asymptotic normality of WMT-estimators respectively. In Section 5 we obtain
a lower bound for the asymptotic breakdown point of MT-estimators. In Section 6 we report the results of a Monte Carlo
study to compare the performance of MT- and WMT-estimators to that of other existing estimators for Poisson regression. In
Section 7 we consider a real data set and compare the fit given by the MT-estimator with other existing estimators. In
Section 8 we present the conclusions. Finally, Appendix A is an appendix containing all the proofs.
2. Proposed estimators

2.1. Definition of M-estimators based on transformations

We consider a generalized linear model (GLM) where yAR is the response and x¼ ðx1;…; xpÞ′ is a vector of explanatory
variables. It is assumed that

yjx� Fλ; ð1Þ

where Fλ is a discrete or continuous exponential family of distributions in R, λAΛ�R with the same support D and

λ¼ gðβ′0xÞ; ð2Þ

where β0ARp is unknown and g : R-R is a known link function. We will assume that λ takes values in an interval ðλð1Þ; λð2ÞÞ
where λð1Þ may be �1 and λð2Þ ¼ þ1. We will also assume that g : R-ðλð1Þ; λð2ÞÞ is continuous and strictly increasing and

lim
u-�1

gðuÞ ¼ λð1Þ; lim
u-1

gðuÞ ¼ λð2Þ: ð3Þ

Suppose that t : R-R is such that the variance of t(y) is almost constant when y has distribution Fλ. Let ρ : R-R be a
continuous and bounded function with a unique local minimum at 0 and define mðλÞ by

mðλÞ ¼ arg min
u

EλðρðtðyÞ�uÞÞ:

Let us assume that mðλÞ is continuous and univocally defined for all λ: Then, given a random sample ðy1; x1Þ;…; ðyn; xnÞ of the
model (1) and (2), we define the weighted M-estimator based on transformations (WMT-estimator) of β0 by

bβn ¼ arg min
β

LnðβÞ; ð4Þ

where

Ln βð Þ ¼ 1
n

∑
n

i ¼ 1
ρ t yi
� ��m g β′xið Þð Þ� �

w xi; bμn; bΣn

� �
; ð5Þ

where wðx; μ;ΣÞ is a function of the Mahalanobis distance, that is

wðx; μ;ΣÞ ¼ ωðððx�μÞ′Σ�1ðx�μÞÞ1=2Þ;

where bμn and bΣn are the robust estimators of location and scatter matrix of x based on x1;…; xn and ω is a non-negative
non-increasing function. The purpose of the weighting function wðxi; bμn; bΣnÞ is to penalize high leverage observations. We
will use consistent estimates bμn and bΣn so that bμn-μ0 a.s. and bΣn-Σ0 a.s., where Σ0 is positive definite. Note that

Eβ0 ðρðtðyiÞ�mðgðβ′xiÞÞÞwðxn; μ0;Σ0ÞÞ ¼ E½Eβ0 ðρðtðyiÞ�mðgðβ′xiÞÞÞjxÞwðxn; μ0;Σ0ÞÞ�:

Since Eβ0 ðρðtðyiÞ�mðgðβ′xiÞÞÞjxÞ is minimized when β¼ β0 for all x, then Eβ0 ðρðtðyiÞ�mðgðβ′xiÞÞÞwðxi; μ0;Σ0ÞÞ is also minimized
when β¼ β0. Therefore WMT-estimators are Fisher consistent. Note that since the variance of t(y) given x is almost constant,
it is not necessary to use a scale in the definition of the M-estimator. Since ρ is bounded, the estimator defined by (4) is
robust even if we do not use weights, that is, when ω� 1. However, in cases in which high leverage outliers are expected, the
robustness of the estimator may be increased by using a weight function. In some cases the use of these weights may
decrease the robustness of the estimator. This occurs when there are good high leverage observations, that is when there are
observations where ðx�bμnÞbΣ�1

n ðx�μÞ is large but the response y is generated according to the nominal GLM. In these cases
the weight function would penalize good observations and therefore it may increase the influence of the outliers with low
leverage that have larger weights. For this reason we should not discard to take ωðuÞ ¼ 1. In this case it is called the
MT-estimator.
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2.2. Some examples of transformations for variance stabilization

Denote by μðλÞ and νðλÞ the mean and variance of Fλ respectively, then a first order Taylor expansion shows that taking

t yð Þ ¼
Z y

0

du

½νðμ�1ðuÞÞ�1=2 ð6Þ

we obtain that varðtðyÞÞ is approximately constant. If

νðλÞ ¼ μðλÞq; ð7Þ
then (6) yields

tðyÞ ¼ y�ðq=2Þþ1 if qa2;
logðyÞ if q¼ 2:

(
ð8Þ

2.2.1. Poisson regression
In this case Fλ has as support the set N of non-negative integers and the probability function is pðx; λÞ ¼ expð�λÞλx=x!. We

also have μðλÞ ¼ λ and νðλÞ ¼ λ and therefore tðyÞ ¼ y1=2. Fig. 1 shows the plot of varðy1=2Þ as a function of λ and confirms that
this function is quite constant except for small values of λ. We should mention the fact that Poisson regression is often used
to model rare events, i.e. EðXÞ ¼ varðXÞ ¼ λ is small. However even in this case, the MT and WMT procedures for the Poisson
regression studied in the simulations described in Section 5 may have a high degree of robustness. In fact, since these
estimators use a function ρ in the family given in (13) with c¼2.4, observations y with jy1=2�mðexpðβ′xÞÞj42:4 are
completely rejected. Since when expðβ′xÞ is close to 0, mðexpðβ′xÞÞ is close to 0 too, this implies that in this case values of
y45 are completely rejected. Moreover, values of y¼4 or 5 are significantly downweighted.

2.2.2. Exponential regression
Consider now the case where Fλ has support in the set Rþ of positive real numbers with density

pðy; λÞ ¼ λ expð�λyÞ I ðy40Þ:
We also have μðλÞ ¼ 1=λ and νðλÞ ¼ 1=λ2 and therefore, according to (7) and (8), q¼2 and tðyÞ ¼ logðyÞ. In this case
logðyÞ ¼w� logðλÞ where expðwÞ has distribution F1, and then varλðlogðyÞÞ is constant. This value is approximately 1.645.

2.2.3. Binomial regression
Assume now that Fλ is a Biðk; λÞ distribution, that is, the probability function is

pðy; λÞ ¼
k

y

 !
λyð1�λÞk�y; y¼ 0;1;…; k; 0rλr1:

Then μðλÞ ¼ kλ; νðλÞ ¼ kλð1�λÞ, and (6) yields tðyÞ ¼ arcsinð
ffiffiffiffiffiffiffiffi
y=k

p
Þ. Fig. 2 shows the plot of varλðarcsin

ffiffiffiffiffiffiffiffi
y=k

p
Þ for k¼5 which is

also quite constant.
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3. Consistency

In this section we study the consistency of the estimator defined by (4). We need the following assumptions for the
consistency of the MT-estimator:
A1
 supλ var λðtðyÞÞ ¼ Ao1.

A2
 mðλÞ is univocally defined for all λ and λ1oλ2 implies mðλ1Þomðλ2Þ.

A3
 Fλ is continuous in λ.

A4
 Suppose that λ14λ2, X1 � Fλ1 and X2 � Fλ2 , then X1 is stochastically larger (or smaller) than X2.

