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We propose a numerical method to approximate the solution of a nonlocal diffusion problem on a general
setting of metric measure spaces. These spaces include, but are not limited to, fractals, manifolds and
Euclidean domains. We obtain error estimates in L∞(Lp) for p = 1,∞ under the sole assumption of the
initial datum being in Lp. An improved bound for the error in L∞(L1) is obtained when the initial datum
is in L2. We also derive some qualitative properties of the solutions like stability, comparison principles
and study the asymptotic behavior as t→ ∞. We finally present two examples on fractals: the Sierpinski
gasket and the Sierpinski carpet, which illustrate on the effect of nonlocal diffusion for piecewise constant
initial datum.
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1. Introduction and Main Result

Many results from classical harmonic analysis have been developed on more general metric measure
spaces, containing typical fractals and manifolds. However, the study of differential equations in such
a primitive context are under development (see Bell et al., 2014; Li & Strichartz, 2014; Spicer et al.,
2013; Ionescu et al., 2013; Qiu & Strichartz, 2013; Begué et al., 2013; Owen & Strichartz, 2012, and
references therein). Kigami (1989) defined a Laplacian on the Sierpinki gasket, and later extended his
construction to a wider class of fractals in Kigami (1993). This set the stage for an analytic study of the
analogs of some of the classical partial differential equations on these fractals, which are a particular
case of metric measure spaces.

Linear nonlocal diffusion equations of the form

ut(x, t) =
ˆ
Rn

J(x− y)[u(y, t)−u(x, t)]dy,

have been widely used to model diffusion problems (Fife, 2003), and can be generalized as follows
(Actis, 2014; Rodrı́guez-Bernal & Sastre-Gómez, 2014). Let (X ,d,µ) be a metric measure space. Given
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T ∈ R+ fixed, f ∈ L1(X ,µ) and J : X ×X → R+ we can consider the following nonlocal diffusion
problem: ut(x, t) =

ˆ
X

J(x,y)[u(y, t)−u(x, t)]dµ(y), x ∈ X , t ∈ (0,T ),

u(x,0) = f (x), x ∈ X .

(1.1)

where the equalities are understood in the sense of L1(X ,µ). The well posedness of (1.1) has been
addressed by Actis (2014) and Rodrı́guez-Bernal & Sastre-Gómez (2014) for the metric measure space
setting; see Cortazar et al. (2009) for the Euclidean case. It has been proved that for each f ∈ L1(X ,µ)
there exists a unique function u belonging to

BT :=C([0,T ];L1(X ,µ))∩C1((0,T );L1(X ,µ)),

which solves problem (1.1). Here C([0,T ];L1(X ,µ)) denotes the space of continuous functions from
[0,T ] to L1(X ,µ), i.e., u(·, t) ∈ L1(X ,µ) for each t ∈ [0,T ] and ‖u(·, t)−u(·, t +h)‖L1 → 0 when h→ 0;
and C1

(
(0,T );L1(X ,µ)

)
denotes the space of functions with continuous Frechet’s derivative in L1, i.e.,

there exists v ∈C((0,T );L1(X ,µ)) such that∥∥∥∥u(·, t +h)−u(·, t)
h

− v(·, t)
∥∥∥∥

L1
−→ 0,

when h→ 0, for each t ∈ (0,T ). In such case we write ut = v.
Nevertheless, no explicit form of the solution is known. The goal of this article is to propose a

general method for the approximation of this solution in metric measure spaces, solving discrete prob-
lems, and to provide error estimates, analogous to those in Pérez-Llanos & Rossi (2011) which hold in
domains of Rn. Also, as in Pérez-Llanos & Rossi (2011), we study the asymptotic behavior as t→∞ of
the solutions of (1.1).

In order to define the discrete solutions, let us assume that we can decompose X into a union of K
pairwise disjoint measurable subsets, i.e. we can write X =

⋃K
k=1 Xk, with Xk∩X j = /0 if k 6= j. We shall

refer to these sets Xk as the components of the space X .
For each k let us fix a point xk ∈ Xk, that we shall call the representative point of the component

Xk. Let X be the set of all the representative points, i.e. X = {xk ∈ Xk : 1 6 k 6 K}, and let ν be the
measure defined on X by ν({xk}) = µ(Xk). Then (X ,d,ν) is also a metric measure space.

Problem (1.1) considered on (X ,d,ν), with a preassigned initial condition fff = [ f1, f2, . . . , fK ]∈RK ,
can be equivalently written asut(xi, t) =

K

∑
j=1

J(xi,x j)[u(x j, t)−u(xi, t)]µ(X j), i ∈ IK , t ∈ (0,T ),

u(xi,0) = fi, i ∈ IK ,

(1.2)

where IK := {1,2, . . . ,K}. Notice that (1.2) is a homogeneous first-order linear system of ordinary
differential equations. Indeed, if we denote ui(t) := u(xi, t), uuu(t) = [u1(t),u2(t), . . . ,uK(t)] and A =
(ai j)

K
i, j=1 the matrix given by

ai j =

{
−∑

K
k=1
k 6=i

J(xi,xk)µ(Xk), if i = j.

J(xi,x j)µ(X j), if i 6= j,
(1.3)
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then (1.2) can be rewritten as
duuu
dt

= Auuu, uuu(0) = fff . (1.4)

Therefore, uuu(t) = eAt fff is the unique solution which belongs to C∞(R+). Moreover, given a vector norm
‖ · ‖ in RK , if we denote with ‖ · ‖ also the induced matrix norm, all the time derivatives of uuu can be
bounded as follows: ∥∥∥∥ dk

dtk uuu
∥∥∥∥6 ‖A‖k‖uuu‖, k = 1,2, . . . , t > 0. (1.5)

We now extend uuu and fff to X× (0,T ) as follows

U(x, t) := uk(t) and F(x) := fk for every x ∈ Xk.

In other words, if IA(x) denotes the indicator function on the set A,

U(x, t) =
K

∑
k=1

uk(t)IXk(x) and F =
K

∑
k=1

fk IXk(x), (1.6)

so both are constant on each component Xk. We shall refer to F as the extension of fff and U as the
extended solution associated to fff .

The following error estimate between U and u is the first main result of this article:

Main Result 1 Let u be the solution of (1.1) for a given f ∈ L1(X ,µ), and let U be the extended
solution associated to a given fff ∈ RK . Then

|||u−U |||1 := max
06t6T

‖u(·, t)−U(·, t)‖L1 6Cξ +‖ f −F‖L1 ,

where F is the extension of fff and ξ depends on max{diam(Xk) : k ∈ IK} and regularity properties of J.
Moreover, if f ∈C(X), then

|||u−U |||
∞

:= max
06t6T

‖u(·, t)−U(·, t)‖L∞ 6Cξ +‖ f −F‖L∞ .

In both cases C denotes a constant which depends on J but is otherwise independent of the particular
decomposition of X .

We want to point out the following remarks concerning the above result.

