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Green tea polyphenols have a good antioxidant capacity but poor interfacial activity. p-lactoglobulin (B-
lg) was used as an emulsifier agent and also as a carrier molecule by spontaneous nanocomplexes for-
mation with green tea polyphenols. Oil-in-water emulsions containing liver fish oil rich in w-3 fatty acids
were formulated using these nanocomplexes at pH 6. The interfacial behavior of these complexes
showed that both surface pressure and dilatational properties decreased as compared with pure f-lg.
However, the initial droplet size and stability of emulsions were improved in the presence of the
nanocomplexes. Moreover, the oxidative stability of liver fish oil was improved by the presence of

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

There is a strong demand of natural bioactive ingredients with
health benefits. The beneficial effects of long chain w-3 poly-
unsaturated fatty acids (LCw-3 PUFA), in particular of eicosa-
pentaenoic acid (EPA, 20:5w-3) and of docosahexaenoic acid (DHA,
22:6w-3) which are abundant in fish oil, are well documented for a
wide range of benefits including cardiovascular health
(Abeywardena & Head, 2001; McLennan & Abeywardena, 2005;
Weitz, Weintraub, Fisher, & Schwartzbard, 2010). However, the
incorporation of these types of bioactives can also bring about a
challenge since PUFA degradation through auto-oxidation during
processing and storage, easily leads to rancidity volatiles formation
(Flick & Martin, 1992; Hsieh & Kinsella, 1989; Sanguansri &
Augustin, 2006; Sun, Wang, Chen, & Li, 2011). Rancidity flavors
still constitute one of the main objections in the production and
commercialization of fish oil containing food products (Jacobsen
et al., 1999).

The use of natural antioxidant agents instead of synthetic ones is
an effective and healthier methodology to control rancidity in oils
and food. Green tea polyphenols are known as antioxidant agents
(Dreosti, 2000) and their activity depends on the type of system
into which they are incorporated (aqueous, oil or emulsified
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systems). For example, polyphenols localization and concentration
in different regions of a multiphase system will depend on their
polarity, solubility and affinity for structural constituents (micelles,
liposomes, etc.) (Gramza & Korczak, 2005). Regarding the antioxi-
dant activity of green tea polyphenols in food matrices, they have
been studied in meat, fish and vegetable oils (Tang, Kerry, Sheehan,
Buckley, & Morrisey, 2001). These food systems are very sensitive to
lipid oxidation and polyphenols have shown higher antioxidant
capacity than other synthetic and natural antioxidants used in the
food industry like BHA, BHT, a-tocopherol, vitamin E and other
vegetable extracts (Yilmaz, 2006). Additionally, polyphenols are
receiving more and more attention because of their beneficial
functions to human bodies. Thus, it is becoming popular to design
food products containing polyphenols as functional foods.

Polyphenols, besides their antioxidant protective properties, are
also expected to affect both the dispersion degree and the physical
stability of the dispersed phase because they can interact with
proteins. The interactions between proteins and polyphenols have
been extensively studied in solution (Charlton et al., 2002; Jobstl,
O’Connell, Fairclough, & Williamson, 2004; Kanakis et al., 2011;
Lin, Chen, Cheng, & Chen, 2004; Poncet-Legrand et al., 2006;
Richard, Lefeuvre, Descendit, Quideau, & Monti, 2006; Siebert,
Troukhanova, & Lynn, 1996), but very few studies were carried out
to understand the effect of polyphenols on the adsorption proper-
ties of proteins at the interfaces.

The aim of this study was to evaluate the effect of green tea
polyphenols-B-lactoglobulin nanocomplexes on the interfacial and
colloidal properties of liver fish oil-in-water emulsions. Also the
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physical and oxidative stability of these emulsions were analyzed.
B-lactoglobulin (B-lIg) was chosen as emulsifier agent since its
behavior in ultrasound prepared emulsions was characterized in a
previous work (Camino, Sanchez, Rodriguez Patino, & Pilosof,
2012). A pH of 6.0 was selected to obtain the smallest and most
stable nanocomplexes between f-lg and polyphenols (von
Staszewski et al., 2012).

2. Materials and methods
2.1. Materials

BioPURE B-lactoglobulin was supplied by DAVISCO Foods In-
ternational, Inc. (Le Sueur, Minnesota). Its composition was: protein
(dry basis) 97.8% being B-lactoglobulin 93.6% of total proteins, fat
0.3%, ash 1.8% and moisture 5.0%.

