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1. Introduction

Generalized linear models (GLMs) are widely used in data analysis. It is well known that the maximum likelihood
estimator for these models is very sensitive to outliers. To overcome this problem, several robust estimators for GLM have
been proposed. Kiinsch et al. (1989) derived optimal conditionally unbiased bounded influence (CUBIF) estimators. These
estimators are highly robust for a small fraction of outlier contamination. However, Maronna et al. (1979) showed that in the
case of a linear model, the breakdown point of these estimators tends to 0 when the number of regressors tends to infinity.
Cantoni and Ronchetti (2001) defined robust estimators for GLM which can be considered a robustification of the quasi-
likelihood estimators introduced by Wedderburn (1974). These estimators are defined only by the estimating equations and
this forces the use of monotone score functions. As a consequence, as we will see in the Monte Carlo study in Section 8, their
robustness is very limited. Morgenthaler (1992) also proposed a robustification of the quasi-likelihood estimators but using
an 1; measure of fit. Therefore the corresponding score function, the sign function, is monotone too. Bergesio and Yohai
(2011) introduced projection estimators for GLM which are highly robust but their computation requires algorithms of high
complexity. Since these estimators are not asymptotically normal, they propose one-step M-estimators starting at the
P-estimator. These estimators keep most of the properties of the P-estimators and, in addition, they are asymptotically
normal. Another class of estimators are the M-estimators proposed by Bianco and Yohai (1996) and further studied by Croux
and Haesbroeck (2003). Bianco et al. (2013) proposed general M-estimators for GLM for data sets with missing values in the
responses. For GLM models where F, is the Bernoulli family of distributions we can also cite works of Carroll and Pederson
(1993), Christmann (1994), Rousseeuw and Christmann (2003), Bondell (2005) and Cizek (2008).

In this paper we introduce a rather simple and highly robust family of estimators for GLM. The proposed estimators are
redescending M-estimators applied to transformed responses. The purpose of transforming the responses is to stabilize
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their variances to an almost constant value and so allowing a correct scaling of the loss function used to define the
M-estimator.

The proposed estimators are not applicable to the case that F, is the Bernoulli family of distributions. It is easy to see that
in this case the proposed estimator coincides with an ordinary M-estimator where y is not transformed.

In Section 2 we introduce the M-estimators based on transformations (MT) and the weighted M-estimators based on
transformations (WMT) and obtain the variance stabilizing transformations required for some families of distributions. In
Sections 3 and 4 we study the consistency and asymptotic normality of WMT-estimators respectively. In Section 5 we obtain
a lower bound for the asymptotic breakdown point of MT-estimators. In Section 6 we report the results of a Monte Carlo
study to compare the performance of MT- and WMT-estimators to that of other existing estimators for Poisson regression. In
Section 7 we consider a real data set and compare the fit given by the MT-estimator with other existing estimators. In
Section 8 we present the conclusions. Finally, Appendix A is an appendix containing all the proofs.

2. Proposed estimators
2.1. Definition of M-estimators based on transformations

We consider a generalized linear model (GLM) where y € R is the response and X = (x1, ...,Xp)" is a vector of explanatory
variables. It is assumed that

yIxX~F,, 1)
where F; is a discrete or continuous exponential family of distributions in R, 1€ A ¢ R with the same support D and
A= g(BoX), 2)

where g, € RP is unknown and g : R— R is a known link function. We will assume that 2 takes values in an interval (2, 1))
where AV may be — oo and 1? = +co. We will also assume that g : R— (1", 1?) is continuous and strictly increasing and

Jim gy =20, lim gu) =22 3)

Suppose that t : R— R is such that the variance of t(y) is almost constant when y has distribution F,. Let p: R—R be a
continuous and bounded function with a unique local minimum at 0 and define m(2) by

m(4) = arg min E;(p(t(y) —u)).

Let us assume that m(2) is continuous and univocally defined for all 2. Then, given a random sample (y;,X1), ..., (V,,,Xn) of the
model (1) and (2), we define the weighted M-estimator based on transformations (WMT-estimator) of g, by

Bn=arg min Ly(4), 4
where

1
L,p)= n

H M:

() =M@ X)W (X T ). 5)
where w(X,u,X) is a function of the Mahalanobis distance, that is

WX, 1, E) = o(X—p)E~ ' (x—p))'/?),

where i, and £, are the robust estimators of location and scatter matrix of x based on X, ...,X, and o is a non-negative
non-increasing function. The purpose of the weighting function W(Xl,y”, S, is to penalize hlgh leverage observations. We
will use consistent estimates i, and £, so that ji,, >, a.s. and £, - Xy a.s., where X is positive definite. Note that

Eg, (p(t(y;) — M(E(B"Xi))) W(Xn, po, Zo)) = E[Ep, (p(t(y;) — M(E(B"X))) X)W(Xn, o, Zo))]-

Since Eg, (p(t(y;) —m(g(F'X;)))|X) is minimized when g = g, for all X, then Eg, (p(t(y;) — m(g(F'Xi)))W(Xi, o, Zo)) is also minimized
when g = f,. Therefore WMT-estimators are Fisher consistent. Note that since the variance of t(y) given X is almost constant,
it is not necessary to use a scale in the definition of the M-estimator. Since p is bounded, the estimator defined by (4) is
robust even if we do not use weights, that is, when » = 1. However, in cases in which high leverage outliers are expected, the
robustness of the estimator may be increased by using a weight function. In some cases the use of these weights may
decrease the robustness of tlje ¢1estimator. This occurs when there are good high leverage observations, that is when there are
observations where (x—p,,)X, (Xx—p) is large but the response y is generated according to the nominal GLM. In these cases
the weight function would penalize good observations and therefore it may increase the influence of the outliers with low
leverage that have larger weights. For this reason we should not discard to take w(u)=1. In this case it is called the
MT-estimator.
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2.2. Some examples of transformations for variance stabilization

Denote by u(2) and v(1) the mean and variance of F, respectively, then a first order Taylor expansion shows that taking

"y du
- __ 6
v /o (e )]/ ©
we obtain that var(t(y)) is approximately constant. If
v(2) =p)?, (7)

then (6) yields

y @2+ if g£2,
W= lo e 3
g(Y) if g=2.

