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ABSTRACT
We give sufficient conditions on variable exponent functions p :
R
n → [1,∞) for which the higher-order Riesz transforms, associ-

ated with the Ornstein–Uhlenbeck semigroup, are bounded on
Lp(·)(Rn, dγ ), where γ denotes the Gaussian measure.
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1. Introduction

Let L be the differential operator given by

L = − 1
2�+ x · ∇ ,

where� and ∇ denote the Laplacian and the gradient, respectively. When the particles of
a Brownian motion are attached to an elastic force, the process obtained is the well-known
Ornstein–Uhlenbeck process, whose infinitesimal generator is the operatorL given above,
and the acting force is described by the term x · ∇ (see [1]). L also is important from the
point of view of hypoellipticity (see [2]).

The eigenfunctions of L, that is, those functions u that solve the eigenvalue problem

Lu = λu

u(x) = O(|x|k), for some k ≥ 0 when |x| → ∞,

are the Hermite polynomials of degree |α| = α1 + · · · + αn, where α = (α1, . . . ,αn) ∈
N
n
0, and the corresponding eigenvalues have the form λ = |α|. These polynomials are
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defined by

Hα(x1, . . . , xn) = Hα1(x1) · · ·Hαn(xn),
where Hαi are the one-dimensional Hermite polynomials given by Rodrigues’ formulas

H0(x) = 1, Hn(x) = (−1)nex
2 dn

dxn
e−x2 , n ≥ 1.

It is well-known that themultidimensional polynomials are orthogonal on L2(Rn, dγ )with
respect to the Gaussianmeasure dγ = e−|x|2 dx and they can be normalized in order to get
an orthonormal basis of L2(Rn, dγ ). Such measure makes the operator L self-adjoint, so
it is the natural measure for studying properties for a large class of operators related with
the Ornstein–Uhlenbeck process.

As in the case of the Laplacian, there is a concept of semigroup associated withL, called
the Ornstein–Uhlenbeck semigroup, which solves the diffusion equation

∂u
∂t

= −Lu
u(x, 0) = f (x),

with initial data f ∈ L2(Rn, dγ ). That is, the solution u(·, t) is determined by the function-
als {e−tL}t>0, given by

u(x, t) = e−tLf (x) = π−n/2
∫

Rn

e−|y−e−tx|2/(1−e−2t)

(1 − e−2t)n/2
f (y) dy.

There exist several operators that arise in connection with this semigroup. A classical
example are the Gaussian Riesz transforms, which have been widely studied in differ-
ent contexts. This article is devoted to the study of the behaviour of those transforms
on variable Lebesgue spaces with respect to the Gaussian measure dγ = e−|x|2 dx. Before
introducing these spaces, let us recall the definition of the Gaussian Riesz transforms. It is
well-known that, for the Laplacian case, L = −�, the eigenvalue problem given above
has as solutions all the numbers λ ≥ 0, corresponding to the eigenvectors eiy·x, being
λ = −|y|2. Thus, the jth Riesz transform associated with this problem is defined by means
of the eigenfunctions in the following way

Rj(eiy·.)(x) = − 1
|y|
∂eiy·x

∂xj
= −i

yj
|y|e

iy·x.

The classical definition is often given through the Fourier transform, that is, if f̂ denotes
the Fourier transform of f, then

Rjf (x) =
∫

Rn
Rj(eiy·.)(x)f̂ (y) dy = −i

∫
Rn

yj
|y|e

iy·xf̂ (y) dy, f ∈ S(Rn).

On the other hand, when L is the Ornstein–Uhlenbeck operator, the generalization of the
Riesz transforms is obtained by using the Hermite polynomials, since they are now the
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eigenfunctions of L. Given 1 ≤ j ≤ n and Hα an n-dimensional Hermite polynomial, the
jth Gaussian Riesz transform of first-order verifies

Rj(Hα)(x) = − 1
|α|

∂

∂xj
Hα(x).

Higher-order Riesz transforms are also known. Following the same ideas, for a givenmulti-
index α, and each multi-index β , the n-dimensional Riesz transforms of order α verify

Rα(Hβ)(x) = (−1)|α|

|β||α|/2D
αHβ(x) = (−1)|α|

|β||α|/2
∂ |α|

∂xα11 · · · ∂xαnn
Hβ(x).

In the classical context, it is well-known that the Riesz transforms Rj and the higher-
order Riesz transforms are bounded on Lp(Rn, dx) for every 1 < p < ∞ (see, for instance,
[3]). Since they are singular integrals that can be controlled, in some sense, by the
Hardy–Littlewood maximal operator, it is also known that they are bounded on variable
Lebesgue spaces under certain conditions on the exponents p(x) (see [4]). For the Gaus-
sian Riesz transforms, Rj, the study of their continuity properties on Lp(Rn, dγ ), as we
said before, has a long history and it began with Muckenhoupt’s work, [5], for the one-
dimensional case and the first-order Riesz transform. Later, Meyer [6] and Gundy [7] gave
probabilistic proofs for any order and dimension. From the analytical point of view, and
using several and different techniques, we can cite, chronologically, the works of Pisier [8],
Urbina [9], Gutiérrez [10], Gutiérrez et al. [11], Forzani et al. [12], and Pérez [13]. Other
works that include this boundedness are [14,15]. The variable exponents case is an open
problem and it is the main aim of this article.