Green tea extract powder (Sunphenon® 90MD) from Taiyo In-
ternational, Inc. (Minneapolis, Minnesota) contained >95% total
polyphenols, >75% total catechins, >45% Epigallocatechin gallate
(EGCG) and <6.0% caffeine.

Liver oil from Argentinean fish was kindly donated by South Oils
(Mar del Plata, Argentina) and according to the supplier it has
75.53% (w/w) of fatty acids, being 44.8% polyunsaturated, 35.1%
monounsaturated and 20.2% saturated. This oil has a high propor-
tion of LCw-3 PUFA (38.4%), with 23.4% of DHA and 7.7% of EPA
(Modified AOCS Official Method Ce 1b-89). The oil was vacuum
filtered through Whatman filter paper No. 41 (particle retention
20—25 um) prior to use. No further purification was used in order to
study the performance of polyphenols-B-lg nanocomplexes in a
real interface. To check differences in the interfacial behavior of
nanocomplexes that could be attributed to the heterogeneous
composition of fish oil, we proceeded as explained before (Camino
et al., 2012). B-lg and impurities may compete for the interface, but
f-lg dominates the surface pressure even at short adsorption times.

2.2. Methods

2.2.1. Particle size and Z-potential measurements

Particle size analysis experiments were carried out using a Dy-
namic Laser Light Scattering (DLS) instrument (Zetasizer Nano-Zs,
Malvern Instruments, Worcestershire, UK) provided with a He—
Ne laser (633 nm) and a digital correlator, Model ZEN3600. Mea-
surements were carried out at a fixed scattering angle of 173°.
Samples were contained in a disposable polystyrene cuvette.

The zeta potential of solutions and emulsions was measured
using the laser Doppler velocimetry (LDV) technique (measurement
range from 5 nm to 10 um). In this technique, a voltage was applied
across a pair of electrodes placed at both ends of a cell containing the
particle dispersion. Samples were diluted in their corresponding
buffer before loading them in the cell and temperature was set at
25 °C. The assays were carried out in triplicate.

2.2.2. Dynamic interfacial properties

All the experiments were carried out in an automatic drop
tensiometer at 25 °C by circulating water from a thermostat). A
droplet was formed with the aqueous solution (constant volume at
12 mm?) at the tip of a capillary that was into a cell filled with the
oil. Measurements were done until the adsorption equilibrium was
reached (around 180 min). The glass materials in contact with the
oil phase and the aqueous solutions were properly cleaned in order
to avoid any contamination by surface-active substances.

2.2.2.1. Dynamic interfacial tension. Time-dependent surface pres-
sure () of adsorbed Blg/polyphenols films were determined at the
O/W interface with an automatic drop tensiometer PAT-1

(Sinterface Technologies, Berlin, Germany). The surface tension (7y)
was calculated through the analysis of the droplet profile
(Labourdenne et al., 1994). The surface pressure is w = y°—°7,
where y° is the sub-phase interfacial tension (24 mN/m) and v the
interfacial tension of solution at each time (). The average standard
accuracy of the interfacial tension is roughly 0.1 mN/m and the
reproducibility of the results, for at least two measurements, was
better than 1%.

During the first step of the adsorption of the components, it can
be obtained the diffusion rate constant by using a modified form of
the Ward and Tordai equation (Equation (1)) (Pizones Ruiz-
Henestrosa, Carrera Sanchez, & Rodriguez Patino, 2008).

1/2

T = 2c0kT(’;§ilff) (1)

where Cy is the concentration in the aqueous phase, k is the
Boltzmann constant, T is the absolute temperature, kgig is the
diffusion coefficient and 4 is the time. A plot of 7 vs. §'/2 should be
linear if diffusion controls the adsorption process, and the slope
would represent kgjgr.

2.2.2.2. Surface dilatational properties. The surface viscoelastic pa-
rameters (surface dilatational modulus, E, and its elastic, Eq, and
viscous, E,, components), were measured as a function of time, at
3% of deformation amplitude of the drop volume (AA/A) and
0.05 Hz of angular frequency (w). Previously, the percentage area
change has been determined to be in the linear region (data not
shown). A sinusoidal perturbation was induced at the interface by
injecting and extracting liquid into the drop. A Fourier trans-
formation was performed so as to obtain the dilatational parame-
ters of the interfacial film.