• The approximation U of u is as good as the approximation F of f , except for the term ξ measuring
the approximation of J by piecewise constant kernels. This term will have the form δ r, where
δ = max{diam(Xk) : k ∈ IK} and r > 0 is the Hölder regularity of J. In the particular case of f
and J Lipschitz continuous, we obtain |||u−U |||

∞
6Cδ r.

• In every bounded metric space with finite Assouad dimension, and in particular in every bounded
space of homogeneous type, we can decompose the space in such a way that δ is as small as
desired (see Christ, 1990; Aimar et al., 2007; Hytönen & Kairema, 2012).

• In non-atomic spaces of homogeneous type, such as manifolds and typical fractals, the afore-
mentioned decomposition can be obtained such that max{µ(Xk) : k ∈ IK} is small, allowing the
elementary function F to be as close to f as desired, choosing fk =

1
µ(Xk)

´
Xk

f dµ . Moreover, if
f ∈C(X), F can be constructed using fk = f (xk).
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• The first numerical method for computing approximate solutions of this kind of nonlocal diffusion
problems was developed by Pérez-Llanos & Rossi (2011) for domains of Rn. We generalize that
result to metric measure spaces and provide a different proof, by considering the approximations
as solutions to problem (1.1) for piecewise constant kernels J̄, rather than looking at the solution
at points. Indeed, the function U is the unique solution in BT of problem (1.1) with kernel J̄
and initial datum F (see Lemma 3.1). So that u and U satisfy the same qualitative properties (see
Section 2) without having to prove a discrete version of the results.

• The study of differential equations on fractals and their approximation, is not new. Finite element
methods based on piecewise harmonic and biharmonic splines have been developed by Gibbons
et al. (2001); Coletta et al. (2004). They studied certain classes of fractal differential equations
on the Sierpinski gasket associated to the Kigami Laplacian, such us the heat equation, the wave
equation, Schrödinger type equations, etc. Also, boundary value problems with fractal boundaries
have been considered in (Mosco, 2013; Evans, 2011) and the references therein. However, as far
as we know, the study of evolutionary problems involving integrable nonlocal operators in this
context has never been done.

The second main result is a bound for the error corresponding to the fully discretized problem.

Main Result 2 Let ∆ t > 0 denote a time discretization parameter, and let Ūn, n = 0,1,2, . . . , denote
the approximations of U(·, tn) obtained by a Runge-Kutta method of order k with step-size ∆ t, where
tn = n∆ t. Then, for p = 1 or p = ∞,

‖u(·, tn)−Ūn‖Lp 6Cξ +‖ f −F‖Lp +C̄RK
k Ck+1

p ‖F‖Lp T ∆ tk, n = 0,1,2, . . . ,dT/∆ te,

where C, F , ξ are as before, CRK
k depends on the Runge-Kutta method and Cp is defined as follows:

C1 = 2 max
x,y∈X

J(x,y), C∞ = 2max
x∈X

ˆ
X

J(x,y)dµ(y).

The paper is organized as follows. In Section 2 we present the setting and we prove some qualitative
properties of the solution. We shall use these results to show our first main result, which is precisely
stated in Theorem 3.1 and proved in Section 3. In Section 4 we improve the given error estimation for
the particular case that the initial datum f ∈ L2(X ,µ). The second main result is stated in Theorem 5.2,
which is proved in Section 5. Section 6 is devoted to apply the results on the Sierpinski gasket and the
Sierpinski carpet. Finally in Section 7 we state some conclusions and remarks.

2. Setting and qualitative properties

Let X be a set. A quasi-distance on X is a non-negative symmetric function d defined on X ×X such
that d(x,y) = 0 if and only if x = y, and there exists a constant K > 1 such that

d(x,y)6 K(d(x,z)+d(z,y)), ∀x,y,z ∈ X .

A quasi-distance d on X induces a topology through the neighborhood system given by the family of all
subsets of X containing a d-ball B(x,r) = {y ∈ X : d(x,y)< r}, r > 0 (Coifman & Weiss, 1971; Macı́as
& Segovia, 1979).

Throughout this paper (X ,d,µ) shall be a compact quasi-metric measure space such that the d-balls
are open sets with positive µ-measure, and µ is a finite non-negative Borel measure on X .
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Also, J : X×X→R+ shall be a measurable function with respect to the product σ -algebra in X×X
having the following properties:

(J1) J(x,y) = J(y,x) for all x,y ∈ X .

(J2) The integral
´

X J(x,y)dµ(x) is positive and uniformly bounded in y ∈ X .

It is worth mentioning that assumptions (J1) and (J2) guarantee that problem (1.1) has a unique
solution in BT for each f ∈ L1(X ,µ), and it belongs to C([0,T ];C(X))∩C1((0,T );C(X)) if f ∈C(X)
(Actis, 2014, Thm. 8.2.2 and Lemma 8.3.1); see also Rodrı́guez-Bernal & Sastre-Gómez (2014). In this
section we shall analyze some qualitative properties of this solution: conservation of the total mass, a
comparison principle, stability and asymptotic behavior as t → ∞. These properties are analogous to
well known properties in the Euclidean case.

PROPOSITION 2.1 (Conservation of total mass) Let f ∈ L1(X ,µ) and let u be the solution of (1.1). Then
ˆ

X
u(x, t)dµ(x) =

ˆ
X

f (x)dµ(x), for all t > 0.

Proof. Notice that for each t > 0 we have

u(x, t) = f (x)+
ˆ t

0

ˆ
X

J(x,y)[u(y,s)−u(x,s)]dµ(y)ds, a.e. x ∈ X .

The assertion follows after integrating on x over X , applying Fubini’s theorem and using the symmetry
of J. �

In order to state the stability of the problem, which is contained in Proposition 2.2, we shall first
prove some preliminary results.

LEMMA 2.1 If u ∈BT then the scalar function g : R→ R, g(t) = ‖u+(·, t)‖L1 is weakly differentiable
on [0,T ] and

d
dt
‖u+(·, t)‖L1 =

ˆ
X

ut(x, t)I{u(·,t)>0}(x)dµ(x),

where u+(x, t) = max{u(x, t),0} is the positive part of u.

REMARK 2.1 Notice that if u−(x, t) = max{−u(x, t),0} denotes the negative part of u, then we have
that u−(x, t) = (−u)+(x, t), so that Lemma 2.1 yields

d
dt
‖u−(·, t)‖L1 =−

ˆ
X

ut(x, t)I{u(·,t)<0}(x)dµ(x).

Proof of Lemma 2.1. For ε > 0, let uε = ϕε ◦u with

ϕε : R→ R, ϕε(s) =

{√
s2 + ε2− ε, if s > 0,

0, if s6 0.

Notice that 06 ϕε(s)6max{s,0} for all s ∈ R, and moreover

ϕε(s) = 0 = max{s,0} if s6 0,

|ϕε(s)−max{s,0}|= s−
√

s2 + ε2 + ε 6 ε if s > 0,
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so that ϕε(s)→ max{s,0} uniformly in s ∈ R. Therefore, the dominated convergence theorem in X
yields, as ε → 0,

‖uε(·, t)‖L1 =

ˆ
X

uε(x, t)dµ(x)→
ˆ

X
max{u(x, t),0}dµ(x) = ‖u+(·, t)‖L1 .