A5
 The function t is strictly increasing and continuous.

B1
 ρðuÞZ0, ρð0Þ ¼ 0 and ρðuÞ ¼ ρð�uÞ.

B2
 limu-1ρðuÞ ¼ ao1. Without loss of generality we will assume a¼1.

B3
 0ruov implies ρðuÞrρðvÞ.

B4
 0ruov and ρðuÞo1 implies ρðuÞoρðvÞ.

B5
 ρ is continuous.

B6
 Let A as in A1, then there exists η such that ρðA1=2þηÞo1.

B7
 There exist μ0ARp and a positive definite matrix Σ0 such that bμn-μ0 a.s. and bΣn-Σ0 a.s.

B8
 The weight function ω is continuous, bounded and non-increasing and sup ω¼ 1.

B9
 Let S¼ ftARp : JtJ ¼ 1g. Then

inf
tA S

Pðft′xa0g \ fwðx; μ0;Σ0Þ40gÞ40
Let

m1 ¼ inf
λ

mðλÞ ¼ lim
λ-λð1Þ

mðλÞ; ð9Þ

m2 ¼ sup
λ

mðλÞ ¼ lim
λ-λð2Þ

mðλÞ; ð10Þ

where λð1Þ and λð2Þ are defined in (3), and

m3 ¼mðgð0ÞÞ:
Call

Φ0ðy; x; β; μ;ΣÞ ¼wðx; μ;ΣÞρðtðyÞ�mðgðβ′xÞÞÞ; ð11Þ

then it is immediate that

lim
γ-1

Φ0ðy;x; γt; μ0;Σ0Þ ¼Φn

0ðy; x; signðt′xÞÞ;



M. Valdora, V.J. Yohai / Journal of Statistical Planning and Inference 146 (2014) 31–48 35
where

Φn

0ðy; x; jÞ ¼
wðx; μ0;Σ0ÞρðtðyÞ�m1Þ if j¼ �1;
wðx; μ0;Σ0ÞρðtðyÞ�m3Þ if j¼ 0;
wðx; μ0;Σ0ÞρðtðyÞ�m2Þ if j¼ 1:

8><>:
We have the following consistency theorem.

Theorem 1. Let ðy1; x1Þ;…; ðyn; xnÞ, be i.i.d. observations satisfying (1) and (2). Assume A1–A5, B1–B9, let bβn be the estimator
defined by (4) and put

τ¼ inf
tAS

Eβ0 ðΦn

0ðy;x; signðt′xÞÞÞ�Eβ0 ðΦ0ðy; x; β0; μ0;Σ0ÞÞ: ð12Þ

Then (i) τ40 and (ii) Assume also that Pðt′x¼ 0Þoτ for all tARp, then bβn-β0 a.s.

Remark 1. Obviously for the MT-estimator B7 and B8 are not necessary and B9 is reduced to inf tASPðt′xa0Þ40.

4. Asymptotic normality

The following additional assumptions are required to prove the asymptotic normality of the estimator defined by (4):
C1
 Fλ has three continuous and bounded derivatives as a function of λ and the link function gðλÞ is twice continuously
differentiable.
C2
 ρ has three continuous and bounded derivatives. We write ψ ¼ ρ′.

Let Ψ¼ ðΨ1;…ΨpÞ : Rp � R� Rp-Rp be defined by

Ψj y; x; β; μ;Σð Þ ¼w x; μ;Σð Þ ∂
∂βj

ρ t yð Þ�m g β′xð Þð Þð Þ

¼wðx; μ;ΣÞψðtðyÞ�mðgðβ′xÞÞÞm′ðgðβ′xÞÞg′ðβ′xÞxj:

Denote by Jψ ðy; x; β; μ;ΣÞ ¼ ðJj;kψ ðy; x; β; μ;ΣÞÞ1r j;krp the Jacobian matrix of Ψ with respect to β, that is

Jj;kψ y; x; β; μ;Σð Þ ¼ ∂
∂βk

Ψj y; x; β; μ;Σð Þ; 1r j; krp:

Note that assumptions C1, C2 and Lemma 5 proved in Appendix imply that Ψ and Jψ are well defined.
Differentiating LnðβÞ we obtain the following estimating equations for the WMT-estimator of β:

∑
n

i ¼ 1
Ψðyi; xi; β; bμn; bΣnÞ ¼ 0:
C3
 Eλðψ ′ðtðyÞ�mðλÞÞÞa0 for all λ.

C4
 There exists ɛ40 such that Eβ0 ðsup Jβ�β0 J r ɛjJj;kψ ðy; x; β; μ0;Σ0ÞÞjÞo1, for all 1r j; krp; where J J denotes the l2 norm,

and Eβ0 ðJψ ðy;x; β0; μ0;Σ0ÞÞÞ is non-singular.
A family of functions satisfying the conditions B1–B6 and C2 is given by

ρk uð Þ ¼ 1� 1� u
k

� �2� �4

if jujrk

1 if jujZk

8><>: ð13Þ

with k4A1=2. Note that the functions in the popular bisquare family have a similar expression with the exponent 4 replaced
by 3. However functions in the bisquare family have only two derivatives at c¼ 7k instead of three as is required by C2.

Observe that C4 is satisfied when the function ω is 0 outside a compact set or when x takes values in a compact set.
Consider the case of Poisson regression, ω¼ 1 and ψ ¼ 0 outside a compact set. Then, it can be proved that a sufficient
condition for C4 is that EðyJxJ2Þ ¼ Eðeβ′0x JxJ2Þo1.

The following theorem gives the asymptotic distribution of WMT-estimators.
Theorem 2. Assume A1–A5, B1–B9, C1–C4 . Let ðx1; y1Þ;…; ðxn; ynÞ be i.i.d. random vectors satisfying (1) and (2) and let bβn be
defined by (4). Then

ffiffiffi
n

p ðbβn�β0Þ-
D N ð0;B�1AB′�1Þ;
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where N pðμ;ΣÞ denotes the p-dimensional multivariate normal distribution with mean μ and covariance matrix Σ and

A¼ Eβ0 ðΨðy; x; β0; μ0;Σ0ÞΨðy; x; β0; μ0;Σ0Þ′Þ; B¼ Eβ0 ðJψ ðy;x; β0; μ0;Σ0ÞÞ:

To use this result to make asymptotic inference we need to estimate the matrices A and B. To that end, letbAn ¼ EHn ðΨðy; x; bβn; bμn; bΣnÞΨðy; x; bβn; bμn; bΣnÞ′Þ
and bBn ¼ EHn ðJψ ðy; x; bβn; bμn; bΣnÞÞ;

where Hn is the empirical distribution of ðy; xÞ. Under the assumptions of Theorem 2, by Lemma 6 bAn-A a.s. and bBn-B a.s.

Then, the asymptotic covariance matrix B�1AB′�1 can be consistently estimated by bB�1
n
bAn
bB ′�1
n .