2. Preliminaries

Given a measure μ over Rn, we shall denote by P(Rn,μ) the set of exponents, that is, the
set of μ-measurable and bounded functions p : Rn → [1,∞). When μ is the Lebesgue
measure, we write P(Rn). We will write

p− = ess inf
x∈Rn

p(x), p+ = ess sup
x∈Rn

p(x).

Associated with each exponent p ∈ P(Rn,μ), we have another exponent p′ ∈ P(Rn,μ),
which is the generalization to the variable context of theHölder’s conjugate exponent given
by

1
p(x)

+ 1
p′(x)

= 1

almost everywhere.
Given p ∈ P(Rn,μ), we say that a μ-measurable function f belongs to Lp(·)(Rn, dμ) if

the modular

	p(·),μ
(
f
λ

)
:=
∫

Rn

( |f (x)|
λ

)p(x)
dμ(x) < ∞
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for some λ > 0. In this case, we define the Luxemburg norm on Lp(·)(Rn, dμ) by

‖f ‖p(·),μ = inf
{
λ > 0 : 	p(·),μ

(
f
λ

)
≤ 1

}
,

which is the usual norm ‖f ‖p,μ = (
∫

Rn |f (x)|p dμ(x))1/p when p(x) ≡ p. It is also well-
known that (Lp(·)(Rn, dμ), ‖ · ‖p(·),μ) is a Banach space.

Whenμ is the classical Lebesguemeasure, we simplywrite Lp(·)(Rn),	p(·) for themodu-
lar and ‖ · ‖p(·) for the norm. Themeasurewe shall be dealingwith is theGaussianmeasure,
which is a non-doubling, upper Ahlfors n-regular measure. From now on, μ = γ .

A very useful andwell-known inequality on these spaces is the generalization ofHölder’s
inequality, that is, given a measure μ, for every pair of functions f ∈ Lp(·)(Rn, dμ) and
g ∈ Lp′(·)(Rn, dμ), ∫

Rn
|f (x)g(x)| dμ(x) ≤ 2‖f ‖p(·),μ‖g‖p′(·),μ. (2.1)

Another important property is the normconjugate formula: for anyμ-measurable function
f, the following inequalities

1
2
‖f ‖p(·),μ ≤ sup

‖g‖p′(·),μ≤1

∫
Rn

|f (x)g(x)| dμ(x) ≤ 2‖f ‖p(·),μ (2.2)

hold (see [16, Corollary 3.2.14]). For more information about Lp(·) spaces, see [4,16] or
[17].

The exponents we will consider are not arbitrary, but we may allow them to have some
continuity properties. The following conditions on the exponent arise related with the
boundedness of the Hardy–Littlewood maximal operator on Lp(·)(Rn) (see, e.g. [18] or
[19]):

(1) We will say that p ∈ LH0(R
n) if there exists Clog(p) > 0 such that, for any pair x, y ∈

Rn with 0 < |x − y| < 1
2 ,

|p(x)− p(y)| ≤ Clog(p)
− log(|x − y|) . (2.3)

(2) We will say that p ∈ LH∞(Rn) if there exist constants C∞ > 0 and p∞ ≥ 1 for which

|p(x)− p∞| ≤ C∞
log(e + |x|) , ∀x ∈ R

n. (2.4)

Conditions (2.3) and (2.4) are usually called the local log-Hölder condition and the
decay log-Hölder condition, respectively.When p satisfies both conditions, we shall denote
it by p ∈ LH(Rn). It is well-known that for 1 < p− ≤ p+ < ∞, LH(Rn) is sufficient for the
Hardy–Littlewoodmaximal operatorMHL to be bounded on variable Lebesgue spaces (see
[18]). However, it is known that while these are the sharpest possible pointwise conditions,
they are not necessary (see Examples 4.1 and 4.43 in [4]). The authors in [16] gave a neces-
sary and sufficient condition for the Lp(·)-boundedness ofMHL, but it is not easy to work
with it, from a practical point of view.
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The LH(Rn) class is also sufficient for the boundedness on Lp(·) spaces of singular inte-
grals of Calderón–Zygmund type (see [4, Theorem 5.39]). We include this result and the
corresponding one aboutMHL in the following theorem.

Theorem 2.1 ([4,18]): Let p ∈ LH(Rn) with 1 < p− ≤ p+ < ∞. Then, the Hardy–
Littlewoodmaximal operator and singular integrals of Calderón–Zygmund type are bounded
on Lp(·)(Rn).

An easy consequence of condition (2.4) is given in the following lemma, which says
that sometimes we can replace a variable exponent p for the constant exponent p∞, and
viceversa, adding an integrable error (see, for instance, [4, Lemma 3.26]).

Lemma 2.2 ([4]): Let p ∈ LH∞(Rn)with 1 < p− ≤ p+ < ∞. Then, there exists a constant
C, depending on n and C∞, such that for any measurable set E and any function G with
0 ≤ G(y) ≤ 1 for y ∈ E,∫

E
G(y)p(y) dy ≤ C

∫
E
G(y)p∞ dy +

∫
E
(e + |y|)−np−

dy, (2.5)∫
E
G(y)p∞ dy ≤ C

∫
E
G(y)p(y) dy +

∫
E
(e + |y|)−np−

dy. (2.6)

We will introduce now a new class of exponents that is more restrictive than the above
LH∞(Rn), but is related with the underlying measure γ .