Let ψ ∈C∞
0 (0,T ). Then, on the one hand, as ε → 0

ˆ T

0
‖uε(·, t)‖L1ψ

′(t)dt→
ˆ T

0
‖u+(·, t)‖L1ψ

′(t)dt, (2.1)

by the dominated convergence theorem on [0,T ].
On the other hand, since ϕε ∈C1(R) and 06 ϕ ′ε(s)6 1 for all s ∈ R we have that

d
dt
‖uε(·, t)‖L1 =

d
dt

ˆ
X

ϕε(u(x, t))dµ(x) =
ˆ

X
ϕ
′
ε(u(x, t))ut(x, t)dµ(x),

so that ˆ T

0
‖uε(·, t)‖L1ψ

′(t)dt =−
ˆ T

0

(ˆ
X

ϕ
′
ε(u(x, t))ut(x, t)dµ(x)

)
ψ(t)dt

and thus, as ε → 0,
ˆ T

0
‖uε(·, t)‖L1ψ

′(t)dt→−
ˆ T

0

(ˆ
X
I{u(·,t)>0}(x)ut(x, t)dµ(x)

)
ψ(t)dt. (2.2)

Here we have used that ϕ ′ε(s)→ I(0,+∞)(s) and the dominated convergence theorem twice, once on X
for each t ∈ [0,T ] and once on [0,T ]. Finally, (2.1) and (2.2) imply that

ˆ T

0
‖u+(·, t)‖L1ψ

′(t)dt =−
ˆ T

0

(ˆ
X
I{u(·,t)>0}(x)ut(x, t)dµ(x)

)
ψ(t)dt

and the assertion follows. �
Let us recall that u ∈BT is a supersolution of (1.1) if it satisfies{

ut(x, t)> Lu(x, t), in X× (0,T ),
u(x,0)> f (x), in X ,

where

Lu(x, t) =
ˆ

X
J(x,y)[u(y, t)−u(x, t)]dµ(y).

We define subsolutions in a similar way, with 6 instead of >.

LEMMA 2.2 If u ∈BT is a supersolution of (1.1), then

d
dt
‖u−(·, t)‖L1 6 0.

Analogously, if u is a subsolution, we obtain d
dt ‖u

+(·, t)‖L1 6 0.
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Proof. Since u is a supersolution of (1.1), Lemma 2.1 (see Remark 2.1) yields

d
dt
‖u−(·, t)‖L1 = −

ˆ
X

ut(x, t)I{u(·,t)<0}(x)dµ(x)

6
ˆ

X
−Lu(x, t)I{u(·,t)<0}(x)dµ(x).

By the definition of L,

d
dt
‖u−(·, t)‖L1 6

ˆ
{x:u(x,t)<0}

(ˆ
X

J(x,y)[−u(y, t)+u(x, t)]dµ(y)
)

dµ(x)

=

ˆ
{x:u(x,t)<0}

ˆ
{y:u(y,t)<0}

J(x,y)[−u(y, t)]dµ(y)dµ(x)

+

ˆ
{x:u(x,t)<0}

ˆ
{y:u(y,t)>0}

J(x,y)[−u(y, t)]dµ(y)dµ(x)

+

ˆ
{x:u(x,t)<0}

ˆ
{y:u(y,t)<0}

J(x,y)u(x, t)dµ(y)dµ(x)

+

ˆ
{x:u(x,t)<0}

ˆ
{y:u(y,t)>0}

J(x,y)u(x, t)dµ(y)dµ(x)

6
ˆ
{x:u(x,t)<0}

ˆ
{y:u(y,t)<0}

J(x,y)[−u(y, t)]dµ(y)dµ(x)

+

ˆ
{x:u(x,t)<0}

ˆ
{y:u(y,t)<0}

J(x,y)u(x, t)dµ(y)dµ(x).

Since J is symmetric the last terms cancel out and we obtain d
dt ‖u

−(·, t)‖L1 6 0. �

COROLLARY 2.1 (Comparison principle) If u∈BT is a supersolution of (1.1) and f > 0, then u(·, t)> 0
for every t.

Proof. From Lemma 2.2, the non-negative function g(t) := ‖u−(·, t)‖L1 satisfies g′(t)6 0 and g(0) = 0,
because u(x,0)> 0 implies u−(·,0) = 0. Then g(t) = 0 for every t, and therefore u(x, t)> 0 for almost
every x, for every t. �

We shall use Lemma 2.2 and Corollary 2.1 to prove the following result concerning the stability of
problem (1.1).

PROPOSITION 2.2 (Stability) Let f ,g ∈ L1(X ,µ) and let u and v denote the solutions of problem (1.1)
with initial conditions f and g, respectively. Then

|||u− v|||1 = max
06t6T

‖u(·, t)− v(·, t)‖L1 = ‖ f −g‖L1 . (2.3)

Moreover, if f ,g ∈ L∞(X ,µ),

|||u− v|||
∞
= max

06t6T
‖u(·, t)− v(·, t)‖L∞ = ‖ f −g‖L∞ . (2.4)

Proof. In order to prove (2.3), let e = u− v and observe that

‖e(·, t)‖L1 = ‖e+(·, t)‖L1 +‖e−(·, t)‖L1 .
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Since et(x, t) = Le(x, t), e is a subsolution and a supersolution to (1.1), so that Lemma 2.2 yields

d
dt
‖e(·, t)‖L1 =

d
dt
‖e+(·, t)‖L1 +

d
dt
‖e−(·, t)‖L1 6 0.

Therefore ‖e(·, t)‖L1 6 ‖e(·,0)‖L1 = ‖ f −g‖L1 and (2.3) follows, because the maximum is achieved in
t = 0.

To prove (2.4) let `= ‖ f −g‖L∞ . Then w = u− v+ ` satisfies wt = Lw and w(0, t)> 0, so that from
Corollary 2.1 we have w(x, t)> 0 for almost every x and every t. Similarly, if we define w = `− (u−v)
we obtain w(x, t)> 0. Then

−`6 u(x, t)− v(x, t)6 `,

and (2.4) is proved. �

REMARK 2.2 Notice that as a consequence of the above proposition we have that if u ∈ BT is the
solution of (1.1) with f ∈ L∞(X ,µ), then u(·, t)∈ L∞(X ,µ) for each t ∈ [0,T ]. Moreover, |||u|||

∞
= ‖ f‖L∞ .

Finally we shall study the asymptotic behavior of the solutions. Throughout the rest of this section,
we shall assume:

• (X ,d) is connected,

• J(x,x)> 0 for every x and J(x,y) is continuous in x for each y.

We shall first consider the corresponding stationary problem:

Lu(x) =
ˆ

X
J(x,y)[u(y)−u(x)]dµ(y) = 0, x ∈ X . (2.5)

LEMMA 2.3 Every solution in L1(X ,µ) of the stationary problem is constant in X .