5. Asymptotic breakdown point

The asymptotic breakdown point (ABP) is a measure of robustness of an estimator introduced by Hampel (1971). Roughly
speaking, the breakdown point of an estimator is the smallest fraction of atypical points that can take the estimator beyond
any limit. More formally, let ðy; xÞ be a random vector in R� Rp with distribution H0, D the set of all the distributions on R�
Rp and T a functional defined on D with values in Rp: Given a sample ðy1;x1Þ;…; ðyn; xnÞ, consider the estimator defined bybβn ¼ TðHnÞ, where Hn is the empirical distribution of the sample. Then the asymptotic breakdown point of the functional T at
H0AD is defined by

ɛnðT;H0Þ ¼ sup
ɛ

ɛA ð0;1Þ : sup
Hn AD

fJTð1�εÞH0þεHnÞJgo1
( )

:

The MT-estimator bβn defined in (4) can also be written as TðHnÞ where

TðHÞ ¼ arg min βARpEHðρðtðyÞ�mðgðβ′xÞÞÞÞ: ð14Þ
The following theorem gives a lower bound for the breakdown point of this functional.

Theorem 3. Let ðy;xÞ be a random vector with distribution H0 such that PH0 ðα′x¼ 0Þ ¼ 0 for all αARp. Suppose yjx� Fgðβ′0xÞ. Let

ɛ0 ¼
EH0 ðminðρðtðyÞ�m1Þ; ρðtðyÞ�m2ÞÞÞ�EH0 ðρðtðyÞ�mðgðβ′0xÞÞÞÞ

1þEH0 ðminðρðtðyÞ�m1Þ; ðρðtðyÞ�m2ÞÞÞ�EH0 ðρðtðyÞ�mðgðβ′0xÞÞÞÞ
;

where m1 and m2 are defined in (9) and (10) respectively. Then the ABP of the functional T defined by (14) at H0 satisfies

ɛnðT ;H0ÞZɛ0:

When m1 ¼ 0 and m2 ¼1 as in the Poisson case, we have

minðρðtðyÞ�m1Þ; ρðtðyÞ�m2ÞÞ ¼ ρðtðyÞÞ
and then

ɛ0 ¼
EH0 ðρðtðyÞÞÞ�EH0 ðρðtðyÞ�mðgðβ′0xÞÞÞÞ

1þEH0 ðρðtðyÞÞÞ�EH0 ðρðtðyÞ�mðgðβ′0xÞÞÞÞ
:

In this case ɛ0 is small only when the probability thatmðgðβ′0xÞÞ is close to zero is large. For the Poisson model this happens if
β′0x is negative and has a large absolute value. Note that in this case Pðy¼ 0Þ is large and a small fraction of inliers equal to 0
can make the fraction of observed zeros larger than 0.5. Therefore the good non-null observations may be mistaken as
outliers.

If m1 ¼ �1 and m2 ¼1 as in the exponential case then

ɛ0 ¼
EH0 ð1�ρðtðyÞ�mðgðβ′0xÞÞÞÞ

1þEH0 ð1�ρðtðyÞ�mðgðβ′0xÞÞÞÞ
:

In the case of exponential regression with gðuÞ ¼ logðuÞ, we have mðλÞ ¼mð1Þ� logðλÞ and therefore

ɛ0 ¼
Eð1�ρðtðyÞ�mð1ÞÞÞ

1þEð1�ρðtðyÞ�mð1ÞÞÞ;

where y is a random variable with distribution Eð1Þ, and therefore ɛ0 is independent of β0. For example if we use a MT
estimator with ρ in the family given in (13) and k¼6 we have ɛ0 ¼ 0:463.

We will study the breakdown point in a Poisson regression model where x¼ ð1; xnÞ and xn has distribution N p�1ðμ0;Σ0Þ
and ρ is in the family (13) with k¼2.4. Put β0 ¼ ðβ0, βn0Þ then the distribution of β′0x is N 1ðμ; s2Þ where μ¼ βn′0 μ0þβ0 and
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s2 ¼ βn′0 Σ0β
n

0 and therefore ɛ0 depends only on μ and s2. The lower bound ɛ0 depends on μ and s2 and is highly correlated
with Pðy¼ 0Þ. Let ɛminðpÞ and ɛmaxðpÞ be defined by

ɛminðpÞ ¼ inf
μ;s2

fɛ0ðμ; s2Þ : Pμ;s2 ðy¼ 0Þ ¼ pg

and

ɛmaxðpÞ ¼ sup
μ;s2

fɛ0ðμ; s2Þ : Pμ;s2 ðy¼ 0Þ ¼ pg:

Fig. 3 shows the curves ɛminðpÞ and ɛmaxðpÞ. These two curves are lower and upper bounds of ɛ0 as a function of Pðy¼ 0Þwhen
xn has a multivariate normal distribution.

6. Monte Carlo study

We performed a Monte Carlo study to compare the behaviors of MT- and WMT-estimators to that of other existing
estimators for Poisson regression and log link when the sample size is 100. Let N pðμ;ΣÞ be the p-dimensional multivariate
normal distribution with mean μ and covariance matrix Σ and PðλÞ the Poisson distribution with parameter λ. In the Monte
Carlo study we took as covariates x¼ ð1; xnÞ where xn has distribution N 5ð0; IÞ and the distribution of yjx is Pðexpðβ′0xÞÞ. We
considered three different models, with values of β0 : β0;1 ¼ ð0;1;0;0;0;0Þ, β0;2 ¼ ð2;1;0;0;0;0Þ and β0;3 ¼ ð2;1:5;0;0;0;0Þ.
For each of these models we have simulated the case when the samples do not contain outliers and the case when the
samples have 10% of identical outliers of the form ðx0; y0Þ. We took x0 ¼ ð1;3;0;0;0;0Þ and y0 in a grid of values of the form
y0 ¼ μ0�kɛ1; 1rkrK1 y0 ¼ μ0þkɛ2; 1rkrK2, where μ0 ¼ eβ

′
0x0 ¼ Eβ0 ðyjx¼ x0Þ. The values ɛ1; ɛ2; K1 and K2 were chosen

so that the grid covers values y0 close to those yielding the maximum mean squared error. We simulated the following
estimators: the maximum likelihood estimator (ML), the robust quasi likelihood estimators proposed by Cantoni and
Ronchetti (2001) with no weights (QL) and with weights (WQL), the conditionally unbiased bounded influence estimator
(CUBIF) proposed by Künsch et al. (1989), the one step M-estimator starting from the projection estimate (PM) proposed in
Bergesio and Yohai (2011) and the MT- and WMT- estimators proposed here. The MT- and the WMT-estimators were
computed using a function ρ in the family given in (13). In the case of the WMT-estimators the weight function ω that we
use is

ω tð Þ ¼

1 if trχ0:965;5;

χ0:975;5�t
χ0:975;5�χ0:965;5

if χ0:965;5otrχ0:975;5;

0 if t4χ0:975;5;

8>>>><>>>>: ð15Þ

where χα;p is such that PðXrχα;pÞ ¼ α where X has a chi-squared distribution with p degrees of freedom. The estimators of
location and scatter used to compute the weights are S-estimators with asymptotic breakdown point equal to 0.5 with ρ
function in the bisquare family. These S-estimators were computed with the function SestCov, method¼“bisquare”
in the package rrcov of R. It is easy to check that using ρ in the family (13) and ω given by (15), all the assumptions of
Theorem 2 are satisfied.
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The tuning constants of the estimators were chosen to have an efficiency between 75% and 90%. This was not always
possible for the PM-estimators where for some models the efficiency remained low even for large values of the tuning
constant. The values of the tuning constants that we use are 0.9 for the QL-estimators, 2.8 for the WQL-estimators, 2.4 for
the PM-estimators, 1.6 for the CUBIF-estimator, 2.3 for the MT-estimator and 2.9 for the WMT-estimator.