Definition 2.3: Given p ∈ P(Rn, γ ), we will say that p ∈ P∞
γ (R

n) if there exist constants
Cγ > 0 and p∞ ≥ 1 such that

|p(x)− p∞| ≤ Cγ
|x|2 , ∀ x ∈ R

n \ {(0, . . . , 0)}. (2.7)

Easy examples of this kind of exponents are those of the form

p(x) = p∞ + A
(e + |x|)q ,

for any p∞ ≥ 1, A ≥ 0 and q ≥ 2.

Remark 2.4: Clearly, if p ∈ P∞
γ (R

n), then p ∈ LH∞(Rn) by virtue of the inequality
log(e + |x|) ≤ C|x|2. Moreover, if p− > 1, also p′ ∈ P∞

γ (R
n) with (p′)∞ = (p∞)′ < ∞,

which will be simply denoted by p′∞. An easy consequence is that p∞ = lim|x|→∞ p(x),
which gives p∞ > 1 whenever p− > 1.

A very useful characterization of the classP∞
γ (R

n)will be used. The proof is immediate
so we shall omit it.

Lemma 2.5: If 1 < p− ≤ p+ < ∞, the next two statements are equivalent.

(i) p ∈ P∞
γ (R

n);
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(ii) There exists p∞ > 1 such that

C−1
1 ≤ e−|x|2(p(x)/p∞−1) ≤ C1 and C−1

2 ≤ e−|x|2(p′(x)/p′∞−1) ≤ C2, (2.8)

for every x ∈ Rn, where C1 = eCγ /p∞ and C2 = eCγ (p
−)′/p∞ .

The following definition was first introduced by Berezhnoı̆ in [20] for ideal Banach
spaces (see also [21]), defined for families of disjoint balls or cubes. In the context of vari-
able exponent spaces was considered in [16], allowing the family to have bounded overlap.
If B is a family of balls (or cubes) of Rn, we say that it is N-finite if

∑
B∈B χB(x) ≤ N for

every x ∈ Rn; that is, no more than N balls (resp. cubes) can intersect at the same time.
In what follows, we will use this notation: given two functions f and g, by the symbols �
and � we will mean that there exists a positive constant c such that f ≤ cg and cf ≥ g,
respectively. When both inequalities hold, that is, f � g � f , we will write it as f ≈ g.

Definition 2.6: Given an exponent p ∈ P(Rn), we say that p ∈ G if, for every N-finite
family of balls (or cubes) B,∑

B∈B
‖fχB‖p(·)‖gχB‖p′(·) � ‖f ‖p(·)‖g‖p′(·)

for every pair of functions f ∈ Lp(·)(Rn) and g ∈ Lp′(·)(Rn). The constant may depend on
N.

For certain kind of exponents, we can guarantee the validity of the G-condition.

Lemma 2.7 ([16]): If p ∈ LH(Rn), then p ∈ G.

By virtue of Remark 2.4, the following corollary holds.

Corollary 2.8: If p ∈ P∞
γ (R

n) ∩ LH0(R
n), then p ∈ G.

3. Main results

The first-order Riesz transforms introduced before can be written as a principal value

Rjf (x) = p.v.
∫

Rn
kj(x, y)f (y) dy,

where the kernels kj are defined by

kj(x, y) = cn
∫ 1

0

(
1 − r2

− log r

)1/2 yj − rxj
(1 − r2)(n+3)/2 e

−|y−rx|2/(1−r2) dr, 1 ≤ j ≤ n.

In the case of the higher-order Riesz transforms, they can also be expressed as a principal
value. For a given multi-index α = (α1, . . . ,αn) ∈ N

n
0 \ {(0, . . . , 0)}, on functions having



INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS 409

mean value zero with respect to the Gaussian measure, they are defined by

Rαf (x) = p.v.
∫

Rn
kα(x, y)f (y) dy,

with

kα(x, y) = cn
∫ 1

0
r|α|−1

(− log r
1 − r2

)|α|/2−1
Hα

(
y − rx

(1 − r2)1/2

)
e−|y−rx|2/(1−r2)

(1 − r2)n/2+1 dr.

More generally, one can consider linear operators TF with kernels of the form

KF(x, y) = cn
∫ 1

0
rm−1

(− log r
1 − r2

)m/2−1
F
(

y − rx
(1 − r2)1/2

)
e−|y−rx|2/(1−r2)

(1 − r2)n/2+1 dr, m ∈ N,

being F a function inC1(Rn) (differentiable with continuous first-order derivatives) that is
orthogonal to γ , that is,

∫
Rn F(z)e−|z|2 dz = 0. These type of operatorswere first introduced

by Urbina [9] (see also [13]).
It is easy to see that, when F(z) = Hα(z) and m = |α|, the operator TF is the n-

dimensional Gaussian Riesz transform of order α.
Our main interest is, then, to study the behaviour of this more general singular integral

TF on variable Lebesgue spaces with respect to the Gaussian measure, which will give us
the boundedness ofRα as a particular case.