Proof. We shall first prove that if u ∈ L1(X ,µ) is a solution of (2.5), then u is a continuous function.
Indeed, for almost every x ∈ X we have that

u(x) =
ˆ

X

J(x,y)
I(x)

u(y)dµ(y),

where I(x) :=
´

X J(x,y)dµ(y) > 0 due to (J2). Since J is continuous and X is compact, there exists
I0 > 0 such that I(x)> I0 for all x∈ X . Then the function J̃(·,y) = J(.,y)

I(.) is continuous and thus uniformly
continuous for each y, which immediately implies that u is continuous.

Let M = max{u(x) : x ∈ X}, and consider the set

M = {x ∈ X : u(x) = M}.

Then the set M is nonempty and closed. Since the only subsets of a connected space X which are both
open and closed are X and the empty set, the result is proved if we show that M is also open. Fix x0 ∈
M . Since J(x0,x0)> 0 and J(x0, ·) is continuous, there exists r0 > 0 such that B(x0,r0)⊆ suppJ(x0, ·).
Assume that B(x0,r0)* M , so that there exists z ∈ B(x0,r0) with u(z)< M. Hence u(y)< M for each
y in some ball B centered in z and contained in suppJ(x0, ·). Then

M = u(x0) =

ˆ
X\B

J̃(x0,y)u(y)dµ(y)+
ˆ

B
J̃(x0,y)u(y)dµ(y)

< M
ˆ

X
J̃(x0,y)dµ(y) = M,
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which is absurd. Hence M is open, so that u(x) = M for every x ∈ X . �

PROPOSITION 2.3 (Asymptotic behavior) If u ∈BT is the solution of (1.1) for f ∈ L2(X ,µ), then there
exists β > 0 such that ∥∥∥∥u(·, t)−

 
X

f dµ

∥∥∥∥
L2
6 e−β t

∥∥∥∥ f −
 

X
f dµ

∥∥∥∥
L2
,

where
ffl

X f dµ := 1
µ(X)

´
X f dµ denotes the average value of f .

The proof of this proposition is analogous to the one in Andreu-Vaillo et al. (2010) but we decided
to include it here for the sake of completeness.
Proof. From the linearity of the problem, we can assume

´
X f dµ = 0. Proposition 2.1 implies that

also
´

X udµ = 0 for all t > 0. From the results of Rodrı́guez-Bernal & Sastre-Gómez (2014), since
f ∈ L2(X ,µ) we have that u(·, t) ∈ L2(X ,µ) for each t. Being u a solution of problem (1.1), we have
that

1
2

d
dt
‖u(·, t)‖2

L2 = 〈ut ,u〉= 〈Lu,u〉= 〈Lu,u〉
‖u(·, t)‖2

L2

‖u(·, t)‖2
L2 6−β ‖u(·, t)‖2

L2 ,

where 〈·, ·〉 denotes the usual inner product in L2(X ,µ), and

β := inf
v∈L2

0

−〈Lv,v〉
‖v‖2

L2

= inf
v∈L2

0,‖v‖L2=1
〈−Lv,v〉 , (2.6)

with L2
0 = {v ∈ L2(X ,µ) :

´
X vdµ = 0}. Hence, if we denote

H(t) =
1
2
‖u(·, t)‖2

L2 ,

we have proved that H ′(t)6−2βH(t), and using Gronwall’s inequality we obtain

H(t)6 e−2β tH(0).

Therefore, the assertion will be proved if we show that β > 0. Notice that

β = inf
v∈L2

0

1
2

´
X

´
X J(x,y)[v(y)− v(x)]2dµ(y)dµ(x)

‖v‖2
L2

,

hence β > 0. To prove that β is strictly positive, consider the operator−L : L2
0→ L2

0, and notice that it is
self-adjoint, so that β belongs to its spectrum σ(−L) (Brezis, 1983). If β = 0, we have that 0 ∈ σ(−L),
then −L is not invertible. But notice that

−Lv(x) = Av(x)−Kv(x) = [A(I−A−1K)]v(x),

with
Av(x) = v(x)

ˆ
X

J(x,y)dµ(y), and Kv(x) =
ˆ

X
J(x,y)v(y)dµ(y),

so that A is invertible and K is compact (Rodrı́guez-Bernal & Sastre-Gómez, 2014, Prop. 3.6). Then
I−A−1K is not invertible, and Fredholm’s alternative yields the existence of a nontrivial u∈ L2

0 such that
(I−A−1K)u = 0, or equivalently, Lu = 0. From Lemma 2.3 u must be constant, and thus

´
X udµ 6= 0,

which is a contradiction. �
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COROLLARY 2.2 If u ∈BT is the solution of (1.1) for a given f ∈ L1(X ,µ), then

lim
t→∞

∥∥∥∥u(·, t)−
 

X
f dµ

∥∥∥∥
L1

= 0.

Proof. Let f ∈ L1(X), and as before, assume without loss of generality, that
´

X f dµ = 0. Given ε > 0,
let g ∈ L2(X) be such that

´
X gdµ = 0 and ‖ f − g‖L1 6 ε/2. Let v be the solution of (1.1) with initial

datum g, so that Proposition 2.3 yields

‖v(·, t)‖L2 6 e−β t‖g‖L2

for some β > 0. Then, by Proposition 2.2 and Hölder inequality

‖u(·, t)‖L1 6 ‖u(·, t)− v(·, t)‖L1 +‖v(·, t)‖L1

6 ‖ f −g‖L1 +µ(X)1/2‖v(·, t)‖L2

6 ε/2+µ(X)1/2e−β t‖g‖L2 .

Choosing t∗ > 0 such that µ(X)1/2e−β t∗‖g‖L2 = ε/2 we have that

‖u(·, t)‖L1 6 ε,

for all t > t∗ and the claim follows. �

REMARK 2.3 The assumption of X being connected is used only in the proof of Lemma 2.3 and can be
weakened. Assuming X to be R-connected as in Rodrı́guez-Bernal & Sastre-Gómez (2014) is sufficient
for the assertion. A weaker assumption, stated in Lemma 2.2 of Gilboa & Osher (2007) also implies
the assertion of Lemma 2.3. It reads as follows: given two points x,y ∈ X there exists a finite sequence
x1,x2, . . . ,xk ∈ X such that J(x,x1)J(x1,x2) . . .J(xk−1,xk)J(xk,y) > 0. We kept the stronger assumption
of X being connected to simplify the presentation.

3. Error estimation for the space discretization

From now on we shall assume:

(J3) There exists a constant λ > 0 and r ∈ (0,1] such that

|J(x,y)− J(x,z)|6 λd(y,z)r, ∀x,y,z ∈ X . (3.1)

Notice that this condition implies condition (J2) stated in page 5.
In order to state our main result, fix a decomposition {X1, . . . ,XK} of X and a set of representative

points {x1, . . . ,xk}. From now on

δ := max{diam(Xk) : k = 1, . . . ,K}

is called the size of the decomposition. Let J̄ be the kernel defined on X ×X which is constant on each
Xi×Xk, taking the value of J in the representative pair (xi,xk), i.e.