Given an estimator bβ, we denote by MSE, the mean squared error defined by Eβ0 ðJbβ�β0 J
2Þ, where J J denotes the l2

norm. We estimate the MSE by

dMSE ¼ 1
N

∑
N

i ¼ 1
Jbβ i�β0 J

2;

where bβ i is the value of the estimator at the i-th replication and N is the number of replications which was chosen equal to
1000. Table 1 gives the efficiencies with respect to the ML-estimator when there are no outliers for the three models.

Tables 2–4 and Figs. 4–6 give the values of dMSE for the contaminated samples for the three models. In these figures we do
not show the MSE of WQL and WMT which have similar or worse behaviors than QL and MT respectively.
Table 1
Efficiencies without outliers with respect to the ML estimator.

QL WQL CUBIF PM MT WMT

β0;1 0.88 0.77 0.81 0.83 0.74 0.70
β0;2 0.88 0.78 0.82 0.80 0.87 0.79
β0;3 0.88 0.78 0.71 0.45 0.86 0.78

Table 2dMSE under contamination for β0 ¼ β0;1. Between 15ry0r26, dMSEr0:09, μ0 ¼ eβ
′
0x0 ¼ Eβ0 ðyjx¼ x0Þ ¼ 20:06.

y0 0 1 2 3 4 5 10 30 35 40 45

ML 0.58 0.47 0.39 0.33 0.28 0.23 0.11 0.09 0.13 0.17 0.22
QL 0.65 0.51 0.41 0.34 0.28 0.24 0.11 0.09 0.13 0.18 0.24
WQL 1.20 0.83 0.61 0.48 0.39 0.32 0.15 0.12 0.16 0.22 0.28
CUBIF 0.81 0.60 0.46 0.37 0.30 0.25 0.11 0.09 0.12 0.15 0.19
PM 0.37 0.35 0.34 0.29 0.26 0.23 0.11 0.10 0.12 0.15 0.18
MT 0.13 0.46 0.43 0.35 0.29 0.24 0.12 0.11 0.15 0.21 0.27
WMT 0.26 0.60 0.45 0.36 0.30 0.25 0.11 0.11 0.16 0.21 0.27

Table 3dMSE under contamination for β0 ¼ β0;2. Between 80ry0r240, dMSEr0:09, μ0 ¼ eβ
′
0x0 ¼ Eβ0 ðyjx¼ x0Þ ¼ 148:41.

y0 0 10 20 30 40 50 60 70 280 320 360 400

ML 0.53 0.40 0.31 0.24 0.18 0.14 0.11 0.08 0.10 0.15 0.21 0.27
QL 0.55 0.47 0.34 0.25 0.19 0.14 0.11 0.08 0.10 0.15 0.20 0.25
WQL 0.80 0.70 0.46 0.32 0.23 0.17 0.13 0.10 0.10 0.15 0.19 0.24
CUBIF 0.26 0.30 0.30 0.25 0.18 0.14 0.10 0.07 0.05 0.05 0.05 0.05
PM 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.03 0.03 0.03 0.03
MT 0.01 0.01 0.01 0.02 0.04 0.08 0.09 0.08 0.09 0.11 0.12 0.10
WMT 0.01 0.010 0.01 0.05 0.10 0.12 0.11 0.09 0.09 0.13 0.16 0.17

Table 4dMSE under contamination for β0 ¼ β0;3. Between 400ry0r1000, dMSEr0:13, μ0 ¼ eβ′0 x0 ¼ Eβ0 ðyjx¼ x0Þ ¼ 665:134.

y0 0 50 100 150 200 1200 1400 1600 1800

ML 1.34 0.90 0.64 0.47 0.34 0.17 0.29 0.42 0.57
QL 1.30 0.83 0.55 0.40 0.29 0.15 0.24 0.33 0.43
WQL 1.90 0.90 0.55 0.38 0.27 0.13 0.20 0.27 0.35
CUBIF 0.05 0.05 0.05 0.05 0.03 0.04 0.05 0.05 0.05
PM 0.15 0.14 0.15 0.16 0.11 0.11 0.11 0.11 0.10
MT 0.01 0.01 0.01 0.01 0.06 0.11 0.13 0.12 0.10
WMT 0.01 0.01 0.01 0.04 0.06 0.11 0.16 0.18 0.18
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Fig. 6. dMSE under contamination for β¼ β0;3, μ0 ¼ 665:134.
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We note that except for the PM, all the simulated estimators have a similar efficiency for the three considered models.
The PM has a lower efficiency, especially when β0 ¼ β0;3. Table 2 and Fig. 4 show that when β0 ¼ β0;1 the most robust
estimator is PM followed by MT. Instead when β0 ¼ β0;2, according to Table 3 and Fig. 5 the most robust estimators are PM



Table 5
Computing times (t) and maximum supported outlier fraction (ε) for different values of N and p.

p N¼500 N¼1000 N¼1500

t ɛ t ɛ t ɛ

10 0:51 0.37 1:29 0.42 2:06 0.44
20 1:21 0.21 2:02 0.24 2:35 0.25
30 1:42 0.15 2:29 0.16 3:10 0.17
40 2:14 0.11 2:59 0.13 3:55 0.14
50 2:42 0.09 3:46 0.10 4:32 0.11
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and MT, which have a similar behavior. Finally, when β0 ¼ β0;3, from Table 4 and Fig. 6 we infer that PM, MT and CUBIF are
the most robust estimators. For the three considered values of β0, the MT estimator has a good behavior without and with
outliers. The PM-estimator for β0 ¼ β0;1 has a slightly better performance under outlier contamination, but its efficiency for
clean data may be much lower.
6.1. Computational method

To obtain the function mðλÞ we note that if y has distribution PðλÞ then y1=2�λ1=2-dNð0;1=4Þ when λ-1. This implies
that for large λ we can approximate mðλÞ by λ1=2. Then we proceed as follows: for 0oλr3 we fit a cubic spline using a grid
with step 0.1. The value ofmðλÞ for each element of the grid was computed using the function “optimize” in R. For λ43, since
mðλÞ is very close to λ1=2; a good approximation to mðλÞ is obtained using one step Newton–Raphson starting at λ1=2. For the
computation of the MT-estimator defined in (4) we used the quasi-Newton optimization method BFGS provided in the
function optim of R. As our objective function may have multiple local minima, a crucial part of the computation is the
choice of initial values for the parameters. This initial value was obtained using a subsampling procedure plus a
concentration step similar to the one proposed by Rousseeuw and Van Zomeren (1990). More precisely, we choose at
random N subsamples of size p. For each subsample a candidate for the initial estimator is obtained by computing the
maximum likelihood estimator. This candidate is improved by computing the maximum likelihood estimator of the ½n=2�
observations with the smallest deviances. Finally we compute the loss function given in (5) to all the improved candidates
and choose as an initial estimator the one that attains the minimum value. The number N of subsamples may be determined
as in the case of linear regression, see for example Maronna et al. (2006, Chapter 5). This value depends on the number of
regressors p, on the expected fraction of outliers ɛ and on the degree of the desired probability of obtaining at least one
sample free of outliers γ.

Table 5 gives computing mean times expressed in minutes and seconds for MT estimators in a PC with an AMD Athlon II
X3 450 Processor with a speed of 3.20 GHz and 8 GB of RAM memory for N equal 500,1000 and 1500 and different values of
p. In the same table we show the corresponding values of ɛ when γ ¼ 0:99. These values were obtained with a program
written in R.