In order to do so, we will allow the function F to have some exponential growth (see
[9,13]). That is, let us assume that F satisfies that for every ε > 0 there exists a positive
constant Cε such that

(i) |F(z)| ≤ Cεeε|z|
2
,

(ii) |∇F(z)| ≤ Cεeε|z|
2
.

Let F1(z) = F(−z), ∀z ∈ Rn. Then, F1 has the same properties as F.
Let us define, then, the operator

TFf (x) = p.v.
∫

Rn
KF(x, y) f (y) dy, (3.1)

where the kernel considered above can be written in the form

KF(x, y) =
∫ 1

0
ϕm(r)F

(
y − rx√
1 − r2

)
e−|y−rx|2/(1−r2)

(1 − r2)n/2+1 dr

=
∫ 1

0
ψm(

√
1 − t)F1

(√
1 − tx − y√

t

)
e−u(t)

tn/2+1 dt

being ϕm(r) = rm−1(− log r/(1 − r2))(m−2)/2, ψm(r) = ϕm(r)/r, for any m ∈ N, and
where we have used the change of variables t = 1 − r2, and

u(t) = |√1 − tx − y|2
t

.
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We shall analyse the ‘local’ and ‘global’ parts of TF separately, for which we may define
the hyperbolic balls

B(x) := {y ∈ R
n : |x − y| ≤ n(1 ∧ 1/|x|)}, x ∈ R

n.

3.1. The local part

Let us define

K1(x, y) =
∫ 1

0
F1
(√

1 − tx − y√
t

)
e−u(t)

tn/2+1 dt.

From Pérez [13, p.503] we know that

KF(x, y) = ψm(1)K1(x, y)+ H(x, y)

with ψm(1) = ψm(1+) = 2−(m−2)/2 and

|H(x, y)| ≤
∫ 1

0

e−δ(|x−y|2/t)

tn/2
dt√
1 − t

:= H̃(x − y). (3.2)

Set

K2(x) =
∫ ∞

0
F1
( x
t1/2

)
e−|x|2/t dt

tn/2+1 = �(x′)
|x|n , (3.3)

with x′ = x/|x|,�(x′) = 2
∫∞
0 F1(ρx′)e−ρ2ρn−1 dρ and, clearly,∫

Sn−1
�(x′) dσ(x′) = 2

∫
Rn

F1(z)e−|z|2 dz = 0.

Again, according to Pérez [13], over the local region, that is, for y ∈ B(x), we have

|K1(x, y)− K2(x − y)| ≤ C
1 + |x|1/2

|x − y|n−1/2 := K3(x, y). (3.4)

Thus, by considering

Tf (x) = p.v.
∫

Rn
K2(x − y)f (y) dy, (3.5)

we get

|TF(fχB(x))(x)| � |Sf (x)| +
∫
B(x)

K3(x, y)|f (y)| dy + (H̃ ∗ |fχB(x)|)(x), (3.6)

where Sf (x) = T(fχB(x))(x).
In order to estimate these terms, we will describe a very useful tool that gives us a

decomposition of the space into a family of balls which has bounded overlap but, more
importantly, on each of these balls, all the values of the Gaussian function are equivalent.
This technique leads us to use the boundedness properties ofT on variable Lebesgue spaces
but with respect to the Lebesgue measure. This decomposition was used in [13], and the
proof follows similar arguments to those given in [22], so we shall omit it.
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Lemma 3.1: We define the sequence xk = √
k for k ∈ N. By means of this strictly increasing

sequence of positive real numbers, we can construct a family of disjoint balls Bkj , for k ∈ N

and 1 ≤ j ≤ Nk that satisfies the following properties:

(i) if B̃kj = 2Bkj , the collection F = {B(0, 1), {B̃kj }j,k} is a covering of Rn;
(ii) F has bounded overlap;
(iii) the centre ykj of B

k
j verifies |ykj | = (xk+1 + xk)/2;

(iv) diam(Bkj ) = xk+1 − xk = 1/(2|ykj |);
(v) For every ball B ∈ F , and every pair x, y ∈ B, γ (x) ≈ γ (y)with constants independent

of B;
(vi) There exists an uniform positive constant Cn such that, if x ∈ B ∈ F , then B(x) ⊂

CnB := B̂. Moreover, the collection F̂ = {B̂}B∈F also verifies the properties (ii) and (v).

Lemma 3.2: Let F and F̂ be given by Lemma 3.1. If TF is as in (3.1), K3 and H̃ are the
kernels introduced in (3.4) and (3.2), and T,S are defined as in (3.5) and (3.6), respectively,
then

|Sf (x)| ≤
∑
B∈F

(|T(fχB̂)(x)| + MHL(fχB̂)(x))χB(x), (3.7)

∫
B(x)

K3(x, y)|f (y)| dy �
∑
B∈F

MHL(fχB̂)(x)χB(x) (3.8)

and ∫
B(x)

H̃(x − y)|f (y)| dy �
∑
B∈F

MHL(fχB̂)(x)χB(x), (3.9)

beingMHL the classical non-centred Hardy–Littlewoodmaximal function with respect to the
Lebesgue measure. Consequently,

|TF(fχB(x))(x)| �
∑
B∈F

(|T(fχB̂)(x)| + MHL(fχB̂)(x))χB(x). (3.10)

Proof: We shall first prove (3.7). We take x ∈ B and we denote by rB the radius of B and by
Rx = n(1 ∧ 1/|x|) the radius of B(x). Since the operator is not positive, we must split the
principal value into two parts, one over B̂ and the other over B̂ \ B(x). Then,

|Sf (x)| =
∣∣∣∣p.v. ∫

B̂
K2(y − x)f (y)dy − p.v.