2.2.1. Poisson regression

In this case F; has as support the set N of non-negative integers and the probability function is p(x, 1) = exp(—1)2*/x!. We
also have u(1) = 4 and v(2) = 1 and therefore t(y) = y'/2. Fig. 1 shows the plot of var(y'/?) as a function of 1 and confirms that
this function is quite constant except for small values of 1. We should mention the fact that Poisson regression is often used
to model rare events, i.e. E(X) = var(X) = 4 is small. However even in this case, the MT and WMT procedures for the Poisson
regression studied in the simulations described in Section 5 may have a high degree of robustness. In fact, since these
estimators use a function p in the family given in (13) with ¢=2.4, observations y with |y!/? —m(exp(f'x))| > 2.4 are
completely rejected. Since when exp(#'x) is close to 0, m(exp(f'X)) is close to 0 too, this implies that in this case values of
y > 5 are completely rejected. Moreover, values of y=4 or 5 are significantly downweighted.

2.2.2. Exponential regression
Consider now the case where F, has support in the set R* of positive real numbers with density

py. ) =2Aexp(—iy) I (y > 0).
We also have p(1)=1/41 and v(1)=1/2%2 and therefore, according to (7) and (8), g=2 and t(y)=log(y). In this case
log(y) = w—log(1) where exp(w) has distribution F;, and then var;,(log(y)) is constant. This value is approximately 1.645.

2.2.3. Binomial regression
Assume now that F; is a Bi(k, 1) distribution, that is, the probability function is

k
p(y,l)_<y>/1y(l—/1)ky, y=0.1,...k 0<i<1.

Then p(2) = kA, v(2) = ki(1—2), and (6) yields t(y) = arcsin(,/y/k). Fig. 2 shows the plot of var;(arcsiny/y/k) for k=5 which is
also quite constant.
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Fig. 1. Variance of t(y) = /y for y ~ P(3).
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Fig. 2. Variance of t(y) = arcsin(,/y/5) for y ~ Bi(5, 2).

3. Consistency

In this section we study the consistency of the estimator defined by (4). We need the following assumptions for the
consistency of the MT-estimator:

A1 sup, var ,(t(y)) =A < co.

A2 m(2) is univocally defined for all 4 and 4; < 1, implies m(11) < m(4y).

A3 F, is continuous in A.

A4 Suppose that 4y > 1, X1 ~F,, and X, ~ F,,, then X; is stochastically larger (or smaller) than X5.
A5 The function t is strictly increasing and continuous.

B1 p(u) >0, p(0)=0 and p(u) = p(—u).

B2 limy,_, ,p(U) = a < oo. Without loss of generality we will assume a=1.

B3 0 <u < v implies p(u) < p(v).

B4 0 <u<v and p(u) <1 implies p(u) < p(v).

B5 p is continuous.

B6 Let A as in A1, then there exists 5 such that p(A"? +7) < 1.

B7 There exist uo € RP and a positive definite matrix =o such that i, > a.s. and £, -2 a.s.

B8 The weight function w is continuous, bounded and non-increasing and sup o = 1.
B9 Let S={teRP: It =1}. Then

tirlg P({t'x # 0} N {W(X, ug, Zo) > 0}) >0

Let
m; = ir/llf m() = lim m(a), 9)
-2
my = sup m(A) = lim)m(,l), (10)
2 -2
where AV and 1® are defined in (3), and
m3 =m(g(0)).
Call
Po(y. X, B, 1, X) = W(X, p, D)p(t(y) — M(E(B'X))), (11)

then it is immediate that

lim &g (y, X, 7t, po, Zo) = DY, X, sign(t'x)),
y—00
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where

WX, po, Zo)p(t(y)—my) if j= -1,
dig(y, xsj) = W(X’FO’ EO)P(tU’) - m3) lf.’ = 0,
W(X, o, Zo)p(t(y)—mp) if j=1.

We have the following consistency theorem.

Theorem 1. Let (y;,X1), ..., (V. Xn), be i.i.d. observations satisfying (1) and (2). Assume A1-A5, B1-B9, let 8, be the estimator
defined by (4) and put

7= :relg Ep, (@5(y, X, sign(t'X))) — Eg, (Po (Y, X, fo. po> Z0))- (12)
Then (i) = > 0 and (ii) Assume also that P(t'’x = 0) < ¢ for all t e RP, then B, — B, a..

Remark 1. Obviously for the MT-estimator B7 and B8 are not necessary and B9 is reduced to inf; . sP(t'’X # 0) > 0.
4. Asymptotic normality
The following additional assumptions are required to prove the asymptotic normality of the estimator defined by (4):

C1 F, has three continuous and bounded derivatives as a function of 1 and the link function g(1) is twice continuously
differentiable.

C2 p has three continuous and bounded derivatives. We write y = p’.
Let W= (¥1,...¥p) : R? x R x RP > RP be defined by
W0 .41.3) = WO Z) 1)~ (G X0)
= WX, pu, D)y (t(y) —m(g(BX)m'(§(B'X))g’ (B'X)X;.
Denote by J,(y,X,f,p4, %) = (}{'/;k(y, X,B.1,E)) < jk<p the Jacobian matrix of ¥ with respect to g, that is
By x.p.n. z:):%k\rj(y,x,ﬂ,ﬂ,z), 1<j, k<p.

Note that assumptions C1, C2 and Lemma 5 proved in Appendix imply that ¥ and J,, are well defined.
Differentiating L,(8) we obtain the following estimating equations for the WMT-estimator of g:

n ~
2 X ofins E) = 0.
i=

C3 E;(y'(t(y)—m(a))) # 0 for all A. )
C4 There exists £ > 0 such that Es (Sup4_, SF[]{;,"(y, X, B, 10, 0))|) < oo, for all 1 <j,k<p, where Il || denotes the I, norm,
and Eg,(J,, (¥, X, Bo, 1o, o)) is non-singular.