We observe that for p¼50, if the fraction of expected outliers is not larger than 0.1, the estimator may be computed in a
reasonable amount of time. Note that these times may be substantially decreased with a more powerful machine and/or
with a code partially written in a lower level access to memory language, as for example C.

However the values of N required when p and ɛ increase may be very large and the algorithm becomes unfeasible. For
these cases the minimum of Ln may be obtained using heuristic optimization methods, but this is a matter of further
research.
7. Example: Epilepsy data

Breslow (1996) used a GLM with Poisson response and log link to study the effect of drugs in epilepsy patients. He
considered data from a clinical trial of 59 patients with epilepsy, 31 of whom were randomized to receive the anti-epilepsy
drug Progabide and 28 of whom received a placebo. The response variable is SumY: the number of attacks during four weeks
in a given time interval. The explanatory variables are Age 10: patient age divided by ten, Base4: number of attacks in the
four weeks prior to the study, Trt: a dummy variable that takes the values 1 or 0 if the patient received the drug or a placebo
respectively and Base4nTrt: to take into account the interaction between these two variables.

We fit the Poisson GLM with log link using the same estimators as in the simulation study except for WQL and WMT.
Fig. 7 shows boxplots of the absolute values of the deviance residuals. In the left plot we consider all the residuals. To make
the boxes and whiskers more clearly visible, in the right plot we eliminated the outliers detected by the boxplots for each fit.
It is clear from the boxplots that the MT-estimator gives the best fit for the bulk of the data.
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Fig. 7. Boxplots of the absolute values of the deviance residuals: (a) all the observations and (b) without the outliers.
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8. Conclusions

We have presented two new families of estimators for GLM which combine M-estimation with a variance stabilizing
response transformation: the WMT- and MT-estimators. We performed a Monte Carlo study to compare the proposed
estimators with other robust estimators in the case of a GLM with Poisson response and log link. This Monte Carlo study
shows that the MT-estimator compares favorably with the other robust estimators when efficiency and robustness are both
considered. This study also shows that for the three simulated models, the WMT-estimator has a similar or worse behavior
than that of the MT-estimator. Hence, penalizing high leverage observations does not improve the robustness of the
estimator. We have also obtained the asymptotic normal distribution of the WMT- and MT-estimators. This distribution can
be used for testing hypotheses about the vector of regression coefficients, β0, as well as to obtain confidence regions for β0 or
some of its components.
Acknowledgments

This research was partially supported by Grants W276 from Universidad of Buenos Aires, PIP 112-2008-01-00216 and
112-2011-01-00339 from CONICET and PICT 2011-0397 from ANPCYT, Argentina. We also thank two anonymous referees for
their comments and suggestions which contributed to a substantial improvement of the paper.
Appendix A

A.1. A general consistency theorem

We will prove Theorem 1 as a particular case of a more general consistency result.
Let ðy; x1Þ;…; ðyn;xnÞ be a sample with yiA R; xiARp and let Φ : R� Rp � Rp � Rq-R. Consider the estimator bβn defined

by

bβn ¼ arg min
βARp

∑
n

i ¼ 1
Φðyi; xi; β; bθnÞ; ð16Þ

where θ is a nuisance parameter with values in Rq and bθn is a sequence of estimators of θ.
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We consider the following assumptions:
P0
 There exists θ0 such that bθn- θ0 a.s.

P1
 The function Φ is continuous and bounded and there exists a function ϑðx; θÞ : Rp � Rq-R and a constant C such that

jΦðyi;xi; β; θ2Þ�Φðyi; xi; β; θ1ÞjrCjϑðx; θ2Þ�ϑðx; θ1Þj
for all y; x; β; θ1 and θ2. Besides, if θ0 is as in P0, then θn-θ0 implies supxjϑðx; θnÞ�ϑðx; θ0Þj-0.
P2
 Let θ0 be as in P0. Then, there exists β0 such that

Eβ0 ðΦðy; x; β0; θ0ÞÞoEβ0 ðΦðy; x; β; θ0ÞÞ ð17Þ
for all βaβ0.
P3
 Let S be as in B9, θ0 as in P0 and β0 as in P2. Then there exists a function Φnðy; x; jÞ, j¼ �1;0;1 such that for all tAS we
have

lim
γ-1

Φðy; x; γt; θ0Þ ¼Φnðy; x; signðt′xÞÞ

and if t′xa0 there exists a neighborhood of t where this convergence is uniform. Besides

τ¼ inf
tAS

½Eβ0 ðΦnðy; x; signðt′xÞÞ�Eβ0 ðΦðy; x; β0; θ0Þ�40: ð18Þ

Theorem 4. Let ðyi;xiÞ; iAN, be a sequence of i.i.d. random vectors and assume P0–P3 and Pðt′x¼ 0Þoτ=M for all tAS, where
M¼ supy;x; βΦðy;x; β; θ0Þ. Let bβn be defined by (4), then bβn-β0 a.s.

Given tARp and ɛ40, let Bðt; ɛÞ ¼ fsA Rp : Js�tJrɛg. The following lemma is required to prove Theorem 4.

Lemma 1. Let ðy1; x1Þ;…; ðyn; xnÞ be i.i.d. random vectors and bβn be defined by (16) and assume P0, P1, P3 and Pðt′x¼ 0Þoτ=M
for all tAS. Then there exists a compact set C �Rp and n0AN such that, if nZn0 then bβnAC almost surely.

Proof. It is enough to prove that there exists K0 such that

lim
n-1

1
n

∑
n

i ¼ 1
Φ yi; xi; β0; bθn� �

o lim
n-1

inf
Jβ J 4K0

1
n

∑
n

i ¼ 1
Φ yi; xi; β; bθn� �

a:s: ð19Þ

By P0 and P1

1
n

∑
n

i ¼ 1
Φ yi; xi; β0; bθn� �

�1
n

∑
n

i ¼ 1
Φ yi;xi; β0; θ0
� �				 				rC sup

x
jϑ x; bθn� �

�ϑ x; θ0ð Þj-0 a:s: ð20Þ

Then it is enough to show that there exists K0 such that

lim
n-1

1
n

∑
n

i ¼ 1
Φ yi; xi; β0; θ0
� �

o lim
n-1

inf
Jβ J 4K0

1
n

∑
n

i ¼ 1
Φ yi;xi; β; θ0
� �

a:s: ð21Þ

To prove (21) it suffices to show that there exists K040 such that

lim
n-1

1
n

∑
n

i ¼ 1
Φ yi; xi; β0; θ0
� �

o lim
n-1

inf
γ4K0

inf
sAS

1
n

∑
n

i ¼ 1
Φ yi; xi; γs; θ0
� �

a:s: ð22Þ

We start proving that for all tAS there exists ɛ40 such that

Eβ0 ðΦðy; x; β0; θ0ÞÞoEβ0 lim
γ-1

inf
sABðt;ɛÞ

Φðy; x; γs; θ0Þ
 !