∫
B̂\B(x)

K2(y − x)f (y) dy
∣∣∣∣

≤
∣∣∣∣p.v. ∫

Rn
K2(y − x)f (y)χB̂(y) dy

∣∣∣∣
+
∫
Rx≤|x−y|<(Cn+1)rB

|K2(y − x)||f (y)|χB̂(y) dy

� |T(fχB̂)(x)| +
∫
rB≤|y−x|<(Cn+1)rB

1
|y − x|n |f (y)|χB̂(y) dy

� |T(fχB̂)(x)| + MHL(fχB̂)(x),
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where we have used that K2 is a Calderón–Zygmund kernel (see (3.3)) and that Rx ≥ rB
for every x ∈ B. By adding the terms over all B ∈ F , we get the desired inequality (3.7).

Now, let us show (3.8). For each x ∈ B ∈ F , since B(x) ⊂ B̂, we obtain the following
estimates∫

|x−y|<Rx
K3(x, y)|f (y)| dy = (1 + |x|1/2)

∞∑
k=0

∫
2−(k+1)Rx≤|x−y|<2−kRx

|f (y)|χB̂(y)
|x − y|n−1/2 dy

≤ 2nMHL(fχB̂)(x)(1 + |x|1/2)R1/2x

∞∑
k=0

2−(k+1)/2

� MHL(fχB̂)(x)χB(x).

Finally, we shall prove (3.9). Consider the function φ(z) = Cδe−δ|z|
2
, where Cδ is a

constant such that
∫

Rn φ(z) dz = 1. Given t>0, we rescale this function as φ√
t(x) =

t−n/2φ(z/
√
t), and, since 0 ≤ φ ∈ L1(Rn), {φ√

t}t>0 is an approximate identity. Then, since∫ 1
0 (1/

√
1 − t) dt < ∞,∫
B(x)

H̃(x − y)|f (y)| dy =
∫
B(x)

(∫ 1

0
φ√

t(x − y)
1√
1 − t

dt
)

|f (y)| dy

≤
∫
B(x)

(
sup
t>0

φ√
t(x − y)

)
|f (y)|

(∫ 1

0

1√
1 − t

dt
)

dy

≤ C
∫
B(x)

(
sup
t>0

φ√
t(x − y)

)
|f (y)| dy.

In a similar way as we did before, we can show that, if x ∈ B ∈ F , then∫
B(x)

H̃(x − y)|f (y)| dy ≤
∫

Rn

(
sup
t>0

φ√
t(x − y)

)
|f (y)|χB̂(y) dy,

which yields∫
B(x)

H̃(x − y)|f (y)| dy ≤
∑
B∈F

χB(x) sup
t>0

|(φ√
t ∗ |fχB̂|)(x)| ≤

∑
B∈F

χB(x)MHL(fχB̂)(x),

where we have used a classical result due to E. M. Stein (see [3]), since φ is non-increasing.
Inequality (3.10) now follows from (3.6), together with (3.7)–(3.9). �

The main result of this section holds for a large class of singular integrals, thanks to
the above decomposition (3.7), and it gives us the boundedness of the local part of TF on
variable Lebesgue spaces with respect to the Gaussian measure.

Theorem 3.3: Let p ∈ LH0(R
n) ∩ P∞

γ (R
n) with 1 < p− ≤ p+ < ∞. Then, there exists a

positive constant C such that

‖TF(fχB(·))‖p(·),γ ≤ C‖f ‖p(·),γ
for every f ∈ Lp(·)(Rn, dγ ).
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Proof: Let f ∈ Lp(·)(Rn, dγ ). We will use the norm on the dual space Lp′(·)(Rn, dγ ):

‖TF(fχB(·))‖p(·),γ ≤ 2 sup
‖g‖p′(·),γ≤1

∫
Rn

|TF(fχB(x))(x)‖g(x)| dγ (x).