J̄(x,y) := J(xi,xk), if x ∈ Xi and y ∈ Xk.

Finally, given a discrete initial condition fff = [ f1, . . . , fK ]∈RK let U be the extended solution associated
to fff and let F be the extension of fff (see (1.6)). The main error estimate reads as follows:
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THEOREM 3.1 Let u be the solution of (1.1) for a given f ∈ Lp(X ,µ), for p = 1 or p = ∞. Then

|||u−U |||p 6 4λ µ(X)T‖ f‖Lpδ
r +‖ f −F‖Lp ,

where λ and r denote the Lipschitz constants of J from (3.1).

To prove this theorem we need the following lemmas. We first show that the function U also solves
problem (1.1) with kernel J̄, and initial datum F .

LEMMA 3.1 The function U is the unique solution in BT of the problemUt(x, t) =
ˆ

X
J̄(x,y)[U(y, t)−U(x, t)]dµ(y), x ∈ X , t ∈ (0,T ),

U(x,0) = F(x), x ∈ X .

(3.2)

Proof. Notice first that U ∈C([0,T ];C(Xk))∩C∞((0,T );C(Xk)) for every k, so that U ∈BT . In order
to see that U solves (3.2), fix x ∈ X and t ∈ (0,T ). Then there exists a unique i such that x ∈ Xi, so that

ˆ
X

J̄(x,y)[U(y, t)−U(x, t)]dµ(y) =
K

∑
k=1

ˆ
Xk

J̄(x,y)[U(y, t)−U(x, t)]dµ(y)

=
K

∑
k=1

J(xi,xk)[uk(t)−ui(t)]µ(Xk)

=
d
dt

ui(t) =Ut(x, t),

and U(x,0) = ui(0) = F(x). Since J̄ satisfies (J1) and (J2) (see page 5), problem (3.2) has a unique
solution and the assertion follows. �

REMARK 3.1 Lemma 3.1 allows us to view the discrete solution U as a solution to problem (1.1) with
a different kernel. Therefore, Proposition 2.2 and Remark 2.2 allow us to conclude that

|||U |||1 = ‖F‖L1 , |||U |||
∞
= ‖F‖L∞ . (3.3)

The next lemma shows that

L̄u(x, t) :=
ˆ

X
J̄(x,y)[u(y, t)−u(x, t)]dµ(y), (3.4)

approximates Lu in terms of the regularity of J.

LEMMA 3.2 If u ∈ Lp(X ,µ) for p = 1 or p = ∞ then

‖Lu− L̄u‖Lp 6 4λ µ(X)‖u‖Lpδ
r.

Proof. Notice that if x ∈ Xi and y ∈ Xk, from the symmetry and the Lipschitz condition of J we have

|J(x,y)− J(xi,xk)|6 |J(x,y)− J(xi,y)|+ |J(xi,y)− J(xi,xk)|
6 λ (d(x,xi)

r +d(y,xk)
r)

6 2λδ
r.
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Therefore, for u ∈ L1(X ,µ) and x ∈ X we have

|Lu(x)− L̄u(x)|6
K

∑
k=1

ˆ
Xk

|J(x,y)− J̄(x,y)| |u(y)−u(x)|dµ(y)

6
K

∑
k=1

ˆ
Xk

|J(x,y)− J(xi,xk)| |u(y)−u(x)|dµ(y)

6 2λδ
r

K

∑
k=1

ˆ
Xk

|u(y)−u(x)|dµ(y)

6 2λδ
r
ˆ

X
|u(y)−u(x)| dµ(y). (3.5)

Thus

‖Lu− L̄u‖L1 =

ˆ
X
|Lu(x)− L̄u(x)| dµ(x)

6 2λδ
r
ˆ

X

ˆ
X
(|u(y)|+ |u(x)|) dµ(y)dµ(x)

= 4λδ
r
µ(X)‖u‖L1 .

Also, if u ∈ L∞(X ,µ),

‖Lu− L̄u‖L∞ 6 2λδ
r
ˆ

X
(|u(y)|+‖u‖L∞) dµ(y)6 4λδ

r
µ(X)‖u‖L∞ ,

and the lemma is proved. �
The following result compares the solutions of problems with the same initial condition, but with

different kernels J and J̄.

LEMMA 3.3 Let f ∈ Lp(X ,µ), for p = 1 or p = ∞. Let V be the unique solution in BT of (1.1) with
kernel J̄ instead of J. Then, if u is the solution of (1.1), we have that

|||u−V |||p 6 4λ µ(X)T‖ f‖Lpδ
r,

with λ and r as in Theorem 3.1.

Proof. Define w = u−V , and notice that w solves{
wt(x, t) = L̄w(x, t)+G(x, t), in X× (0,T ),
w(x,0) = 0, in X .

where G(x, t) = Lu(x, t)− L̄u(x, t).
Let us first consider the case u ∈BT . Let v be the unique solution in BT of{

vt(x, t) = L̄v(x, t)+ |G(x, t)|, in X× (0,T ),
v(x,0) = 0, in X .
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It is worth mentioning that the exact same arguments used by Actis (2014) to prove existence of solution
of the homogeneous problem (1.1) allow us to prove that this inhomogeneous problem has a unique
solution in BT . Then v−w satisfies{

(v−w)t(x, t)> L̄(v−w)(x, t), in X× (0,T ),
(v−w)(x,0) = 0, in X .

From Corollary 2.1 we have that v−w > 0. Analogously we obtain v+w > 0, so that |w| 6 v. Notice
also that from the symmetry of J we have that

´
X L̄v(x, t)dµ(x) = 0. Then, for each t we obtain

ˆ
X
|w(x, t)|dµ(x)6

ˆ
X

v(x, t)dµ(x)

=

ˆ
X

ˆ t

0
vt(x,s)dsdµ(x)

=

ˆ t

0

ˆ
X
|G(x,s)|dµ(x)ds

6 t |||G|||1
6 T 4λ µ(X) |||u|||1 δ

r,

where the last inequality stems from Lemma 3.2. Hence

|||u−V |||1 6 4λ µ(X)T |||u|||1 δ
r = 4λ µ(X)T‖ f‖L1δ

r,

due to Proposition 2.2.
Let us now consider the case f ∈ L∞(X ,µ). From Remark 2.2 we have that |||u|||

∞
= ‖ f‖L∞ < ∞.

Define v̄(x, t) = kδ rt−w(x, t), with k = 4λ µ(X) |||u|||
∞

. Notice that

v̄t(x, t) = kδ
r−wt(x, t) = kδ

r−G(x, t)− L̄w(x, t).

From Lemma 3.2, we have that kδ r−G(x, t)> 0. Then

v̄t(x, t)>−L̄w(x, t) = L̄v̄(x, t)− L̄(kδ
rt) = L̄v̄(x, t).