A family of functions satisfying the conditions B1-B6 and C2 is given by

un2\?t .
Pt = 1_<1_<E)) i<k (13)
1 if [uj>k

with k > A'/2, Note that the functions in the popular bisquare family have a similar expression with the exponent 4 replaced
by 3. However functions in the bisquare family have only two derivatives at c= + k instead of three as is required by C2.
Observe that C4 is satisfied when the function o is 0 outside a compact set or when x takes values in a compact set.
Consider the case of Poisson regression, w =1 and y =0 outside a compact set. Then, it can be proved that a sufficient
condition for C4 is that E(y 1 X11%) = E(efoX [ X11%) < oo.
The following theorem gives the asymptotic distribution of WMT-estimators.

Theorem 2. Assume A1-A5, B1-B9, C1-C4 . Let (X1,¥1), .-, (Xn,Yn) be i.i.d. random vectors satisfying (1) and (2) and let B, be
defined by (4). Then

VB, —Bo) SN (O,B'AB 1),
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where Np(u, X) denotes the p-dimensional multivariate normal distribution with mean p and covariance matrix £ and
A =Eg, (Y, X, Bo, o, 0)¥(V, X, fo. o> o)), B=Ep(J,, (V. X, Bo, Ho,> Z0))-

To use this result to make asymptotic inference we need to estimate the matrices A and B. To that end, let

Ay = Epyy (P, X, By iy 200 X, B iy En))
and

B = En,(J, (V. X, Bp.fin. En)),

where H,, is the empirical distribution of (y, X). Under the assumptions of Theorem 2, by Lemma 6 A,—Aas. and B, >B as.

1

. . . / . . Ss-1+ 5—1
Then, the asymptotic covariance matrix B-'AB ™' can be consistently estimated by B, A;B, .

5. Asymptotic breakdown point

The asymptotic breakdown point (ABP) is a measure of robustness of an estimator introduced by Hampel (1971). Roughly
speaking, the breakdown point of an estimator is the smallest fraction of atypical points that can take the estimator beyond
any limit. More formally, let (y, X) be a random vector in Rx RP with distribution Ho, D the set of all the distributions on Rx
RP and T a functional defined on D with values in RP. Given a sample (y;,X1), ..., (¥, Xn), consider the estimator defined by
ﬁn =T(H,), where H,, is the empirical distribution of the sample. Then the asymptotic breakdown point of the functional T at
Hgy e D is defined by

&T,Hp) = Slgp{se 0,1): Hs*upD{ IT(1—e)Hg+eH*) I} < oo}
The MT-estimator g, defined in (4) can also be written as T(H,) where

T(H) = arg min 4 c mEy (p(t(y) — M(G(B'X)))).- (14)

The following theorem gives a lower bound for the breakdown point of this functional.

Theorem 3. Let (y,X) be a random vector with distribution Hy such that Py,(a’x = 0) =0 for all « € RP. Suppose y|x ~ Fg(/JOX)'
0= En, (miﬁ(ﬂ(f()’) —my), p(tyY) —M3))) — En, (p(tEY) — m(g(ﬁb’f)))) ,

1+ En, (Min(p(ty) —m), (p(ty) —M2))) — Eny (p(ty) — m(g(Bo X))

where my and m; are defined in (9) and (10) respectively. Then the ABP of the functional T defined by (14) at Hy satisfies

£%(T,Hp) > ¢p.

Let

When m; =0 and m;, = co as in the Poisson case, we have
min(p(t(y) —my), p(ty) —ma)) = p(t(y))
and then

o = Enin(p(t) — By (1) — m(g(BoX))))
1+ Eny ((E)) — En ((EY) — M(Z(BoX))))

In this case ¢ is small only when the probability that m(g(8,x)) is close to zero is large. For the Poisson model this happens if
B,x is negative and has a large absolute value. Note that in this case P(y = 0) is large and a small fraction of inliers equal to 0
can make the fraction of observed zeros larger than 0.5. Therefore the good non-null observations may be mistaken as
outliers.

If m; = —o0 and m; = oo as in the exponential case then

e = Bt (1=p(t0Y) ~ M(8(BeX))))
1+En, (1 —p(t(y) —m(g(BpX))))
In the case of exponential regression with g(u) = log(u), we have m(1) = m(1) —log(1) and therefore
0= E(1 —p(ty)—m(1)))
1+E1 —p(ty)—m(1))y
where y is a random variable with distribution £(1), and therefore ¢ is independent of g,. For example if we use a MT
estimator with p in the family given in (13) and k=6 we have ¢y = 0.463.

We will study the breakdown point in a Poisson regression model where x = (1,x*) and x* has distribution NVp_1(sg, Zo)
and p is in the family (13) with k=2.4. Put g, = (o, f) then the distribution of gyx is Ni(u, 0?) where pu =& po+p, and
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Fig. 3. epin and epax as functions of p = P(y = 0).

o? =% Topf and therefore ¢y depends only on g and ¢2. The lower bound &y depends on g and ¢2 and is highly correlated
with P(y = 0). Let epin(p) and emax(p) be defined by

Emin(D) =lil13_£{80(ﬂa 0'2) : Pw,z(y =0)=p}
and

emax(D) = sup{eo(p, a®) : P, 2(y = 0) = p}.
p.o?

Fig. 3 shows the curves ey, (p) and emax(p). These two curves are lower and upper bounds of ¢ as a function of P(y = 0) when
x* has a multivariate normal distribution.

6. Monte Carlo study

We performed a Monte Carlo study to compare the behaviors of MT- and WMT-estimators to that of other existing
estimators for Poisson regression and log link when the sample size is 100. Let A'p(x, X) be the p-dimensional multivariate
normal distribution with mean g and covariance matrix £ and P(1) the Poisson distribution with parameter A. In the Monte
Carlo study we took as covariates x = (1,x*) where x* has distribution A/s5(0,1I) and the distribution of y|x is P(exp(8,X)). We
considered three different models, with values of g : fo; =(0,1,0,0,0,0), o, =(2,1,0,0,0,0) and o3 =(2,1.5,0,0,0,0).
For each of these models we have simulated the case when the samples do not contain outliers and the case when the
samples have 10% of identical outliers of the form (xg,y,). We took xo = (1, 3,0, 0,0, 0) and y, in a grid of values of the form
Yo =no—ke1, 1 <k <Ky yo=po+kes, 1<k<K,, where py = efo¥o = Ep,(yIX =Xo). The values &1, &, K; and K, were chosen
so that the grid covers values y, close to those yielding the maximum mean squared error. We simulated the following
estimators: the maximum likelihood estimator (ML), the robust quasi likelihood estimators proposed by Cantoni and
Ronchetti (2001) with no weights (QL) and with weights (WQL), the conditionally unbiased bounded influence estimator
(CUBIF) proposed by Kiinsch et al. (1989), the one step M-estimator starting from the projection estimate (PM) proposed in
Bergesio and Yohai (2011) and the MT- and WMT- estimators proposed here. The MT- and the WMT-estimators were
computed using a function p in the family given in (13). In the case of the WMT-estimators the weight function » that we
use is