We split the integral in the following way, according to the pointwise inequality (3.10)∫
Rn

|TF(fχB(x))(x)||g(x)| dγ (x) �
∑
B∈F

∫
B

∣∣T (fχB̂) (x)∣∣ |g(x)|e−|x|2 dx

+
∑
B∈F

∫
B
MHL(fχB̂)(x)|g(x)|e−|x|2 dx

≈

∑
B∈F

e−|cB|2
∫
B
|T(fχB̂)(x)||g(x)| dx

+
∑
B∈F

e−|cB|2
∫
B
MHL(fχB̂)(x)|g(x)| dx,

where cB is the centre of B and B̂ and we have used the fact that over each ball of the family
F , the values of γ are all equivalent. Now, we apply Hölder’s inequality with p(·) and p′(·)
with respect of the Lebesgue measure in each integral, the boundedness of T andMHL on
Lp(·)(Rn), which hold from the properties on p, Remark 2.4 and Theorem 2.1, obtaining∫

Rn
|TF(fχB(x))(x)||g(x)| dγ (x) �

∑
B∈F

e−|cB|2‖T(fχB̂)χB‖p(·)‖gχB‖p′(·)

+
∑
B∈F

e−|cB|2‖MHL(fχB̂)χB‖p(·)‖gχB‖p′(·)

�
∑
B∈F

e−|cB|2‖fχB̂‖p(·)‖gχB‖p′(·)

=
∑
B∈F

e−|cB|2/p∞‖fχB̂‖p(·)e−|cB|2/p′∞‖gχB̂‖p′(·). (3.11)

Since p ∈ P∞
γ (R

n) and p− > 1, p′ ∈ P∞
γ (R

n). Thus, from Lemma 2.5, for every x ∈ Rn,

e−|x|2(p(x)/p∞−1) ≤ C1 and e−|x|2(p′(x)/p′∞−1) ≤ C2. (3.12)

Moreover, since the values of γ are all equivalent on each ball B̂, we have∫
B̂

(
|f (y)|

e|cB|2/p∞‖fχB̂‖p(·),γ

)p(y)

dy �
∫
B̂

( |f (y)|
‖fχB̂‖p(·),γ

)p(y)
e−|y|2(p(y)/p∞−1) dγ (y)

�
∫
B̂

( |f (y)|
‖fχB̂‖p(·),γ

)p(y)
dγ (y) � 1,

which yields

e−|cB|2/p∞‖fχB̂‖p(·) � ‖fχB̂‖p(·),γ .
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Similarly, by applying the second inequality in (3.12), we get

e−|cB|2/p′∞‖gχB̂‖p′(·) � ‖gχB̂‖p′(·),γ .

Replacing both estimates in (3.11), we obtain∫
Rn

|TF(fχB(·))(x)‖g(x)| dγ (x) �
∑
B∈F

‖fχB̂‖p(·),γ ‖gχB̂‖p′(·),γ

=
∑
B∈F

‖fχ B̂e
−|·|2/p(·)‖p(·)‖gχ B̂e

−|·|2/p′(·)‖p′(·).

Since the family of balls F̂ = {B̂}B∈F has bounded overlap, from Corollary 2.8 applied
to f (·)e−|·|2/p(·) ∈ Lp(·)(Rn) and g(·)e−|·|2/p′(·) ∈ Lp′(·)(Rn), it follows that∫

Rn
|TF(fχB(·))(x)‖g(x)| dγ (x) � ‖f ‖p(·),γ ‖g‖p′(·),γ .

Taking the supremum over all functions g with ‖g‖p′(·),γ ≤ 1, the thesis holds. �

3.2. The global part

In order to study the global part of TF , we will follow the spirit of [13]. To that end, we
might recall the following estimates obtained in that article.

Lemma 3.4 ([13]): Let us consider the kernel KF(x, y) in the global part, that is, for y ∈
Bc(x). If a = |x|2 + |y|2 and b = 2〈x, y〉, we have the following inequalities

(i) If b ≤ 0, for each 0 < ε < 1, there exists Cε > 0 such that

|KF(x, y)| ≤ Cεe−(1−ε)|y|
2
;

(ii) If b > 0, for each 0 < ε < 1/n there exists Cε > 0 such that

|KF(x, y)| ≤ Cε
e−(1−ε)u0

tn/20

,

where t0 = 2
√
a2 − b2/(a + √

a2 − b2) and u0 = 1
2 (|y|2 − |x|2 + |x + y‖x − y|).

Theorem 3.5: Let p ∈ LH0(R
n) ∩ P∞

γ (R
n) with 1 < p− ≤ p+ < ∞. Then, there exists a

positive constant C such that

‖TF(fχBc(·))‖p(·),γ ≤ C‖f ‖p(·),γ
for every f ∈ Lp(·)(Rn, dγ ).

Proof: We shall consider two cases, based on Lemma 3.4, for which we will denote by
E = {(x, y) : b(x, y) > 0}.
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If b ≤ 0, we take 0 < ε < 1/(p′)+ = 1/(p−)′ < 1 in Lemma 3.4(i) and write 1 − ε =
ε̃ + 1/p− so ε̃ > 0. Then, for any f ∈ Lp(·)(Rn, dγ )with ‖f ‖p(·),γ = 1, by applyingHolder’s
inequality, we have

I =
∫

Rn

(∫
Bc(x)∩Ec

|KF(x, y)||f (y)| dy
)p(x)

dγ (x)

�
∫

Rn

(∫
Rn

e
−
(
ε̃+ 1

p−
)
|y|2 |f (y)| dy

)p(x)

dγ (x)

�
∫

Rn

(∫
Rn

e−|y|2 |f (y)|p−
dy
)p(x)/p− (∫

Rn
e−ε̃(p

−)′|y|2 dy
)p(x)/(p−)′

dγ (x)

�
∫

Rn

(∫
Rn

e−|y|2 |f (y)|p−
dy
)p(x)/p−

dγ (x).