Besides v̄(x,0) = 0, so that Corollary 2.1 yields v̄(x, t)> 0, and thus w(x, t)6 kδ rt.
Analogously, if we define v(x, t) = kδ rt +w(x, t), we can prove that v(x, t) > 0, and then w(x, t) >

−kδ rt. Then for almost every x ∈ X and for every t we have

|u(x, t)−V (x, t)|6 kδ
rt 6 kT δ

r.

Therefore,
|||u−V |||

∞
6 4λ µ(X) |||u|||

∞
T δ

r,

and the assertion follows from (2.4). �
Proof of Theorem 3.1. From Lemma 3.1, U is the unique solution in BT of problem (3.2). If V is
defined as in Lemma 3.3, then

|||u−V |||1 6 4λT‖ f‖L1δ
r.

Besides, from Proposition 2.2 applied to J̄ and the initial conditions F and f we have

|||U−V |||1 6 ‖ f −F‖L1 .
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Hence
|||u−U |||1 6 |||u−V |||1 + |||V −U |||1 6 4λT‖ f‖L1δ

r +‖ f −F‖L1 .

The case f ∈ L∞(X ,µ) can be proved analogously. �

4. A sharper error estimation for initial datum in L2

In Lemma 3.3 we proved that the error obtained approximating the solution u of problem (1.1) by the
solution of the same problem but with a piecewise constant kernel J̄, can be made as small as desired at
any time provided the size of the decomposition of X is small enough. More precisely, if f ∈ L1(X ,µ)
and u and V denote the unique solutions in BT of (1.1) with kernels J and J̄ respectively, then for each
t > 0 we have

‖u(·, t)−V (·, t)‖L1 6 4λ t‖ f‖L1δ
r,

where δ is the size of the decomposition of X , and λ and r denote the Lipschitz constants of J from
(3.1). As we mentioned in Section 1, every bounded metric space with finite Assouad dimension, and
in particular every bounded space of homogeneous type (such as manifolds and classical fractals), can
be decomposed in such a way that δ is as small as desired. However, this bound is pessimistic for large
values of t. Notice that, independently of the decomposition, for any t > 0 we have

‖u(·, t)−V (·, t)‖L1 6

∥∥∥∥u(·, t)−
 

X
f dµ

∥∥∥∥
L1
+

∥∥∥∥V (·, t)−
 

X
f dµ

∥∥∥∥
L1
,

which tends to zero when t→ ∞, due to Corollary 2.2. For the case f ∈ L2(X ,µ), from Proposition 2.3
and Hölder inequality we can obtain a more precise bound:

‖u(·, t)−V (·, t)‖L1 6 2µ(X)1/2
∥∥∥∥ f −

 
X

f dµ

∥∥∥∥
L2

e−β0t ,

with β0 = min{β , β̄}> 0, where β and β̄ are defined as in (2.6) with L and L̄ respectively. On the other
hand, using (3.5) and following the lines of the proof of Lemma 3.3, we get

‖u(·, t)−V (·, t)‖L1 6
ˆ t

0

ˆ
X
|Lu(x,s)− L̄u(x,s)|dµ(x)ds

6 2λδ
r
ˆ t

0

ˆ
X

(ˆ
X
|u(y,s)−u(x,s)|dµ(y)

)
dµ(x)ds

6 4µ(X)λδ
r
ˆ t

0

ˆ
X

∣∣∣∣u(y,s)− 
X

f dµ

∣∣∣∣ dµ(y)ds

= 4µ(X)λδ
r
ˆ t

0

∥∥∥∥u(·,s)−
 

X
f dµ

∥∥∥∥
L1

ds

6 4µ(X)3/2
λδ

r
ˆ t

0

∥∥∥∥u(·,s)−
 

X
f dµ

∥∥∥∥
L2

ds

6 4µ(X)3/2
λδ

r
∥∥∥∥ f −

 
X

f dµ

∥∥∥∥
L2

ˆ t

0
e−β s ds

6
4µ(X)3/2λ

∥∥ f −
ffl

X f dµ
∥∥

L2

β
δ

r.
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Then, for the case f ∈ L2(X ,µ) we obtain that there exists a constant C such that

‖u(·, t)−V (·, t)‖L1 6C min{e−β0t ,δ r},

so that
‖u(·, t)−U(·, t)‖L1 6C min{e−β0t ,δ r}+‖ f −F‖L1 .

Therefore, except for the initial error ‖ f −F‖L1 , for large times t the approximation is very good
even with a poor decomposition of X , due to the asymptotic behavior of the solutions. In order to have
good approximations for the initial phase of small time t, we require that the decomposition has a small
size δ .

5. Time discretization

In this section we will propose and study a time discretization for (3.2) which leads to a fully discretized
scheme to approximate (1.1). Recall that by the definition (3.4) of L̄, problem (3.2) can be written as{

Ut(x, t) = L̄U(x, t), x ∈ X , t ∈ (0,T ),
U(x,0) = F(x), x ∈ X ,

(5.1)

and it is equivalent to (1.4) if we write U(x, t) = ∑
K
i=1 ui(t)IXi(x) and F(x) = ∑

K
i=1 fi(t)IXi(x).

We first show that (5.1) is non-stiff and then establish error estimates for explicit methods from the
Runge-Kutta family.

We start observing that by Hölder inequality, if L̄ is the operator defined in (3.4), then

‖L̄u‖L1 6 2 max
x,y∈X

J(x,y)︸ ︷︷ ︸
C1

‖u‖L1 , ‖L̄u‖L∞ 6 2max
x∈X

ˆ
X

J(x,y)dµ(y)︸ ︷︷ ︸
C∞

‖u‖L∞ . (5.2)

Notice that the constants C1, C∞ do not depend on the decomposition {Xk}K
k=1 of the space X , but only

on the kernel J(·, ·). Even though C1, C∞ can be large for some specific kernels, they are of moderate
size for the most common ones (Andreu-Vaillo et al., 2010), and most importantly, they do not grow
when the space discretization gets finer. We thus infer that the system of ODE (5.1) is not stiff and can
be approximated using explicit methods such as those from the Runge-Kutta family.

In order to obtain precise bounds we now observe the behavior of the time derivatives of U . Us-
ing (5.2), the fact that ∂ kU/∂ tk = L̄kU , and (3.3) we have that, if p = 1 or p = ∞,∥∥∥∥ ∂ k

∂ tk U(·, t)
∥∥∥∥

Lp
6Ck

p‖F‖Lp , k = 1,2, . . . , t > 0. (5.3)

We now study in more detail the structure of the operator L̄ by making use of the concept of log-
arithmic norm applied to the matrix A from (1.3). Given a vector norm, the logarithmic norm (Hairer
et al., 1993, Def. 10.4, page 61) of a square matrix A is defined as

η(A) = lim
h→0+

‖I +hA‖−1
h

,

where ‖ · ‖ is the norm induced by the vector norm in the space of matrices.
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We consider the following norms in RK :

‖v‖1 =
K

∑
i=1

µ(Xi)|vi|, ‖v‖∞ = max
16i6K

|vi|.