The surface dilatational modulus derived from the change in
surface tension (dilatational stress), ¢ (Equation (2)), resulting from
a small change in surface area (dilatational strain), A (Equation (3)),
may be described by Equation (4) (Lucassen & Van Den Tempel,
1972):

g = ag sin (wf + 0) 2)

A = Ag sin (wf) 3)
do dm .

E=GA/A= dina=Fa+ibv (4)

where 6g and Ag are the stress and strain amplitudes, respectively,
and ¢ is the phase angle between stress and strain.

The dilatational modulus is a complex quantity, which is
composed of real and imaginary parts. The real part of the dilata-
tional modulus or storage component is the dilatational elasticity,
Eq = |E|cos 6. The imaginary part of the dilatational modulus or loss
component is the surface dilatational viscosity E, = |E|sin 6. The
dilatational modulus, E, is a measure of the total unit material
dilatational resistance to deformation (elastic + viscous).

2.2.3. Emulsion preparation

Green tea polyphenols (0.25—1% wjw)-B-lg (3% w/w) nano-
complexes were prepared by dissolving the proper amount of each
powder in phosphate buffer (pH 6.0, 0.01 M) at room temperature
and stirring for 30 min. If necessary, pH was adjusted with HCl or
NaOH. The solutions were allowed to stand overnight at 4 °C to
assure nanocomplexes formation.

The O/W emulsions were prepared at 10:90 ratio by applying
ultrasounds for 20 min. An ultrasonic processor Vibra Cell VCX 750
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model (Sonics & Materials Inc., Newtown, Connecticut, USA) at a
frequency of 20 kHz and amplitude of 20% was used. A 13 mm (1/2
inch) high grade titanium alloy probe threaded to a 3 mm tapered
microtip was used to sonicate 5 mL of sample in a 15 mL glass tube
reactor that was glycerine-jacketed at 0.5 °C with a circulating
constant temperature cooling bath (Polystat, Cole—Parmer). At this
temperature, the heat produced during sonication was dissipated
by keeping the temperature of the sample below 25 °C.

2.24. Droplet size distribution

The droplet size distribution of emulsions was measured by
light scattering using a Mastersizer 2000 with a Hydro 2000MU as
dispersion unit (Malvern Instruments, Worcestershire, United
Kingdom). The pump speed was set in 1000 rpm. The refractive
index (RI) of the disperse phase (1.47) and its absorption parameter
(0.001) was used. The RI of the interfacial layer was not taken into
account because when considered, the change produced was less
than 1%, since the thickness of an adsorbed layer is about 2—10 nm
(McClements, 1999). Droplet size is reported as the volume-surface
mean diameter or Sauter diameter (D3 = Inidi/Snid?) and the
equivalent volume-mean diameter or De Broucker diameter
(D43 = Zn,-di‘/Zn,'d?), where n; is the number of droplets of diameter
d; (Galazka, Dickinson, & Ledward, 1996; Gu, Decker, & McClements,
2005; Guzey, Kim, & McClements, 2004; Huang, Kakuda, & Cui,
2001; Leroux, Langendorff, Schick, Vaishnav, & Mazoyer, 2003).
D3, provides a measure of the mean diameter where most of the
particles fall in between (Gu et al.,, 2005). D43 is related with
changes in particle size involving destabilization processes so it is
more sensitive to fat droplet aggregation (Palazolo, 2006; Relkin &
Sourdet, 2005) than Dj3».

The specific surface area (SSA) and the polydispersity obtained
by the software are also reported. The polydispersity is calculated
as: (Do.g — Do1)/Dos where 10, 50 and 90% of the oil volume in the
emulsion is contained in droplets with diameters below or equal to
Do1, Dos and Dgg, respectively. The SSA is calculated using the
diameter D3, (Carrera Sanchez & Rodriguez Patino, 2005; Cornec
et al., 1998). The droplet sizes are reported as the average and
standard deviation of ten readings made per sample.

The flocculation degree (FD) was calculated from the size pa-
rameters as Palazolo, Sorgentini, and Wagner (2005):

FD(%) = [(D43 without sbs — D43 with sps)/D43 with sps] x 100

(5)

2.2.5. Emulsion stability

The global stability of emulsions was determined through the
use of a vertical scan analyzer Turbiscan MA 2000 (Formulaction,
Toulouse, France). This equipment allows the optical characteriza-
tion of any type of dispersion (Mengual, Meunier, Cayré, Puech, &
Snabre, 1999). The reading head is composed of a pulsed near-IR
light source (A = 850 nm) and two synchronous detectors. The
transmission detector receives the light, which goes through the
sample (0°), while the back-scattering detector receives the light
back scattered by the sample (135°).