1 if £ <x0.9655

X09755—

o(t) = if ¥00655 <t <x09755 (15)

X0.975,5 —X0.965,5
0 if £> 097555

where y,,, is such that P(X <y, ) = @ where X has a chi-squared distribution with p degrees of freedom. The estimators of
location and scatter used to compute the weights are S-estimators with asymptotic breakdown point equal to 0.5 with p
function in the bisquare family. These S-estimators were computed with the function SestCov, method="“bisquare”
in the package rrcov of R. It is easy to check that using p in the family (13) and » given by (15), all the assumptions of
Theorem 2 are satisfied.
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The tuning constants of the estimators were chosen to have an efficiency between 75% and 90%. This was not always
possible for the PM-estimators where for some models the efficiency remained low even for large values of the tuning
constant. The values of the tuning constants that we use are 0.9 for the QL-estimators, 2.8 for the WQL-estimators, 2.4 for
the PM-estimators, 1.6 for the CUBIF-estimator, 2.3 for the MT-estimator and 2.9 for the WMT-estimator.

Given an estimator g, we denote by MSE, the mean squared error defined by E,;O(Hﬁ—ﬁo I1%), where Il denotes the L,
norm. We estimate the MSE by

1

MSE =N, 18— Bol2,

1

™M=

where g; is the value of the estimator at the i-th replication and N is the number of replications which was chosen equal to
1000. Table 1 gives the efficiencies with respect to the ML-estimator when there are no outliers for the three models.
Tables 2-4 and Figs. 4-6 give the values of MSE for the contaminated samples for the three models. In these figures we do
not show the MSE of WQL and WMT which have similar or worse behaviors than QL and MT respectively.

Table 1
Efficiencies without outliers with respect to the ML estimator.
QL WQL CUBIF PM MT WMT
Poa 0.88 0.77 0.81 0.83 0.74 0.70
Poz 0.88 0.78 0.82 0.80 0.87 0.79
Bos 0.88 0.78 0.71 0.45 0.86 0.78

Table 2
MSE under contamination for Po =Po1. Between 15 <y, < 26, MSE < 0.09, g = ebo¥o = Eg, (y|X = Xo) = 20.06.

Yo 0 1 2 3 4 5 10 30 35 40 45

ML 0.58 0.47 0.39 0.33 0.28 0.23 0.11 0.09 0.13 0.17 0.22
QL 0.65 0.51 0.41 0.34 0.28 0.24 0.11 0.09 0.13 0.18 0.24
WQL 1.20 0.83 0.61 0.48 0.39 0.32 0.15 0.12 0.16 0.22 0.28
CUBIF 0.81 0.60 0.46 0.37 0.30 0.25 0.11 0.09 0.12 0.15 0.19
PM 0.37 0.35 0.34 0.29 0.26 0.23 0.11 0.10 0.12 0.15 0.18
MT 0.13 0.46 0.43 0.35 0.29 0.24 0.12 0.11 0.15 0.21 0.27
WMT 0.26 0.60 0.45 0.36 0.30 0.25 0.11 0.11 0.16 0.21 0.27

Table 3

MSE under contamination for Bo =Po2- Between 80 <y, < 240, MSE < 0.09, po = eloXo =E; (y|X =Xq) = 148.41.

Yo 0 10 20 30 40 50 60 70 280 320 360 400
ML 0.53 0.40 0.31 0.24 0.18 0.14 0.11 0.08 0.10 0.15 0.21 0.27
QL 0.55 0.47 0.34 0.25 0.19 0.14 0.11 0.08 0.10 0.15 0.20 0.25
WQL 0.80 0.70 0.46 032 0.23 0.17 0.13 0.10 0.10 0.15 0.19 0.24
CUBIF 0.26 0.30 0.30 0.25 0.18 0.14 0.10 0.07 0.05 0.05 0.05 0.05
PM 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.03 0.03 0.03 0.03
MT 0.01 0.01 0.01 0.02 0.04 0.08 0.09 0.08 0.09 0.11 0.12 0.10
WMT 0.01 0.010 0.01 0.05 0.10 0.12 0.11 0.09 0.09 0.13 0.16 0.17
Table 4

MSE under contamination for Bo =PBo3- Between 400 < y, < 1000, MSE < 0.13, po = €b xo = Ep, (X = Xo) = 665.134.

Yo 0 50 100 150 200 1200 1400 1600 1800
ML 1.34 0.90 0.64 0.47 0.34 0.17 0.29 0.42 0.57
QL 1.30 0.83 0.55 0.40 0.29 0.15 0.24 033 0.43
WQL 1.90 0.90 0.55 0.38 0.27 0.13 0.20 0.27 0.35
CUBIF 0.05 0.05 0.05 0.05 0.03 0.04 0.05 0.05 0.05
PM 0.15 0.14 0.15 0.16 0.11 0.11 0.11 0.11 0.10
MT 0.01 0.01 0.01 0.01 0.06 0.11 0.13 0.12 0.10

WMT 0.01 0.01 0.01 0.04 0.06 0.11 0.16 0.18 0.18
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Fig. 5. MSE under contamination for B=Po2, no=148.41.

MSE

Fig. 6. MSE under contamination for B =Po3 Ho=665.134.