Since ‖f ‖p(·),γ = 1, we know that
∫

Rn |f (y)|p(y) dγ (y) ≤ 1. Then,

∫
Rn

e−|y|2 |f (y)|p−
dy ≤

∫
|f |>1

|f (y)|p(y) dγ (y)+
∫

|f |≤1
1 dγ (y) ≤ 1 + Cn.

Hence,

I �
∫

Rn
(1 + Cn)

p+/p−
dγ (x) ≤ Cn,p,

which means that ‖TF(fχBc(·)∩Ec)‖p(·),γ ≤ Cn,p for every f ∈ Lp(·)(Rn, dγ ) with norm
‖f ‖p(·),γ = 1. By homogeneity, we get the same result for every f ∈ Lp(·)(Rn, dγ ).

Now, if b>0, from Lemma 3.4(ii), with 0 < ε < 1/n and for every f ∈ Lp(·)(Rn, dγ )
with ‖f ‖p(·),γ = 1, we obtain that

II =
∫

Rn

(∫
Bc(x)∩E

|KF(x, y)||f (y)| dy
)p(x)

dγ (x)

�
∫

Rn

(∫
Bc(x)∩E

e−(1−ε)u0

tn/20

|f (y)| dy
)p(x)

dγ (x)

=
∫

Rn

(∫
Bc(x)∩E

e−(1−ε)u0e|y|2/p(y)−|x|2/p(x)

tn/20

|f (y)|e−|y|2/p(y) dy

)p(x)

dx,

where t0 = 2
√
a2 − b2/(a + √

a2 − b2) and u0 = 1
2 (|y|2 − |x|2 + |x + y‖x − y|).

Since p ∈ P∞
γ (R

n), from Lemma 2.5 we have that e|y|2/p(y)−|x|2/p(x) ≈ e(|y|2−|x|2)/p∞ .
Notice that, on one hand, we have that ||y|2 − |x|2| ≤ |x + y||x − y|; on the other hand, for
b>0, |x + y||x − y| ≥ n whenever y ∈ Bc(x). Moreover, t0 ≈ |x − y||x + y|/(|x|2 + |y|2)
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(see [13, p.499]). Thus, since |x|2 + |y|2 = a < a + b = |x + y|2, we have that

t0 ≥ C
|x − y||x + y|
|x|2 + |y|2 ≥ C

n
|x + y|2 .

Thus, we can bound part of the integrand in the following way

e−(1−ε)u0

tn/20

e(|y|
2−|x|2/p∞) = e(|y|2−|x|2)(1/p∞−(1−ε)/2)

tn/20

e−((1−ε)/2)|x+y||x−y|

� |x + y|ne−α∞|x+y||x−y|

where the constant

α∞ := 1 − ε

2
−
∣∣∣∣ 1
p∞

− 1 − ε

2

∣∣∣∣
is positive if we choose ε < 1/p′∞. Thus, we take 0 < ε < min{1/n, 1/p′∞}. As we can
see, we have obtained a kernel P(x, y) := |x + y|ne−α∞|x+y||x−y| as in [13], and as it was
proved there, P(x, y) is integrable in each variable (since it is symmetric), with constant
independent of x and y.

So, we have

∫
Bc(x)∩E

e−(1−ε)u0e|y|2/p(y)−|x|2/p(x)

tn/20

|f (y)|e−|y|2/p(y) dy

≤ C
∫
Bc(x)

P(x, y)|f (y)|e−|y|2/p(y) dy.

Let us define Ax = {y : n/|x| < |y − x| < 1
2 } and Cx = Bc(x, 12 ), so that B

c(x) = Ax ∪ Cx.
Then, we will show that the above operator restricted to Ax and to Cx is bounded by con-
stants independent of x, in order to replace the variable exponent p(x) with a suitable
constant exponent related with p. Set

J1 =
∫
Ax

P(x, y)|f (y)|e−|y|2/p(y) dy, J2 =
∫
Cx

P(x, y)|f (y)|e−|y|2/p(y) dy.

In order to estimate J1, we shall notice first that |y| ≈ |x| whenever n/|x| < |x − y| ≤
1/2. Indeed, it is easy to see that

3
4 |x| ≤ |y| ≤ 5

4 |x|.

On the other hand, |x + y| ≤ |x| + |y| ≤ 5|x|, and from the parallelogram law, we have

3|x|2 ≤ 2|x|2 + 16
9 |y|2 ≤ 2(|x|2 + |y|2) ≤ |x + y|2 + 1

4 ≤ |x + y|2 + 2|x|2,
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so |x + y| ≥ |x|. Thus, |x + y| ≈ |x|. By applying this fact to J1, we obtain

J1 �
∫
n/|x|<|x−y|

|x|ne−α∞|x||x−y|f (y)e−|y|2/p(y) dy

=
∞∑
k=1

∫
kn/|x|<|x−y|≤(k+1)(n/|x|)

|x|ne−α∞|x||x−y|f (y)e−|y|2/p(y) dy

≤ C
∞∑
k=1

|x|n
(
(k + 1)

n
|x|
)n

e−α∞nkMHL(f (·)e−|·|2/p(·))(x)

= MHL(f (·)e−|·|2/p(·))(x)
∞∑
k=1

((k + 1)n)ne−α∞nk � MHL(f (·)e−|·|2/p(·))(x),

since α∞ > 0. The constant in the above inequality only depends on n and p. From the
hypotheses on the exponent p, we know that

‖MHL(f (·)e−|·|2/p(·))‖p(·) � ‖f (·)e−|·|2/p(·)‖p(·) = ‖f ‖p(·),γ = 1.