We proceeded as described in Camino and Pilosof (2011) for
determining creaming and flocculation processes during 21 days of
storage at ambient temperature (25 °C). The results were reported
as the average and standard deviation of at least two samples.

2.2.6. Lipid hydroperoxides

Emulsions Lipid hydroperoxides were determined according to
Shanta and Decker (1994) by mixing the emulsion (0.3 mL) with
1.5 mL of isooctane:2-propanol (2:1, v/v), vortexing three times for
30 s and centrifuging for 2 min at 1000 g. 200 pL of the supernatant

were taken and 2.8 mL of a methanol:1-buthanol (3:1, v/v) solution
were added, followed by 15 puL of ferrous iron solution (prepared by
adding equal amounts of 0.132 M BaCl, and 0.144 M FeSQO,). After
20 min, the absorbance of the solutions was measured at 510 nm
using a T70 UV/Vis Spectrometer (PG Instruments Ltd, Leicester-
shire, England). Hydroperoxides concentration was determined
using a standard calibration curve prepared with hydrogen
peroxide.

2.3. Statistical analysis

The data were statistically analyzed with the program Stat-
graphic 5.1 plus. All the measurements were conducted and re-
ported as means + 95% confidence limits. Statistical analysis were
performed using t-test and one-way analysis of variance (ANOVA)
to identify which groups were significantly different from other
groups (P < 0.05).

3. Results and discussion
3.1. -lg-polyphenol interactions in solution

Dynamic light scattering, based on the Brownian motion of
particles, is a good technique to reveal the existence of bio-
molecules association (Lin et al., 2004) and in the present work was
used to characterize the formation of nanocomplexes between B-1g
and polyphenols. The volume size distribution of B-lg (0.3% w/w) at
pH 6.0 is shown in Fig. 1. Pure polyphenols solutions can not be
characterized by DLS because they are very small molecules
(MW < 500) and form colored solutions. -1g showed a monomodal
distribution broadening from 3 to 15 nm and the maximum peak at
25 °C (6.5 nm) is consistent with B-lg dimer which is the pre-
dominant form at neutral pH (McKenzie & Sawyer, 1967). This is in
accordance with values determined by Griffin and Griffin (1993),
who found a hydrodynamic diameter, d(H), of 6.19 nm for the B-lg
dimer. However the population also included B-lg monomers, mi-
nor proteins of higher molecular weight/size present in the B-lg
sample and B-lg structures larger than dimers.

The higher size particle distribution of the mixture of B-lg and
polyphenols (0.1% w/w) indicates the binding of B-lg with poly-
phenols and the formation of nanocomplexes. The binding between
polyphenols and proteins occurs at exposed hydrophobic and
approximately planar side chains, suggesting that it is dominated
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Fig. 1. Volume size distributions for B-Ig (0.3% w/w) (M) and B-lg (0.3% w/w)-
polyphenols (0.1% w/w) nanocomplexes (O) at 25 °C and pH 6.
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by stacking of the polyphenolic rings against hydrophobic surfaces
(Charlton et al., 2002).

3.2. B-lg-polyphenol complexes behavior at the oil-water interface:
dynamic adsorption and viscoelasticity of films

Polyphenols-B-lg nanocomplexes would behave different from
pure protein during their diffusion, penetration and rearrangement
at the oil-water interface. Thus, the interfacial study of B-lg and
polyphenols is of great importance since its direct impact on the
emulsification properties.