We note that except for the PM, all the simulated estimators have a similar efficiency for the three considered models.
The PM has a lower efficiency, especially when gy =p,3. Table 2 and Fig. 4 show that when g, =p,; the most robust
estimator is PM followed by MT. Instead when g, =, ,, according to Table 3 and Fig. 5 the most robust estimators are PM
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Table 5
Computing times (t) and maximum supported outlier fraction (¢) for different values of N and p.

p N=500 N=1000 N=1500

t e t & t &
10 0:51 0.37 1:29 0.42 2:06 0.44
20 1:21 0.21 2:02 0.24 2:35 0.25
30 1:42 0.15 2:29 0.16 3:10 0.17
40 2:14 0.11 2:59 0.13 3:55 0.14
50 2:42 0.09 3:46 0.10 4:32 0.11

and MT, which have a similar behavior. Finally, when g, = 3, from Table 4 and Fig. 6 we infer that PM, MT and CUBIF are
the most robust estimators. For the three considered values of g, the MT estimator has a good behavior without and with
outliers. The PM-estimator for i = fp 1 has a slightly better performance under outlier contamination, but its efficiency for
clean data may be much lower.

6.1. Computational method

To obtain the function m(1) we note that if y has distribution P(1) then y'/2 —1'/2 - ;N(0, 1/4) when 4 — oc. This implies
that for large 1 we can approximate m(4) by 2'/2. Then we proceed as follows: for 0 < 1 < 3 we fit a cubic spline using a grid
with step 0.1. The value of m(2) for each element of the grid was computed using the function “optimize” in R. For 1 > 3, since
m(J) is very close to A!/?, a good approximation to m(2) is obtained using one step Newton-Raphson starting at 4'/2. For the
computation of the MT-estimator defined in (4) we used the quasi-Newton optimization method BFGS provided in the
function optim of R. As our objective function may have multiple local minima, a crucial part of the computation is the
choice of initial values for the parameters. This initial value was obtained using a subsampling procedure plus a
concentration step similar to the one proposed by Rousseeuw and Van Zomeren (1990). More precisely, we choose at
random N subsamples of size p. For each subsample a candidate for the initial estimator is obtained by computing the
maximum likelihood estimator. This candidate is improved by computing the maximum likelihood estimator of the [n/2]
observations with the smallest deviances. Finally we compute the loss function given in (5) to all the improved candidates
and choose as an initial estimator the one that attains the minimum value. The number N of subsamples may be determined
as in the case of linear regression, see for example Maronna et al. (2006, Chapter 5). This value depends on the number of
regressors p, on the expected fraction of outliers £ and on the degree of the desired probability of obtaining at least one
sample free of outliers y.

Table 5 gives computing mean times expressed in minutes and seconds for MT estimators in a PC with an AMD Athlon II
X3 450 Processor with a speed of 3.20 GHz and 8 GB of RAM memory for N equal 500,1000 and 1500 and different values of
p. In the same table we show the corresponding values of ¢ when y = 0.99. These values were obtained with a program
written in R.

We observe that for p=50, if the fraction of expected outliers is not larger than 0.1, the estimator may be computed in a
reasonable amount of time. Note that these times may be substantially decreased with a more powerful machine and/or
with a code partially written in a lower level access to memory language, as for example C.

However the values of N required when p and ¢ increase may be very large and the algorithm becomes unfeasible. For
these cases the minimum of L, may be obtained using heuristic optimization methods, but this is a matter of further
research.

7. Example: Epilepsy data

Breslow (1996) used a GLM with Poisson response and log link to study the effect of drugs in epilepsy patients. He
considered data from a clinical trial of 59 patients with epilepsy, 31 of whom were randomized to receive the anti-epilepsy
drug Progabide and 28 of whom received a placebo. The response variable is SumY: the number of attacks during four weeks
in a given time interval. The explanatory variables are Age 10: patient age divided by ten, Base4: number of attacks in the
four weeks prior to the study, Trt: a dummy variable that takes the values 1 or 0 if the patient received the drug or a placebo
respectively and Base4:Trt: to take into account the interaction between these two variables.

We fit the Poisson GLM with log link using the same estimators as in the simulation study except for WQL and WMT.
Fig. 7 shows boxplots of the absolute values of the deviance residuals. In the left plot we consider all the residuals. To make
the boxes and whiskers more clearly visible, in the right plot we eliminated the outliers detected by the boxplots for each fit.
It is clear from the boxplots that the MT-estimator gives the best fit for the bulk of the data.
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Fig. 7. Boxplots of the absolute values of the deviance residuals: (a) all the observations and (b) without the outliers.

8. Conclusions

We have presented two new families of estimators for GLM which combine M-estimation with a variance stabilizing
response transformation: the WMT- and MT-estimators. We performed a Monte Carlo study to compare the proposed
estimators with other robust estimators in the case of a GLM with Poisson response and log link. This Monte Carlo study
shows that the MT-estimator compares favorably with the other robust estimators when efficiency and robustness are both
considered. This study also shows that for the three simulated models, the WMT-estimator has a similar or worse behavior
than that of the MT-estimator. Hence, penalizing high leverage observations does not improve the robustness of the
estimator. We have also obtained the asymptotic normal distribution of the WMT- and MT-estimators. This distribution can
be used for testing hypotheses about the vector of regression coefficients, 8, as well as to obtain confidence regions for g, or
some of its components.
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Appendix A
A.1. A general consistency theorem

We will prove Theorem 1 as a particular case of a more general consistency result.
Let (V,X1), ..., (¥, Xn) be a sample with y; e R, x;e RP and let @ : R x RP x R x RY— R. Consider the estimator g, defined

by
A . n ~
pp=arg min Y &(y;,X;,p,0n), (1o
BeR i

where @ is a nuisance parameter with values in RY and @, is a sequence of estimators of .
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We consider the following assumptions:

PO There exists 6 such that 8, — 6, a.s.
P1 The function @ is continuous and bounded and there exists a function 9(X,0) : R’ x R? - R and a constant C such that

[P}, Xi, B, 02) — (Y3, X, B, 01)| < C1I(X, 02) — 9(X, 01)]

for all y,x,$,0, and 6,. Besides, if 6 is as in PO, then 8, — 6, implies supy|9(X, ) — I(X,0¢)| — 0.
P2 Let 6y be as in PO. Then, there exists g, such that

Ep, (@(y,X, o, 00)) < Ep (DY, X, ,00)) (17)
for all g # B,.
P3 Let S be as in B9, 6y as in PO and g, as in P2. Then there exists a function &*(y,X,j), j= —1,0, 1 such that for all te S we

have
lim &(y, X, yt,0p) = ©*(y, X, sign(t'x))
y—00

and if t'x # 0 there exists a neighborhood of t where this convergence is uniform. Besides
7= tiﬂg[Epo (@*(y, X, Sign(t'x)) — Eg, ((¥, X, fo, 60)] > 0. (18)

Theorem 4. Let (y;,X;),ie N, Pe a sequence of i.i.d. randgm vectors and assume PO-P3 and P(t'’x = 0) < z/M for all te S, where
M =sup,x ;®(,X.p,00). Let p, be defined by (4), then g, -, as.