If V denotes the extension of v given by V (x) = ∑
K
i=1 viIXk(x), then

‖v‖p = ‖V‖Lp , p = 1,∞. (5.4)

As is done in Hairer et al. (1993, Theorem I.10.5) it is easy to see that the logarithmic norm ηp
associated to the vector norms ‖ · ‖p satisfies:

η1(A) = max
16 j6K

(
a j j +∑

i6= j
|ai j|

µ(Xi)

µ(X j)

)
, η∞(A) = max

16i6K

(
aii +∑

j 6=i
|ai j|

)
.

LEMMA 5.1 (Logarithmic norm of A) If we consider the matrix A from (1.3), then

ηp(A) = 0, p = 1,∞. (5.5)

Proof. Notice that for each j = 1,2, . . . ,K, the definition (1.3) yields

a j j +∑
i 6= j
|ai j|

µ(Xi)

µ(X j)
=−

K

∑
k 6= j

J(x j,xk)µ(Xk)+∑
i 6= j

J(xi,x j)µ(X j)
µ(Xi)

µ(X j)
= 0

due to the symmetry of J(·, ·). Then η1(A) = 0.
Now observe that definition (1.3) leads to

aii +∑
j 6=i
|ai j|=−

K

∑
j 6=i

J(xi,x j)µ(X j)+
K

∑
j 6=i

J(xi,x j)µ(X j) = 0,

which implies that η∞(A) = 0. �
We are now in position to estimate the error of the time discretization by explicit Runge-Kutta

methods.

THEOREM 5.1 Let ∆ t > 0 denote the step-size and let Ūn, n = 0,1,2, . . . ,dT/∆ te denote the approxi-
mations of U(·, tn), the solution of (5.1) at time tn = n∆ t, obtained by a Runge-Kutta method of order k
with step-size ∆ t. Then, for p = 1, or p = ∞,

‖U(·, tn)−Ūn‖Lp 6CRK
k Ck+1

p ‖F‖Lp T ∆ tk, n = 0,1,2, . . . ,dT/∆ te,

where CRK
k depends on the Runge-Kutta method being used, but is independent of ∆ t and the particular

decomposition {Xi}K
i=1 of X , and

C1 = 2 max
x,y∈X

J(x,y), C∞ = 2max
x∈X

ˆ
X

J(x,y)dµ(y).
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Proof. Let uuun = (un
1,u

n
2, . . . ,u

n
K), n = 1,2, . . . ,dT/∆ te denote the approximations of uuu(tn), the solution

of (1.4) at time tn, obtained by the Runge-Kutta method under consideration. Then Ūn = ∑
K
i=1 un

i IXi and
by (Hairer et al., 1993, Theorem II.3.4, page 160), we have that, for p = 1,∞,

‖uuu(tn)−uuun‖p 6CRK
k max

[0,T ]

∥∥∥∥dk+1uuu
dtk+1

∥∥∥∥
p

T ∆ tk, n = 0,1,2, . . . ,dT/∆ te.

The identity of norms (5.4) yields ‖uuu(tn)− uuun‖p = ‖U(tn)− Ūn‖Lp and together with (5.3) implies∥∥∥ dk+1uuu
dtk+1

∥∥∥
p
6Ck+1

p ‖F‖Lp . The assertion thus follows. �

Combining Theorems 3.1 and 5.1 we arrive at the second main result of this article, which is the
error estimation for the solution of the fully discrete problem.

THEOREM 5.2 Let ∆ t > 0 denote the step-size and let Ūn, n = 0,1,2, . . . ,dT/∆ te denote the approxi-
mations of U(·, tn), the solution of (5.1) at time tn = n∆ t, obtained by a Runge-Kutta method of order k
with step-size ∆ t. Then, for p = 1, or p = ∞,

‖u(·, tn)−Ūn‖Lp 6 ‖ f−F‖Lp +4λ µ(X)T‖ f‖Lpδ
r+CRK

k Ck+1
p ‖F‖Lp T ∆ tk, n= 0,1,2, . . . ,dT/∆ te,

where λ , r and δ are as in Theorem 3.1, and Cp, CRK
k are as in Theorem 5.1.

6. Examples

The aim of this section is to give examples of explicit spaces of homogeneous type (X ,d,µ) where
Theorem 5.2 can be applied in order to obtain numerical approximations of the solution of problem (1.1).
As we already mentioned, every bounded space of homogeneous type can be decomposed in the required
form due to the construction provided by Christ (1990). Nevertheless, in the case of the classical fractals
it is more suitable to work with another decomposition of the space that exploit their self-similarity
property. We consider the usual approximation induced by the associated iterated function system (IFS);
see Hutchinson (1981) or Falconer (1997).

Given a metric space (Y,d) we shall consider a finite set Φ = {φi : Y → Y, i = 1,2, . . . ,H} of con-
tractive similitudes with the same contraction rate α . This means that each φi satisfies

d(φi(x),φi(y)) = αd(x,y)

for every x,y ∈ Y and some 0 < α < 1. Also we shall assume that the IFS Φ satisfies the open set
condition, which means that there exists a non-empty open set U ⊂ Y such that

H⋃
i=1

φi(U)⊆U,

and φi(U)∩ φ j(U) = /0 if i 6= j. For n ∈ N, let In = {1,2, . . . ,H}n be the set of “words” of length n.
Given iii = (i1, i2, . . . , in) ∈ In, we denote with φφφ

n
iii the composition φin ◦φin−1 ◦ · · · ◦φi2 ◦φi1 . Then for any

subset E of X we write φφφ
n
iii (E) =

(
φin ◦φin−1 ◦ · · · ◦φi2 ◦φi1

)
(E).

It is well known that if E is a compact set and Xn =
⋃

iii∈In φφφ
n
iii (E), then the sequence of sets {Xn}n

converges is the sense of the Hausdorff distance to a non-empty compact set X , which is called the
attractor of the system Φ since it is the unique satisfying

X =
H⋃

i=1

φi(X).
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It is also called the fractal induced by the IFS Φ , and moreover, if E satisfies φi(E)⊆ E for every i, then
X =

⋂
∞
n=1 Xn.

There exists also a Borel probability measure µ supported on the attractor X . This measure is called
invariant or self-affine since is the unique measure satisfying

µ(A) =
1
H

H

∑
i=1

µ(φ−1
i (A))

for every Borel set A. Moreover, the results in Mosco (1997) show that (X ,d,µ) is an Ahlfors regular
space of dimension s =− logα H.

In what follows we will present a couple of simulations for different fractals.

Among other aspects, these numerical approximations allow us to visualize the lack of regularizing
effect of the nonlocal diffusion. We can see that, even though the solution tries to become continuous,
the jump from the initial condition is present at all times.