: ð23Þ

Since PðX′s¼ 0Þoτ=M for all sARp, given tAS it is easy to show that there exist positive numbers ς and K such that if

Ct ¼ fx : jt′xj4ς; JxJoKg
then

PðCtÞ41�τ=M

Let ɛ¼ ς=ð2KÞ and xACt. Then for all sABðt; ɛÞ we have js′x�t′xjrς=2 and therefore js′xjZς=2 and signðs′xÞ ¼ signðt′xÞ.
Given any x and y, by P3 we have

lim
γ-1

inf
sABðt;ɛÞ

Φðy; x; γs; θ0Þr lim
γ-1

Φðy; x; γt; θ0Þ ¼Φnðy;x; signðt′xÞÞ:

Let us suppose that the strict inequality holds for some point xACt and yAR, that is

lim
γ-1

inf
sABðt;ɛÞ

Φðy; x; γs; θ0ÞoΦnðy;x; signðt′xÞÞ;
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then, there exist ζ40, a sequence of positive numbers γn-1 and snABðt; ɛÞ such that

Φðy; x; γnsn; θ0ÞoΦnðy; x; signðt′xÞÞ�ζ ð24Þ
and then

lim
n-1

Φðy; x; γnsn; θ0ÞrΦnðy;x; signðt′xÞÞ�ζ: ð25Þ

We can assume that sn-s0, where s0ABðt; ɛÞ and s′0xa0. Moreover since for n sufficiently large the sign of s′nx is the same
as the sign of s′0x and of the t′x, by P3 we have

lim
n-1

Φðy; x; γnsn; θ0Þ ¼Φnðy; x; signðs′0xÞÞ ¼Φnðy; x; signðt′xÞÞ;

contradicting (25). Then

lim
γ-1

inf
sABðt;ɛÞ

Φðy; x; γs; θ0Þ ¼Φnðy; x; signðt′xÞÞ:

Given a set A, we denote by Ac its complement. Then using that PðCc
tÞoτ=M, sup ΦnrM and (18) we get

Eβ0 lim
γ-1 inf

sABðt;ɛÞ
Φðy; x; γs; θ0Þ

� �
ZEβ0 lim

γ-1 inf
sABðt;ɛÞ

Φðy; x; γs; θ0ÞICt ðxÞ
� �

¼ Eβ0 ðΦnðy; x; signðt′xÞÞICt ðxÞÞ
ZEβ0 ðΦnðy; x; signðt′xÞÞÞÞ

�Eβ0 ðΦnðy; x; signðt′xÞÞÞICc
t
ðxÞÞ

4Eβ0 ðΦðy; x; β0; θ0ÞÞ

proving (23).
Finally we show how to derive (22) from (23) using the Law of Large Numbers and the compactness of S. By (23) and the

Dominated Convergence Theorem, for all tAS there exist ζt, ɛt and Kt such that

Eβ0 inf
γ4Kt

inf
sABðt;ɛtÞ

Φðy; x; γs; θ0Þ
� �

4Eβ0Φðy; x; β0; θ0Þþζt: ð26Þ

Since S is compact, there exists a finite set t1; t2;…; tj of elements of S such that S�⋃j
h ¼ 1Bðth; ɛth Þ. Let K0 ¼maxfKt1 ;…;Ktj g

and ζ0 ¼minfζt1 ;…; ζtj g. Then

inf
γ4K0

inf
sAS

1
n

∑
n

i ¼ 1
Φ yi; xi; γs; θ0
� �

Z inf
1rhr j

inf
γ4Kh

inf
sABðth ;ɛth Þ

1
n

∑
n

i ¼ 1
Φ yi; xi; γs; θ0
� �

;

and by the Law of Large Numbers and (26) we get

lim
n-1

inf
γ4K0

inf
sAS

1
n

∑
n

i ¼ 1
Φ yi;xi; γs; θ0
� �

Z inf
1rhr j

lim
n-1

1
n

∑
n

i ¼ 1
inf

γ4Kh

inf
sABðth ;ɛth Þ

Φ yi; xi; γs; θ0
� � ð27Þ

¼ inf
1rhr j

E inf
γ4Kh

inf
sABðth ;ɛth Þ

Φðyi; xi; γs; θ0Þ
 !

ZEβ0 ðΦðy; x; β0; θ0ÞÞþζ0 a:s: ð28Þ

Since

lim
n-1

1
n

∑
n

i ¼ 1
Φ yi; xi; β0; θ0
� �¼ Eβ0 Φ y; x; β0; θ0

� �� �
; ð29Þ

(22) follows from (28). □

Proof of Theorem 4. Let C be the compact set given by Lemma 1. Then, according to this lemma, it is enough to prove that
for all U open neighborhood of β0 we have

lim
n-1

inf
βAC�U

1
n

∑
n

i ¼ 1
Φ yi;xi; β; bθn� �

4 lim
n-1

1
n

∑
n

i ¼ 1
Φ yi; xi; β0; bθn� �

a:s:; ð30Þ

and by (20) it is enough to show

lim
n-1

inf
βAC�U

1
n

∑
n

i ¼ 1
Φ yi; xi; β; θ0
� �

4 lim
n-1

1
n

∑
n

i ¼ 1
Φ yi; xi; β0; θ0
� �

a:s: ð31Þ

Using the Dominated Convergence Theorem and a standard compactness argument we can find tjARp; ɛj40, ζj40,
1r jrh such that

⋃
h

j ¼ 1
Bðtj; ɛjÞ*C�U
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and

Eβ0 ðΦðy; x; β0; θ0ÞÞrEβ0 inf
βABðtj ;ɛjÞ

Φðy; x; β; θ0Þ
� �

�ζj; 1r jrh: ð32Þ

We also have

inf
βAC�U

1
n

∑
n

i ¼ 1
Φ yi; xi; β; θ0
� �

Z inf
1r jrh

inf
βABðtj ;ɛjÞ

1
n

∑
n

i ¼ 1
Φ yi; xi; β; θ0
� �

:

Then, putting ζ0 ¼min1r jrhζj, by the Law of Large Numbers and (32) we get

lim
n-1

inf
βAC�U

1
n

∑
n

i ¼ 1
Φ yi;xi; β; θ0
� �

Z inf
1r jrh

lim
n-1

1
n

∑
n

i ¼ 1
inf

βABðtj ;ɛjÞ
Φ yi; xi; β; θ0
� �

Z inf
1r jrh

Eβ0 inf
βABðtj ;ɛjÞ

Φðyi; xi; β; θ0Þ
� �

ZEβ0 ðΦðy; x; β0; θ0ÞÞþζ0:

and then from (29) we get (31). □

A.2. Proof of the consistency of WMT-estimators

In this section we prove Theorem 1. We need the following lemmas.

Lemma 2. Assume A1–A2 and B1–B6. Then, there exists ɛ0 such that

EλðρðtðyÞ�mðλÞÞÞo1�ɛ0 ð33Þ
for all λ.