Given te R and £ >0, let B(t,e)={se RP: s—tll <¢}. The following lemma is required to prove Theorem 4.

Lemma 1. Let (y;,X), ..., (V. Xn) be i.i.d. random vectors and g, be defined by (16) and assume PO, P1, P3 and P(tx=0)<z/M
for all teS. Then there exists a compact set C C RP and ng e N such that, if n > ng then , e C almost surely.

Proof. It is enough to prove that there exists K, such that

,}Lrgo n, Z (yi,xf,ﬂo,on) <r}% uﬁﬁ“fm,’ Z (y.-,xf,ﬂ,en) as. (19)
By PO and P1

12 12
- X (yuXuﬂO» )—ﬁ Y (Vi Xi.Bo.60)
i=1

n; =

<Csup|9 (x, En) —9(X,00)| >0 as. (20)
X
Then it is enough to show that there exists Ky such that

lim * E D(y;.Xi, fo.00) < lim  inf 72 D(y;,X;.8,00) ass. 21

n-oo1; nooo 1BII>Ko T

To prove (21) it suffices to show that there exists Ky > 0 such that

n

llm E D(y;,X1,B0,00) < 11m inf mff E D(y;,X;,78,600) a.s. (22)

n-oo; ~r>KoseSn;
We start proving that for all te S there exists £ > 0 such that

Ep, (DY, X, By, 00)) < Ep, <llm mf DY, X, VS, 00)> (23)
y— E

s e B

Since P(X's =0) < /M for all se RP, given te S it is easy to show that there exist positive numbers ¢ and K such that if
Ce={x:|t’X|>¢ IXIl <K}
then
P(Co)>1—7/M
Let e =¢/(2K) and x € Ct. Then for all s € B(t, ¢) we have |s'’x—t'X| < ¢/2 and therefore |s'X| > ¢/2 and sign(s'X) = sign(t'x).
Given any x and y, by P3 we have
lim inf &(y,X,7s.00) < llm DY, X, yt,00) = D*(, X, sign(t'x)).

o0 s e B(t,e)
Let us suppose that the strict inequality holds for some point X € C¢ and y € R, that is

lim 1gl(f D(Y,X,78,00) < P*(y, X, sign(t'’x)),
g SE

y—00
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then, there exist ¢ > 0, a sequence of positive numbers y,, »oco and s, € B(t, ¢) such that

DY, X, 7nSn,00) < P* (¥, X, sign(t'x)) —¢ (24)
and then
Jim &y, X, ynSn, 00) < P*(y. X, sign(t’x)) —¢. 25)

We can assume that s, —sg, where sq € B(t, £) and sx # 0. Moreover since for n sufficiently large the sign of s, x is the same
as the sign of syx and of the t'x, by P3 we have

nlim DY, X, 7,Sn,00) = D*(V, X, SigN(SyX)) = P*(¥, X, sign(t'x)),

contradicting (25). Then

lim inf @&(,X,ys,00) = P*(y,X, sign(t'x)).

7500 S€ B(t,e)

Given a set A, we denote by A its complement. Then using that P(C;) < z/M, sup &* <M and (18) we get
Eg, (liimyqOO . eigl({’s) D(Y,X,7S, 00)> > Ep, (hﬁmHDO . eilBl(ft-’s) D(y, X, ys,ao)ICl(x)>
= Ep, (% (1, X, sign(t'x))Ic, (X))
> Ey (9%(y, X, sign(t'x))))
—Ep, (2" (y, X, sign(t'x)))l ¢ (X))
> Eg, (2(¥, X, Bo.00))

proving (23).
Finally we show how to derive (22) from (23) using the Law of Large Numbers and the compactness of S. By (23) and the
Dominated Convergence Theorem, for all te S there exist ¢, & and K¢ such that

Eg, ( inf inf )cb(y, X, yS,00)> > Eg @y, X, Bo,00)+ ¢ (26)

y > K¢ s € B(tee
Since S is compact, there exists a finite set t;, t,, ..., t; of elements of S such that S c U’,; _1B(ty, &x,). Let Ko = max{Ky,, ..., K¢}
and o =min{{y,, ..., e ) Then
n

1 1
inf inf - ¥ &(y.X..75.00) > inf inf inf — 3 ®(yi.X:.78,00).
7>K05€5ni§1 (yl o7 0) 1S17Sj7>KhSEB(th,&,')nig:l (YI i 0)

and by the Law of Large Numbers and (26) we get

... 1= . 1 .
lim inf inf ¥ @(i%irs.00) = Inf lim o 5 inf inf | (vi%i.r5.60) @n
=, ér}gfgj E <y13:§h . é{gﬁff{h) D(Y;, X, 7S, 00)) = Ep, (@Y. X, B, 00))+ o a.s. (28)
Since
1 un
nllﬁm\ﬁ > @(Vi. Xi.o.60) = Eg, (2(y.X,B0,60)), (29)
ool

(22) follows from (28). ©

Proof of Theorem 4. Let C be the compact set given by Lemma 1. Then, according to this lemma, it is enough to prove that
for all U open neighborhood of g, we have
. . 1 —~ R L ~
lim inf O3 @(yiXif00) > im0 ¥ @(y.Xh0.0n) as. (30)
and by (20) it is enough to show
. . 10 .1
,}% pénfuﬁi; ®(yi.Xi.$.00) > lim ﬁ,-; D(y;. X, fo.00) a.s. 3D
Using the Dominated Convergence Theorem and a standard compactness argument we can find tje R”,¢ >0, {; >0,
1 <j<h such that

h
U B(tj,e)oC-U
i=1
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and
Ep (@ B 00) < By, inf 00xp.00)) -G, 1<i<h (32)
€ b(y;.&
We also have