We shall now analyse J2 = ∫
|y−x|≥ 1

2
P(x, y)f (y)e−|y|2/p(y) dy. In this case, we can apply

Hölder’s inequality to obtain

J2 ≤ ‖P(x, ·)χCx‖p′(·)‖f e−|·|2/p(·)‖p(·) = ‖P(x, ·)χCx‖p′(·),

and we estimate the remaining norm. We shall see that the corresponding modular, that
is, 	p′(·)(P(x, ·)χCx), is smaller than a constant, independent of x, which implies that the
norm is also finite. Indeed,∫

Cx

P(x, y)p
′(y) dy ≤

∫
Rn

|x + y|np′(y)e−(α∞/2)|x+y|p′(y) dy

≤
∫

|x+y|≤1
|x + y|ne−(α∞/2)|x+y| dy

+
∫

|x+y|>1
|x + y|n(p′)+e−(α∞/2)|x+y| dy

=
∫

Rn
(|z|n + |z|n(p′)+)e−(α∞/2)|z| dz �

∫
Rn

e−(α∞/4)|z| dz ≤ Cn,p.

Thus, ‖P(x, ·)χCx‖p′(·) ≤ Cn,p.
Combining the estimates on Ax and Cx, we have proved that there exists a constant

D>0, independent of x, such that∫
Bc(x)

P(x, y)|f (y)|e−|y|2/p(y) dy ≤ D.
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We split the function g(y) = |f (y)|e−|y|2/p(y) = g1(y)+ g2(y), where g1 = gχ{g≥1}.
Then,

II �
∫

Rn

(
1
D

∫
Bc(x)

P(x, y)g1(y) dy
)p(x)

dx +
∫

Rn

(
1
D

∫
Bc(x)

P(x, y)g2(y) dy
)p(x)

dx

:= II1 + II2.

The exponent p(x) in II1 can be now replaced by p−. For II2, we will use Lemma 2.2 with
G(x) = (1/D)

∫
Bc(x) P(x, y)g2(y) dy. Hence, we get

II2 ≤
∫

Rn

(
1
D

∫
Bc(x)

P(x, y)g2(y) dy
)p∞

dx +
∫

Rn

1
(e + |x|)np− dx

and this last term is finite since p− > 1. We get, then, that

II �
∫

Rn

(∫
Bc(x)

P(x, y)g1(y) dy
)p−

dx +
∫

Rn

(∫
Bc(x)

P(x, y)g2(y) dy
)p∞

dx + C.

We will proceed to estimate the above integrals. In the first one, we apply Hölder’s inequal-
ity with p−, splitting P(x, y) = P(x, y)1/(p−)′P(x, y)1/p−

and recalling that P is symmetric
and integrable in each variable with constant independent of x and y, to get∫

Rn

(∫
Bc(x)

P(x, y)g1(y) dy
)p−

dx �
∫

Rn
g1(y)p

−
dy ≤

∫
Rn

g1(y)p(y) dy

�
∫

Rn
|f (y)|p(y)e−|y|2 dy ≤ 1,

since g1 ≥ 1 or g1 = 0, and ‖f ‖p(·),γ = 1.
Similarly, for the integral involving g2, with p∞ instead of p−, we obtain∫

Rn

(∫
Bc(x)

P(x, y)g2(y) dy
)p∞

dx �
∫

Rn
g2(y)p∞ dy.

Since 0 ≤ g2 ≤ 1, we apply again Lemma 2.2 to get∫
Rn

(∫
Bc(x)

P(x, y)g2(y) dy
)p∞

dx �
∫

Rn
g2(y)p(y) dy +

∫
Rn

1
(e + |y|)np− dy

≤
∫

Rn
|f (y)|p(y)e−|y|2 dy + C ≤ 1 + C.

Therefore, we have shown that for any function f ∈ Lp(·)(Rn, dγ ) with ‖f ‖p(·),γ = 1,∫
Rn

(∫
Bc(x)∩E

|KF(x, y)||f (y)| dy
)p(x)

dγ (x) ≤ C,

which yields ‖TF(fχBc(·)∩E)‖p(·),γ ≤ C and, from the homogeneity of the norm, the result
holds for every function f ∈ Lp(·)(Rn, dγ ). Combining both cases, b ≤ 0 and b>0, we get
the thesis. �
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Finally, we can deduce the boundedness result for the higher-order Gaussian Riesz
transforms, taking F(z) = Hα(z) andm = |α|.

Theorem 3.6: Let p ∈ LH0(R
n) ∩ P∞

γ (R
n) with 1 < p− ≤ p+ < ∞. Then, given any

multi-index α, there exists a positive constant C such that

‖Rαf ‖p(·),γ ≤ C‖f ‖p(·),γ
for every f ∈ Lp(·)(Rn, dγ ).
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