Fig. 2 shows the interfacial pressure evolution with adsorption
time for B-lg and its mixtures with polyphenols (polyphenols alone
did not present surface activity). The evolution of interfacial pres-
sure showed a rapid diffusion of the protein to the oil-water
interface, due to the high protein concentration (3% w/w), high
enough to saturate the interface. In all cases surface activity was
lowered by increasing polyphenols concentration. One possible
explanation has to be with the lower diffusion coefficients of nano-
particles at increasing polyphenols concentration (19.4, 18.0, 16.2
and 10.0 mN m~! 5793 for 0, 0.25, 0.5 and 1% w/w polyphenols,
respectively). These kgirr values were obtained by applying the
Equation (1) that describes the change in interfacial pressure with
time during the first step of the adsorption. As the diffusion step
was very fast ( > 10 mN/m at the beginning of the experiment),
kaife were estimated from the first value in the 7 vs. g12 plot as
indicated by Martinez, Carrera Sanchez, Rodriguez Patino, and
Pilosof (2009). Thus, it can be assumed that the change in the
adsorption kinetics has its origin in the diffusion of components to
oil-water interface. Additionally, at longer times (once the equi-
librium was reached and the adsorbed components are organized
at the interface), the values of the interfacial pressure of B-lg-
polyphenols nano-complexes were lower than those of pure pro-
tein. As stated previously, polyphenols get stacked to hydrophobic
side chains of the aminoacids in such a way that these hydrophobic
domains could not be fully available to penetrate the interface.
Sausse, Aguié-Béghin, and Douillard (2003) also observed that
polyphenols prevent the adsorption of a fraction of total casein and
suggested that polyphenols generate an energy barrier to the
adsorption process. Generally, the protein conformational change
during adsorption leads to a decrease in the protein superficial
energy. The interactions between protein and polyphenols may
reduce the protein flexibility and prevent the necessary protein
conformational change to insert in the interface.
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Fig. 2. Interfacial pressure as a function of adsorption time for p-lg 3% (M), B-lg 3%-
polyphenol 0.25% (<), B-lg 3%-polyphenol 0.5% (A) and B-lg 3%-polyphenol 1% (O).

The surface rheology of B-lg film was also sensitive to the
presence of polyphenols. Fig. 3 shows the evolution of the dilata-
tional elasticity Eq (mN/m) of interfacial films with time. It was
observed that this parameter increased over time, which is
consistent with an increment in the viscoelastic character of these
films as the number of interactions between the adsorbed mole-
cules increase (Dickinson, 1999; Pizones Ruiz-Henestrosa et al.,
2008). Also the amount of adsorbed molecules increases with time
and the rearrangement of these components at the interface lead to
a higher interfacial density and thus to an E4 increment. The
presence of polyphenols induced a decrease of E4q values as
compared to single B-lg films, indicating an antagonistic effect
regarding the elasticity of the films. The formation of B-lg-poly-
phenols nano-complexes would not contribute to a good devel-
oping of a viscoelastic film with good rheological properties
because the polyphenols stacked to the hydrophobic side chains of
the aminoacids, as indicated previously. Also, as previously sug-
gested by Wiistneck, Moser, and Muschiolik (1999) and Benjamins,
Cagna, and Lucassen-Reynders (1996), the best conditions to form
an interfacial structure with high mechanical stability are those in
which protein conformational changes are not restricted. The intra
and intermolecular hydrophobic interactions between proteins,
needed to form an elastic film, would be restricted by the binding of
polyphenols.

3.3. Emulsification of liver fish oil by (-lg-polyphenol
nanocomplexes

3.3.1. Emulsion formation

Fig. 4 shows the monomodal droplet size distribution for O/W
emulsions, formed by high intensity ultrasound, with increasing
polyphenols concentration. The presence of polyphenols decreased
the droplet size of the emulsions, which is beneficial for emulsions
stability. At all polyphenol concentrations tested smaller droplet
sizes were obtained as compared with B-lg alone, being the 0.5%
(w/w) the optimum concentration.

Table 2 shows the average diameters, the polydispersity and the
specific surface area (SSA) for recently prepared B-lg (3% wjw)-
polyphenols (0.25—1% w/w) emulsions. Smaller average di-
ameters are obtained in the presence of polyphenols. The SSA was
higher when the values of D3; were smaller due to the smaller the
oil droplets are for the same total oil volume, the total interfacial
area will rise directly (Carrera Sanchez, & Rodriguez Patino, 2008).
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Fig. 3. Dilatational elastic modulus evolution, E4, at pH 6 for $-lg 3% (m), B-lg 3%-
polyphenol 0.25% (<), B-lg 3%-polyphenol 0.5% (A) and B-lg 3%-polyphenol 1% (O).
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Fig. 4. Volume droplet size distribution for O/W emulsions formulated with B-lg 3%
(m), B-lg 3%-polyphenol 0.25% (<), B-lg 3%-polyphenol 0.5% (A) and B-lg 3%-poly-
phenol 1% (O). PF: polyphenols.