. 1 . i 1n
inf — D(y:,X;,0,00) > inf inf — D(y:,Xi,,00).
ﬂecfun,z:1 (vi-Xi.. 0)_1£jshﬂeB(tj,8j)ni§1 (vi-Xi..60)

Then, putting {o = min; ;. 4¢j, by the Law of Large Numbers and (32) we get

12 120
lim inf — D(y., X, p,00) > inf lim — inf  @(y;,x,8,0
,qoﬂeC—UniZ:] (y,, i.B, 0) = Zj=hnooo ni§1 e Blty.cp (yz: i- B, 0)

inf E inf &(y;, X, 5,0
= inf Ep (ﬂellg(ltm) (Vi Xi. B, 0))
> Eg (2(y. X, Bo. 00)) +o-

and then from (29) we get (31). C©
A.2. Proof of the consistency of WMT-estimators

In this section we prove Theorem 1. We need the following lemmas.
Lemma 2. Assume A1-A2 and B1-B6. Then, there exists ey such that
Ex(p(t(y)—m(2)) <1—gg (33)
for all A.
Proof. By Chebyshev's inequality we have that for any 6 > 0

Ex(p(t(y) —m(D)) < E;(p(t(y) — Ex(t(¥))))
< p®P(|ty) —Exty))| < &) +P(|[t) —Ex(t))| = 5)
=1-1-pE)P(|t(y)—Ex(t(y)] <)

A
S]*(l*/}((S))(] 757).
Then taking 6 =A'? +5 we get

Ex(p(t(y)—m()) < 1-&g
with

£0= (]—p<A1/2+11)> <1 _(A”zA+n)2>'

This proves the lemma. ©
Lemma 3. Assume B1-B6. Then A1-A5 imply that m(2) is continuous.

Proof. Take a sequence 4; —1?, we have to prove that m(4;) » m(A?’). Suppose this is not true, then passing to a subsequence
if necessary we can assume that m(4;) converges to a value mq possibly F oco. Suppose that mg = +oc and take AV < 2@,
Then by the Dominated Convergence Theorem we have E,u(p(t(y)—m(4;))—1. Then using A4 and A5 we get that
E; (p(t(y)—m(2;))— 1 contradicting the fact that by Lemma 2, E;(p(t(y)—m(1)) < 1—¢ for all 1. Similarly we can prove that
mp cannot be —oo.

We consider now the case of finite mg. By the definition of m(1) we have

E;, (p(t(y) —m(3))) < E;,(p(t(y) —m(*)))
for all i e N. Taking limits we get
E0(p(t(y) —mo))) < E;o (p(t(y) —m(2@))).
Therefore by the uniqueness of m(1®) we obtain that m(A®)) = m, proving the continuity of m(1). ©

Lemma 4. Let py e RP and Xy a p x p positive definite matrix. Assume B8, then p, —p, and =, — Xy imply
SUP|W(X, iy, Zn) — W(X, pg, Zo)| — 0. (34)
X

Proof. Suppose that (34) is not true. Then there exists a sequence X, and ¢ > 0 such that for all n
[W(Xn, ftn, Zn) — WXn, B, Zo)| > €. 35)
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We can assume without loss of generality that x, —Xg or IX, | —oc. In the first case
lim (Xn —p) Ty ' (Xn —pn) = 1iM (X0 — p0) Zg ' (Xn — po)
n-oo n—oo
= (Xo—#o) g ' (Xo—Ho).
Therefore, since by B8 w is continuous we get
lim W(Xn, gy, Zn) = lim w(Xn, pg, Zo) = W(Xo, o, o),
n—-oo n—oo

contradicting (35). In the second case we have that limy_, o(Xn — )y ' (Xn — ) = liMy 0o (Xn — o) Zg 1 (Xn —pg) = 00. B8
implies that there exists a such that limy_ w(d)=a and therefore lim,_, cW(Xn,py, Zn) = limp_, o W(Xn, pg, o) = a. This
contradicts (35) too. ©

Proof of Iheorem 1. Let @y be defined by (11). According to Theorem 4, it is enough to show that PO-P3 hold when
0=.%), 0n = (i, Zn), @ = Do and 9(X,0) = W(X, 1, Z).
P1 follows from Lemma 4. Put
D@, u) = E;(p(t(y) —u))
Take g # By. Then by A2 we have

D(g(BoX), m(g(B'X))) — D(g(BoX), m(g(BX))) > 0 (36)
and

D(g(Box), m(g(5'x))) — Dg(BoX), m(gBpX)) >0 if fox # fx. 37)
Moreover

Eg,(@0(¥, X, B, 10, 20)1X) = D(&(BoX), M((B'X)W(X, g, Zo). 38)

Let V={x:(B—PBo)x+#0} N {X: WX, pgy, o) > 0}, then by B9 P(V) > 0. From (36) and (38) we get that
Eg, (Po(y. X, B, po. Zo)) — Eg, (@0 (V. X, Bo. o, Zo))
> E([D(g(BoX). m(Z(B'X))) — D(Z(BX), m(EBoX))IW(X, o, Zo)I(V)}.
Since for x e V we have
[D(E(BoX), M(g(B'X))) — D(E(BoX), M(E(BoX))IW(X, g, Eo) > O

we obtain that E (®o(V. X, 8, #o. Zo)) — Es, (Po (V. X, Bo. #o. Z0)) > 0 and therefore P2 is satisfied.
To prove P3 it is enough to show that z > 0, where ¢ is defined in (12). By B9

5= inf P(('X # 0} N {W(X. g, Zo) > 0}) > 0. (39)

We are going to show that there exists ¢ > 0 such that

inf PtX # 0} N (@(X. o, Z0) > £}) = 6/2. (40)

Suppose that this is not true. Then there exist sequences t, € S and ¢, —0 such that
P({t,x # 0} N {0(X, 1o, Z0) > {n)) < 5/2,

and without loss of generality we can assume that t, —tg € S. Then we get that
P({tox # 0} N {w(X,po, Zo) > 0}) <5/2,

contradicting (39). We can also find K; and K> such that

P(Byx € [K1,Kz]) > 1—-5/4. (41)
Then, if we put

Ve={t'x # 0} N {(X,po, Zo) > £} N {BoX € [K1, K21, (42)
by (40) and (41) we have

P(Vy)>5/4 (43)
for all teS. By A2

D(g(B,X) M(g(BoX)) < DEgBpx),my), i=—1,1 (44)

and

D(g(ByX). m(g(BoX))) < D(E(BoX), Mm3) (45)
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Eqgs. (44) and (45) imply that for all xe R? and te S

Ep, (@5(y. X, sign(t'X)) — Do(V. X, BoX. po. Z0))|X) > 0. (46)
Let us define C;(1) = D(4, m;)—D(1,m(2)), i= —1, 1. Then for all 1 € [g(K}),g(K>)] and i = —1, 1, we have that C; is positive and
continuous. Then

Ci= min C‘(ﬂ)>0, i:—l,].