6.1 Sierpinski gasket

Let X be the Sierpinski Gasket immersed in R2, equipped with the usual distance d and the normalized
s-dimensional Hausdorff measure µ , with s = log3/ log2. This fractal X is induced by the following
IFS Φ = {φ1,φ2,φ3} given by Falconer (1997):

φ1(x) =
1
2

x, φ2(x) =
1
2

x+
(

1/2
0

)
, φ3(x) =

1
2

x+
(

1/4√
3/4

)
.

Given a natural number n, we define

Φn = {φ : φ = φi1 ◦φi2 ◦ · · · ◦φin : i j ∈ {1,2,3}},

and number the functions of Φn as φ n
k , k ∈ I3n = {1,2, . . . ,3n}. On the one hand, X =

⋂
∞
n=1

⋃3n

k=1 φ n
k (S),

with S the triangle of vertices (0,0), (1,0), (1/2,
√

3/2). On the other hand, for a fixed n we define
Xk = φ n

k (X), and it turns out that

X =
3n⋃

k=1

Xk.

The invariant measure satisfies that µ(Xk)= 1/3n, and except for a set of µ-measure zero, this sets Xk are
pairwise disjoint, so that {Xk}k∈I3n is an appropriate decomposition of X . In order to apply Theorem 3.1
we only need to identify a point in each one of these components. We choose the bottom left vertex of
each Xk, i.e., xk = φ n

k (0,0), k ∈ I3n .

We consider equation (1.1) with J(x,y) = 100e−100|x−y|2 and f (x) = I{x1<x2}(x). The solutions at
time at t = 0,0.2,0.5,1,2,4 for n = 7 are shown in Figure 1. The time discretization was done with the
fourth order Runge-Kutta scheme using ∆ t = 0.05.
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FIG. 1. Nonlocal diffusion on the Sierpinski gasket. Solution with J(x,y) = 100e−100|x−y|2 and f (x) = I{x1<x2}(x). Snapshot of
solution, from left to right and top to bottom, at t = 0,0.2,0.5,1,2,4. The space X is decomposed into 37 components Xk . Each
set Xk = φk(X) was drawn as φk(S) with S the triangle of vertices (0,0), (1,0), (1/2,

√
3/2). The time discretization was done

with the fourth order Runge-Kutta scheme using ∆ t = 0.05. The lack of regularizing effect of the non-local diffusion is apparent.
Even though the solution tries to become continuous, the jump from the initial condition is present at all times.
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6.2 Sierpinski carpet

In this subsection we consider the Sierpinski carpet, which is induced by IFS Φ = {φ1,φ2, . . . ,φ8} given
by

φ1(x) =
1
3

x, φ2(x) =
1
3

x+
(

1/3
0

)
, φ3(x) =

1
3

x+
(

2/3
0

)
,

φ4(x) =
1
3

x+
(

0
1/3

)
, φ5(x) =

1
3

x+
(

2/3
1/3

)
,

φ6(x) =
1
3

x+
(

0
2/3

)
, φ7(x) =

1
3

x+
(

1/3
2/3

)
, φ8(x) =

1
3

x+
(

2/3
2/3

)
.

As before, given a natural number n, we define

Φn = {φ : φ = φi1 ◦φi2 ◦ · · · ◦φin : i j ∈ {1,2, . . . ,8}},

and number the functions of Φn as φ n
k , k ∈ I8n = {1,2, . . . ,8n}. On the one hand, X =

⋂
∞
n=1

⋃8n

k=1 φ n
k (S),

with S = [0,1]2 the unit square. On the other hand, for a fixed n, X =
⋃8n

k=1 Xk if Xk = φ n
k (X). Also, the

invariant measure satisfies that µ(Xk) = 1/8n, and except for a set of µ-measure zero, this sets Xk are
pairwise disjoint. In order to apply Theorem 3.1 we choose as a representative of each component Xk
the bottom left vertex, i.e., xk = φ n

k (0,0), k ∈ I8n .

FIG. 2. Nonlocal diffusion on the Sierpinski carpet. Solution with J(x,y) = 100e−100|x−y|2 and f (x) = I{x2>x1/2}(x). Snapshot
of solution, from left to right and top to bottom, at t = 0,0.5,1,2,4,8. The space X is decomposed into 84 components Xk . Each
set Xk = φk(X) was drawn as φk(S) with S the unit square. The time discretization was done with the fourth order Runge-Kutta
scheme using ∆ t = 0.05.
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We consider equation (1.1) with J(x,y) = 100e−100|x−y|2 and f (x) = I{x2>x1/2}(x). The solutions at
time at t = 0,0.2,0.5,1,2,4 for n = 4 are shown in Figure 2. The time discretization was done with the
fourth order Runge-Kutta scheme using ∆ t = 0.05.

The code was implemented in MATLAB and the graphics were produced with PARAVIEW.

7. Conclusions

We have presented a numerical method to approximate the solution of an evolutionary nonlocal diffusion
problem. The theory is valid in a general setting of metric measure spaces, which include fractals,
manifolds and domains of Rn as particular cases. We proved error estimates in L∞([0,T ];Lp(X ,µ)) for
p = 1,∞ whenever the initial datum f ∈ Lp(X ,µ). If the initial datum belongs to L2(X ,µ) the estimate
for the error in L∞([0,T ];L1(X)) is improved and made independent of T .

Besides, we have studied some qualitative properties of the discrete and exact solutions, obtaining
stability estimates, proving comparison principles and determining the asymptotic behavior as t → ∞.
This was done in a unified framework after noticing that the discrete solution is also the exact solution
of a nonlocal diffusion problem, with piecewise constant kernel and initial datum.

We have implemented the numerical method in MATLAB and presented at the end some simulations
on the Sierpinski gasket and the Sierpinski carpet, with an exponential kernel. These illustrate on the
behavior of the solutions of the nonlocal diffusion problem on fractals, and sets the basis for the study
of other differential equations on fractals.

The MATLAB code and some animations can be found at
http://imal.santafe-conicet.gov.ar/pmorin/Papers/42/MATLAB

One main disadvantage of these nonlocal diffusion problems is that the resulting matrices are fully
populated and not sparse. This makes it difficult to work with very fine space discretizations, even
though the resulting ODE are not stiff and can be solved with explicit time discretizations. However,
we believe that for some specific fractals and kernels J(·, ·), a matrix-free implementation is possible.
We did not dwell on this matter in this article, but rather on the proposal of a first numerical method for
non-local diffusion problems on spaces of homogeneous type, and the proof of error estimates.
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MACÍAS, R. A. & SEGOVIA, C. (1979) Lipschitz functions on spaces of homogeneous type. Adv. in Math., 33,

257–270.
MOSCO, U. (1997) Variational fractals. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25, 683–712 (1998). Dedicated

to Ennio De Giorgi.
MOSCO, U. (2013) Analysis and numerics of some fractal boundary value problems. Analysis and numerics of

partial differential equations. Springer INdAM Ser., vol. 4. Springer, Milan, pp. 237–255.
OWEN, J. & STRICHARTZ, R. S. (2012) Boundary value problems for harmonic functions on a domain in the

Sierpinski gasket. Indiana Univ. Math. J., 61, 319–335.
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