Proof. By Chebyshev's inequality we have that for any δ40

Eλ ρ t yð Þ�m λð Þð Þð ÞrEλ ρ t yð Þ�Eλ t yð Þð Þð Þð Þ
rρ δð ÞP t yð Þ�Eλ t yð Þð Þ oδj ÞþP t yð Þ�Eλ t yð Þð Þ ZδÞ

						�		�
¼ 1� 1�ρ δð Þð ÞP t yð Þ�Eλ t yð Þð Þ oδj Þ

		�
r1� 1�ρ δð Þð Þ 1� A

δ2

� �
:

Then taking δ¼ A1=2þη we get

EλðρðtðyÞ�mðλÞÞÞr1�ɛ0

with

ɛ0 ¼ 1�ρ A1=2þη
� �� �

1� A

ðA1=2þηÞ2

 !
:

This proves the lemma. □

Lemma 3. Assume B1–B6. Then A1–A5 imply that mðλÞ is continuous.
Proof. Take a sequence λi-λð0Þ;we have to prove that mðλiÞ-mðλð0ÞÞ. Suppose this is not true, then passing to a subsequence
if necessary we can assume that mðλiÞ converges to a value m0 possibly 81: Suppose that m0 ¼ þ1 and take λð1Þoλð0Þ:
Then by the Dominated Convergence Theorem we have Eλð1Þ ðρðtðyÞ�mðλiÞÞ-1: Then using A4 and A5 we get that
Eλi ðρðtðyÞ�mðλiÞÞ-1 contradicting the fact that by Lemma 2, EλðρðtðyÞ�mðλÞÞo1�ɛ0 for all λ. Similarly we can prove that
m0 cannot be �1.
We consider now the case of finite m0. By the definition of mðλÞ we have

Eλi ðρðtðyÞ�mðλiÞÞÞrEλi ðρðtðyÞ�mðλð0ÞÞÞÞ
for all iAN. Taking limits we get

Eλð0Þ ðρðtðyÞ�m0ÞÞÞrEλð0Þ ðρðtðyÞ�mðλð0ÞÞÞÞ:
Therefore by the uniqueness of mðλð0ÞÞ we obtain that mðλð0ÞÞ ¼m0 proving the continuity of mðλÞ. □

Lemma 4. Let μ0ARp and Σ0 a p�p positive definite matrix. Assume B8, then μn-μ0 and Σn-Σ0 imply

sup
x

jwðx; μn;ΣnÞ�wðx; μ0;Σ0Þj-0: ð34Þ

Proof. Suppose that (34) is not true. Then there exists a sequence xn and ɛ40 such that for all n

jwðxn; μn;ΣnÞ�wðxn; μ0;Σ0Þj4ɛ: ð35Þ
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We can assume without loss of generality that xn-x0 or Jxn J-1. In the first case

lim
n-1

ðxn�μnÞ′Σ�1
n ðxn�μnÞ ¼ lim

n-1
ðxn�μ0Þ′Σ�1

0 ðxn�μ0Þ

¼ ðx0�μ0Þ′Σ�1
0 ðx0�μ0Þ:

Therefore, since by B8 ω is continuous we get

lim
n-1

wðxn; μn;ΣnÞ ¼ lim
n-1

wðxn; μ0;Σ0Þ ¼wðx0; μ0;Σ0Þ;

contradicting (35). In the second case we have that limn-1ðxn�μnÞ′Σ�1
n ðxn�μnÞ ¼ limn-1ðxn�μ0Þ′Σ�1

0 ðxn�μ0Þ ¼1. B8
implies that there exists a such that limd-1ωðdÞ ¼ a and therefore limn-1wðxn; μn;ΣnÞ ¼ limn-1wðxn; μ0;Σ0Þ ¼ a. This
contradicts (35) too. □

Proof of Theorem 1. Let Φ0 be defined by (11). According to Theorem 4, it is enough to show that P0–P3 hold when
θ¼ ðμ;ΣÞ, bθn ¼ ðbμn; bΣnÞ;Φ¼Φ0 and ϑðx; θÞ ¼wðx; μ;ΣÞ.
P1 follows from Lemma 4. Put

Dðλ;uÞ ¼ EλðρðtðyÞ�uÞÞ
Take βaβ0. Then by A2 we have

Dðgðβ′0xÞ;mðgðβ′xÞÞÞ�Dðgðβ′0xÞ;mðgðβ′0xÞÞÞZ0 ð36Þ
and

Dðgðβ′0xÞ;mðgðβ′xÞÞÞ�Dðgðβ′0xÞ;mðgðβ′0xÞÞÞ40 if β′0xa β′x: ð37Þ
Moreover

Eβ0 ðΦ0ðy;x; β; μ0;Σ0ÞjxÞ ¼Dðgðβ′0xÞ;mðgðβ′xÞÞwðx; μ0;Σ0Þ: ð38Þ
Let V ¼ fx : ðβ�β0Þ′xa0g \ fx : wðx; μ0;Σ0Þ40g, then by B9 PðVÞ40. From (36) and (38) we get that

Eβ0 ðΦ0ðy;x; β; μ0;Σ0ÞÞ�Eβ0 ðΦ0ðy; x; β0; μ0;Σ0ÞÞ
ZEf½Dðgðβ′0xÞ;mðgðβ′xÞÞÞ�Dðgðβ′0xÞ;mðgβ′0xÞÞÞ�wðx; μ0;Σ0ÞIðVÞg:

Since for xAV we have

½Dðgðβ′0xÞ;mðgðβ′xÞÞÞ�Dðgðβ′0xÞ;mðgðβ′0xÞÞÞ�wðx; μ0;Σ0Þ40

we obtain that Eβ0 ðΦ0ðy; x; β; μ0;Σ0ÞÞ�Eβ0 ðΦ0ðy;x; β0; μ0;Σ0ÞÞ40 and therefore P2 is satisfied.
To prove P3 it is enough to show that τ40, where τ is defined in (12). By B9

δ¼ inf
tAS

Pðft′xa0g \ fwðx; μ0;Σ0Þ40gÞ40: ð39Þ

We are going to show that there exists ζ40 such that

inf
tAS

Pðft′xa0g \ fωðx; μ0;Σ0Þ4ζgÞZδ=2: ð40Þ

Suppose that this is not true. Then there exist sequences tnAS and ζn-0 such that

Pðft′nxa0g \ fωðx; μ0;Σ0Þ4ζngÞoδ=2;

and without loss of generality we can assume that tn-t0AS. Then we get that

Pðft′0xa0g \ fωðx; μ0;Σ0Þ40gÞrδ=2;

contradicting (39). We can also find K1 and K2 such that

Pðβ′0xA ½K1;K2�Þ41�δ=4: ð41Þ
Then, if we put

V t ¼ ft′xa0g \ fωðx; μ0;Σ0Þ4ζg \ fβ′0xA ½K1;K2�g�; ð42Þ
by (40) and (41) we have

PðVtÞ4δ=4 ð43Þ
for all tAS. By A2

Dðgðβ′0xÞ;mðgðβ′0xÞÞÞoDðgðβ′0xÞ;miÞ; i¼ �1;1 ð44Þ
and

Dðgðβ′0xÞ;mðgðβ′0xÞÞÞrDðgðβ′0xÞ;m3Þ ð45Þ
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Eqs. (44) and (45) imply that for all xARp and tAS

Eβ0 ððΦn

0ðy; x; signðt′xÞÞ�Φ0ðy; x; β′0x; μ0;Σ0ÞÞjxÞZ0: ð46Þ
Let us define CiðλÞ ¼Dðλ;miÞ�Dðλ;mðλÞÞ, i¼ �1;1. Then for all λA ½gðK1Þ; gðK2Þ� and i¼ �1;1, we have that Ci is positive and
continuous. Then

ci ¼ min
λA ½gðK1Þ;gðK2Þ�

CiðλÞ40; i¼ �1;1:

Put c0 ¼minðc�1; c1Þ, then by (46), (42) and (43) we get that

Eβ0 ðΦn

0ðy; x; signðt′xÞÞ�Φ0ðy; x; β′0x; μ0;Σ0ÞÞ
ZEðEβ0 ððΦn

0ðy;x; signðt′xÞÞ�Φ0ðy; x; β′xÞÞjxÞIðxAV tÞÞ

ZE min
λA ½gðK1Þ;gðK2Þ�

min
iA f�1;1g

CiðλÞwðx; μ0;Σ0ÞIðxAV tÞ
� �

Zc0Eðwðx; μ0;Σ0ÞIðxAV tÞÞ
Zc0ζδ=4:

This implies that τZc0ζδ=4 and therefore P3 holds.
P0 follows from B7. □

A.3. Proof of the asymptotic normality of WMT-estimators

Let f ðy; λÞ be the density function of Fλ in the continuous case and the probability function in the discrete case and call
ψ0ðy; λÞ ¼ ∂f ðy; λÞ=∂λ: Then we have the following lemma.