LelgKngka) |
Put ¢y = min(c_1, ¢1), then by (46), (42) and (43) we get that
Ep, (@5(y, X, Sign(t X)) — @o (¥, X, BoX, #o, Eo))
> E(Eg,( (D51, X, sign(t'x)) — Do (Y, X, X)) X)X € Vy))
>E min min C;(AHw(X, ug, To)l(X e V.
= (Ae[g<1<1>g<l<z)1:e< m, CHAIWE. o, Zo)l(x € t)>

= CoE(W(X, po, Zo)l(X € Vy))
> Cpls/4.

This implies that 7 > ¢y¢§/4 and therefore P3 holds.
PO follows from B7. ©
A.3. Proof of the asymptotic normality of WMT-estimators
Let f(y, 4) be the density function of F; in the continuous case and the probability function in the discrete case and call
wo(y,4) = of (¥,4)/04. Then we have the following lemma.
Lemma 5. Assume A1-A5 , B1-B7 and C1-C4. Then m is twice differentiable.

Proof. For each 1 e (A1, 1?) m(2) is defined as the minimum in m of E,(p(t(y)—m)). Therefore E,(y(t(y)—m(4))) = O for all 4.
By C3 and the Implicit Function Theorem m is differentiable and

Jw(ty)—m@)wo(y, 4) dy
E:lw'(((y) —m(2))]
in the continuous case and
2w (ty) —m@))yoy, )
Ejly'(t(y) —m(2)]
in the discrete case. Assumptions C1-C3 imply that m’ is also differentiable. ©

m'(4) =

m'(4) =

The following lemma is proved in Yohai (1985).

Lemma 6. Let z,, ..., z, be ii.d. random vectors with distribution F and let ¢ : RP x R"—R be a continuous function satisfying
sup  |¢(z,0)|

10—60 1l <e

has finite expectation under F for some ¢ > 0. Let £, — 0y a.s. Then

lim & ¥ #(2.8) =E@(@ 00) s

n-oo n

The following lemma is proved in the Supplemental Material of Bergesio and Yohai (2011).

Lemma 7. Let c(z,f) : R” x RK->RK be a contilluously differentiaAble function in g and let z1, ...,z, be ii.d. random vectors of
dimension p. Consider a sequence of estimators g, such that n'/2(8, —B,) = Op(1). Suppose also that there exists ¢ > 0 such that

sup [c(z,p)|
I—poll <¢

has finite expectation and that

ac(z, p)
E =0.
[ » /f—ﬂJ

Then

- 1
"2 Z C(zbﬁn) 1/2 E C(Zuﬂo)—op(l)'

i= i=1
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Proof of Theorem 3. The estimator j, satisfies
n o~ o~
X VX Brofins E0) =0,
i=
Using a Taylor expansion we get

- 2 o (VX0 EnofinsBn) (B o) = L5 (3% B, ). 47)

ni=y

where £, is an intermediate point between g, and g,. Since by Theorem 1 j,, is strongly consistent to g, then &, is strongly
consistent to §, too. Then, by C4 and Lemma 6

fim 1 Z J, (y,,x,,'g‘n,p", ) =B as. (48)

n—oo n

Since by C3 the matrix B is non-singular, for n large enough
n ~
(1 /n) ‘Z]J.,,O’i,xi,fn,ﬁn, En)
1=

is non-singular too. Then from (47) we get

-1
5 1n o~ n PPN
V(i) = (3 E 0o ®) ) 8 Ot ). 9)
By the Central Limit Theorem we have

Z] W (V. X1, Bo-#o- Zo) BN©,A) (50)
n;<
and by Lemma 7
n —_
—-= X [‘I’<}’i,xi,ﬂo,ﬂn,2n) —‘I’(Yiyxi»ﬂo,ﬂo,zo)] =0p(1). (51
n;=

Consequently, the theorem follows from (48)-(51) and Slutzky's lemma. ©
A4. Proof of Theorem 3

Suppose that ¢ is a positive real number such that there exists a sequence of distribution functions H; such that
T((1—e&)Hp+eHy) — o0 as k—oo. We will show that e > e5. We write g, = T((1 —&)Ho +eHy) for brevity. Then we have
(1= )Ep, (p(t(y) — m(g(B:X))) < (1 — &)Ep, (p(t(y) — M((BX))) + £En, (p(tY) — M(Z(B1X))))
< (1= 8)En, (p(t(y) — M(E(BoX)))) + £En, (p(t(Y) — M(Z(ByX))))

< (1= &)En, (p(t(y) —M(g(BX)))) +&. (52)

Let oy =B/ 1B I, then we may assume without loss of generality that a; —«. Then
kli—>I?o(] — &)En, (p(t(y) — m(EBiX)))) = (1 — £)En, [p(t(y) —mp)l(ax < 0)+p(t(y) —mp)l(@’x > 0)] (53)
l}ggﬂ — &)En, (p(t(y) — M(E(BX))) = (1 — £)Ep, (Min(p(t(y) — M), p(ty) — my))). (54)

Combining inequalities (52) and (54) we obtain
(1= &)En, (min(p(t(y) —my), p(t(y) —m2))) < (1 —&)En, (p(ty) —M(gBoX))) + ¢,
and then
Ep, (min(p(t(y) —myq), p(t(y) —my))) — Ep, (p(t(y) — m(g(ﬂb?f)))) .
— 1+Eg,(min(p(t(y) —mi), p(t(y) — m2))) — Ep, (p(E(Y) — M(E(BX))))
This proves the theorem.
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