D43 diameters, related with possible flocculation, and the poly-
dispersity were lower in the presence of polyphenols.

3.3.2. Creaming, flocculation and coalescence of emulsions

The creaming, flocculation and coalescence stabilities were
analyzed from the back-scattering (BS%) profiles during the sta-
tionary storage at ambient temperature. Fig. 5 shows as an example
the BS% profiles for a B-lg (3% w/w)-polyphenols (0.5% w/w)
emulsion over time. It can be observed the clarification phenome-
non in the bottom of the tube and the creaming at the top. The
creaming/flocculation kinetics constants (Kcreaming) 0btained from
the backscattering profiles for the emulsions are included in
Table 3. It can be observed that the creaming rate decreased with
the increment of polyphenols concentration up to an optimal level
of 0.5% (w/w). Exceeded this value, creaming rate becomes equal to
those emulsions with single p-lg. This behavior takes correlation
with the initial droplet size of emulsion (Table 1).

Also, it is evident that the particle size does not change over
time as can be observed in the middle part of the tube where lines
are superimposed. If there was a change in droplet size, which
would indicate a coalescence phenomenon, then a gradual
decrease would be observed in the backscattering towards the in-
crease in the droplet size. Also, the coalescence could not be evi-
denced through the increase in the D3, diameter during storage at
ambient temperature (Table 2), related with the average size of all
the particles in the emulsion (Gu et al., 2005). The low variation of
D35 at all polyphenol concentrations during 20 days of storage,
confirms the absence of coalescence and aware creaming to a
flocculation process. When oil-in-water emulsions are prepared
with proteins as unique emulsifying agent, coalescence becomes a
slow destabilization mechanism compared with flocculation and

Table 1

Size distribution parameters (average diameter of Sauter (D3;), of De Broucker (Dy3),
polydispersity and specific surface area (SSA)) for f-1g (3% w/w)-polyphenols (0.25—
1% w/w) emulsions. Maximum standard deviation: 1%.

0% 0.25% 0.5% 1%
D35 (pm) 0.303 0.255 0.226 0.233
Dys3 (um) 0.418 0.338 0.282 0.301
Polydispersity 1.710 1.556 1.293 1.356
SSA (m?/g) 19.8 235 26.5 25.8

Table 2
Average diameters (D3;) for B-lg (3% w/w)-polyphenols (0.25—1% w/w) emulsions
during storage at ambient temperature. Maximum standard deviation: 1%.

Polyphenol (% w/w) Recently prepared Day 7 Day 14 Day 21
0 0.309 0.308 0.307 0.308
0.25 0.281 0.281 0.281 0.280
0.5 0.237 0.239 0.239 0.238
1 0.260 0.260 0.259 0.262

creaming (Britten & Giroux, 1991). This is favored by the repulsion
between oil droplets making slower the general destabilization
process. The flocculation degree (Equation (5)) decreased with
polyphenols possibly due to an increase in the net charge of the
emulsified oil droplets, which repel each other (Table 3).

No relationship can be observed between the interfacial
behavior and the emulsion properties since polyphenols decreased
the surface pressure and viscoelasticity of the films but, on the
other hand contributed to better emulsions. Besides interfacial
properties, the viscosity of emulsions also plays an important role
in the stability (Asano & Sotoyama, 1999). Nevertheless, the
determined viscosity could neither explain the emulsion perfor-
mance of polyphenols-B-lg nanocomplexes. It may be concluded
that the increased emulsion stability may be attributed to charge
effects of the nano-complexes as shown in Table 3.

3.4. Lipid oxidation

Oxidation of oils is a major cause of their deterioration, and
hydroperoxides formed by the reaction between oxygen and the
unsaturated fatty acids are the primary products of this reaction.
The hydroperoxide concentrations of the fish oil-in-water emul-
sions stabilized with polyphenols-p-Ig nanocomplexes were
measured during storage at 37 °C (Fig. 6). The concentration of
hydroperoxides of fish oil emulsions increased from 20 to 214 meq/
kg oil in the emulsion stabilized by single -lg. On the other hand,
emulsions formed with polyphenols-p-lg nanocomplexes never
exceeded 40 meq/kg oil of hydroperoxides during the whole stor-
age, proving their outstanding performance as antioxidants even in
combination with a protein. The relative low hydroperoxide level in
the emulsions containing polyphenols would therefore indicate
that fish oil was relatively stable to oxidation during storage at
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Fig. 5. Changes in back-scattering profiles (BS%) as a function of sample height with
storage time (samples were store for 20 days) of B-1g 3%-polyphenol 0.5% emulsions at
pH 6. The creaming kinetics was analyzed in the 7—20 mm zone.