Lemma 5. Assume A1–A5 , B1–B7 and C1–C4. Then m is twice differentiable.

Proof. For each λAðλð1Þ; λð2ÞÞ mðλÞ is defined as the minimum in m of EλðρðtðyÞ�mÞÞ. Therefore EλðψðtðyÞ�mðλÞÞÞ ¼ 0 for all λ.
By C3 and the Implicit Function Theorem m is differentiable and

m′ λð Þ ¼
R
ψðtðyÞ�mðλÞÞψ0ðy; λÞ dy
Eλ½ψ ′ðtðyÞ�mðλÞÞ�

in the continuous case and

m′ λð Þ ¼∑yψðtðyÞ�mðλÞÞψ0ðy; λÞ
Eλ½ψ ′ðtðyÞ�mðλÞÞ�

in the discrete case. Assumptions C1–C3 imply that m′ is also differentiable. □

The following lemma is proved in Yohai (1985).

Lemma 6. Let z1;…; zn be i.i.d. random vectors with distribution F and let ϕ : Rp � Rh⟶R be a continuous function satisfying

sup
Jθ�θ0 J r ε

jϕðz; θÞj

has finite expectation under F for some ɛ40. Let bξn -θ0 a.s. Then

lim
n-1

1
n

∑
n

i ¼ 1
ϕ zi;bξn� �

¼ E ϕ z; θ0ð Þð Þ a:s:

The following lemma is proved in the Supplemental Material of Bergesio and Yohai (2011).

Lemma 7. Let cðz; βÞ : Rp � Rk-Rk be a continuously differentiable function in β and let z1;…; zn be i.i.d. random vectors of
dimension p. Consider a sequence of estimators bβn such that n1=2ðbβn�β0Þ ¼Opð1Þ. Suppose also that there exists ζ40 such that

sup
Jβ�β0 J r ζ

jcðz; βÞj

has finite expectation and that

E
∂cðz; βÞ

∂β

				
β ¼ β0

#
¼ 0:

"
Then

1
n1=2 ∑

n

i ¼ 1
c zi; bβn� �

� 1
n1=2 ∑

n

i ¼ 1
c zi; β0
� �¼ op 1ð Þ:



M. Valdora, V.J. Yohai / Journal of Statistical Planning and Inference 146 (2014) 31–48 47
Proof of Theorem 3. The estimator bβn satisfies

∑
n

i ¼ 1
Ψ ðyi; xi; bβn; bμn; bΣnÞ ¼ 0:

Using a Taylor expansion we get

1
n

∑
n

i ¼ 1
Jψ yi; xi; ξn; bμn; bΣn

� � bβn�β0
� �

¼ �1
n

∑
n

i ¼ 1
Ψ yi; xi; β0; bμn; bΣn

� �
; ð47Þ

where ξn is an intermediate point between bβn and β0. Since by Theorem 1 bβn is strongly consistent to β0, then ξn is strongly
consistent to bβ0 too. Then, by C4 and Lemma 6

lim
n-1

1
n

∑
n

i ¼ 1
Jψ yi; xi; ξn; bμn; bΣn

� �
¼ B a:s: ð48Þ

Since by C3 the matrix B is non-singular, for n large enough

ð1=nÞ ∑
n

i ¼ 1
Jψ ðyi;xi; ξn; bμn; bΣnÞ

is non-singular too. Then from (47) we get

ffiffiffi
n

p bβn�β0
� �

¼ � 1
n

∑
n

i ¼ 1
Jψ yi; xi; ξn; bμn; bΣn

� � !�1
1ffiffiffi
n

p ∑
n

i ¼ 1
Ψ yi; xi; β0; bμn; bΣn

� �
: ð49Þ

By the Central Limit Theorem we have

1ffiffiffi
n

p ∑
n

i ¼ 1
Ψ yi; xi; β0; μ0;Σ0
� �

-
D N 0;Að Þ ð50Þ

and by Lemma 7

1ffiffiffi
n

p ∑
n

i ¼ 1
Ψ yi; xi; β0; bμn; bΣn

� �
�Ψ yi; xi; β0; μ0;Σ0

� �h i
¼ op 1ð Þ: ð51Þ

Consequently, the theorem follows from (48)–(51) and Slutzky's lemma. □

A.4. Proof of Theorem 3

Suppose that ɛ is a positive real number such that there exists a sequence of distribution functions Hk such that
Tðð1�ɛÞH0þɛHkÞ-1 as k-1. We will show that ɛZɛ0. We write βk ¼ Tðð1�ɛÞH0þɛHkÞ for brevity. Then we have

ð1�ɛÞEH0 ðρðtðyÞ�mðgðβ′kxÞÞÞÞr ð1�ɛÞEH0 ðρðtðyÞ�mðgðβ′kxÞÞÞÞþɛEHk
ðρðtðyÞ�mðgðβ′kxÞÞÞÞ

r ð1�ɛÞEH0 ðρðtðyÞ�mðgðβ′0xÞÞÞÞþɛEHk
ðρðtðyÞ�mðgðβ′0xÞÞÞÞ

r ð1�ɛÞEH0 ðρðtðyÞ�mðgðβ′0xÞÞÞÞþɛ: ð52Þ
Let αk ¼ βk=Jβk J , then we may assume without loss of generality that αk-α. Then

lim
k-1

ð1�ɛÞEH0 ðρðtðyÞ�mðgðβ′kxÞÞÞÞ ¼ ð1�ɛÞEH0 ½ρðtðyÞ�m1ÞIðα′xo0ÞþρðtðyÞ�m2ÞIðα′x40Þ� ð53Þ

lim
k-1

ð1�ɛÞEH0 ðρðtðyÞ�mðgðβ′kxÞÞÞÞZ ð1�ɛÞEH0 ðminðρðtðyÞ�m1Þ; ρðtðyÞ�m2ÞÞÞ: ð54Þ

Combining inequalities (52) and (54) we obtain

ð1�ɛÞEH0 ðminðρðtðyÞ�m1Þ; ρðtðyÞ�m2ÞÞÞr ð1�ɛÞEH0 ðρðtðyÞ�mðgðβ′0xÞÞÞÞþɛ;

and then

ɛZ
EH0 ðminðρðtðyÞ�m1Þ; ρðtðyÞ�m2ÞÞÞ�EH0 ðρðtðyÞ�mðgðβ′0xÞÞÞÞ

1þEH0 ðminðρðtðyÞ�m1Þ; ρðtðyÞ�m2ÞÞÞ�EH0 ðρðtðyÞ�mðgðβ′0xÞÞÞÞ
:

This proves the theorem.
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