Please cite this article in press as: von Staszewski, M., et al., Green tea polyphenols-B-lactoglobulin nanocomplexes: Interfacial behavior,
emulsification and oxidation stability of fish oil, Food Hydrocolloids (2013), http://dx.doi.org/10.1016/j.foodhyd.2013.07.008




6 M. von Staszewski et al. / Food Hydrocolloids xxx (2013) 1-7

Table 3
Stability parameters of O/W for B-lg (3% w/w)-polyphenols (0.25-1% w/w) O/W
emulsions. Maximum standard deviation: 5%.

0% 0.25% 0.5% 1%
Z-potential (mV) -59.6 -62.9 -67.9 -68.4
Viscosity (mPa/s) 1.326 1.355 1.356 1.335
Kcreaming (mm/h) 0.0105 0.0087 0.0068 0.0105

37 °C. Similar results were obtained by Almajano, Delgado, and
Gordon (2007), when assessing mixtures of green tea catechins
and albumin as antioxidant systems in sunflower oil-in-water
emulsions.

It has been reported that predominantly nonpolar antioxidants,
such as a-tocopherol, ascorbyl palmitate, and carnosol, were found to
be more effective in oil-in-water emulsions than in bulk oil, while the
opposite has been observed for predominantly polar antioxidants,
such as trolox, ascorbic acid, carnosic acid, and rosmarinic acid
(Porter, 1993). According to this polar paradox, polyphenols may not
be effective antioxidants in an oil-in-water emulsion. However, Pazos,
Gallardo, Torres, and Medina (2005) also observed that grape poly-
phenols behaved as effective antioxidants in fish oil-in-water emul-
sions and related their effectiveness to the capacity of polyphenols to
establish hydrophobic and hydrophilic interactions. They have hy-
drophobic cores with hydrophilic hydroxyl groups and may expose
both or any of the two regions, resulting together with the protein in
surfactant-like accumulation active oil-water interfaces.

The interfacial region, which is the contact region between the
dispersed lipids and the aqueous phase, represents a critical area
for oxidation development. Thus, the combination of B-lg and
polyphenols would be beneficial since the antioxidants are trapped
and located in the interface. The distribution in the emulsified
system of surface-active compounds (emulsifiers, polar lipid
oxidation products, amphiphilic antioxidants) that adsorb at the
oil/water interface influence noticeably lipid oxidation (Genot,
Meynier, & Riaublanc, 2003; Waraho, McClements, & Decker,
2011). On the other hand, some authors (Berton, Genot, Guibert,
& Ropers, 2012; Berton, Genot, & Ropers, 2011; Berton, Ropers,
Bertrand, Viau, & Genot, 2012) reported that the interfaces
covered by proteins offered worse protection of lipid droplets
against oxidation than interfaces covered by a single layer of sur-
factants because the protein-covered interfaces exhibit a limited
effective coverage and are more heterogenous and thus give access
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Fig. 6. Lipid hydroperoxides production in O/W emulsions formulated with B-lg 3%
(m), B-Ig 3%-polyphenol 0.25% (<), B-lg 3%-polyphenol 0.5% (A) and B-1g 3%-poly-
phenol 1% (O).

for the aqueous soluble initiators or free radicals, to the lipid phase.
Polyphenols may also help to avoid this problem by acting as cross-
linkers between B-lg molecules and forming an interfacial film that
assures the best oxidative stability since nanocomplexes can act as
a physical barrier to prevent prooxidant penetrating and diffusing.

4. Conclusions

Green tea polyphenols-B-Ig nanocomplexes could be used as
efficient emulsifiers in liver fish oil emulsions with the additional
benefit of acting as antioxidants and bioactive compounds. Future
studies will be focused in understanding the behavior of these
systems under physiological conditions as it has been reported in
the literature that green tea may modify emulsion behavior of di-
etary fat in the gastrointestinal tract (changes in fat digestion and
absorption) (Shishikura, Khokhar, & Murray, 2006).
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