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1. Introduction

Let £ be the differential operator given by
L=—3A+x-V,

where A and V denote the Laplacian and the gradient, respectively. When the particles of
a Brownian motion are attached to an elastic force, the process obtained is the well-known
Ornstein-Uhlenbeck process, whose infinitesimal generator is the operator £ given above,
and the acting force is described by the term x - V (see [1]). £ also is important from the
point of view of hypoellipticity (see [2]).

The eigenfunctions of £, that is, those functions u that solve the eigenvalue problem

Lu=Au

u(x) = O(lek), for some k > 0 when |x| — oo,

are the Hermite polynomials of degree |o| = o1 + - - - + &y, where o = (ag,...,a,) €
o> and the corresponding eigenvalues have the form A = |«|. These polynomials are
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defined by
Hy(x1,...,x0) = Hy, (x1) - - 'Han(xn),
where Hy, are the one-dimensional Hermite polynomials given by Rodrigues’ formulas

dﬂ
Ho(x) =1, Hp(x) = (—D)"e* —e*, n>1.
dx”

It is well-known that the multidimensional polynomials are orthogonal on L?(R", dy ) with
respect to the Gaussian measure dy = e~ dxand they can be normalized in order to get
an orthonormal basis of L?(R", dy). Such measure makes the operator £ self-adjoint, so
it is the natural measure for studying properties for a large class of operators related with
the Ornstein-Uhlenbeck process.

As in the case of the Laplacian, there is a concept of semigroup associated with £, called
the Ornstein-Uhlenbeck semigroup, which solves the diffusion equation

% =—Lu
at
u(x,0) = f(x),

with initial data f € L2(R”", dy). That is, the solution u(-, t) is determined by the function-
als {e7**},~¢, given by

e—ly—e a2/ (1—e72)

" (1 _ e—Zt)n/Z

u(x, ) = e Lf(x) = JT_n/Z/ f(y) dy.

There exist several operators that arise in connection with this semigroup. A classical
example are the Gaussian Riesz transforms, which have been widely studied in differ-
ent contexts. This article is devoted to the study of the behaviour of those transforms
on variable Lebesgue spaces with respect to the Gaussian measure dy = e~ dx. Before
introducing these spaces, let us recall the definition of the Gaussian Riesz transforms. It is
well-known that, for the Laplacian case, £ = —A, the eigenvalue problem given above
has as solutions all the numbers A > 0, corresponding to the eigenvectors e*, being
A = —|y|?. Thus, the jth Riesz transform associated with this problem is defined by means
of the eigenfunctions in the following way

1)-X .
Ri(e7) () = — — 077 _ s,
I 9% vl

The classical definition is often given through the Fourier transform, that is, iff denotes
the Fourier transform of f, then

Rif (x) = /R ) Ri(e” ) (0)f () dy = —i /R ) ;—jleiy'xf(y) dy, feSR".

On the other hand, when £ is the Ornstein—Uhlenbeck operator, the generalization of the
Riesz transforms is obtained by using the Hermite polynomials, since they are now the
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eigenfunctions of £. Given 1 < j < nand H, an n-dimensional Hermite polynomial, the
jth Gaussian Riesz transform of first-order verifies

1 0
Rj(Hy)(x) = —mgHa(x)-
]

Higher-order Riesz transforms are also known. Following the same ideas, for a given multi-
index &, and each multi-index S, the n-dimensional Riesz transforms of order « verify

(—1)ll (—1)ll glal

Ra(Hﬂ)(x) = w—al/zDaHﬂ(x) = |13|‘a|/2 ax(lxl ]

Hg(x).
xflln B()

In the classical context, it is well-known that the Riesz transforms R; and the higher-
order Riesz transforms are bounded on L? (R", dx) for every 1 < p < oo (see, for instance,
[3]). Since they are singular integrals that can be controlled, in some sense, by the
Hardy-Littlewood maximal operator, it is also known that they are bounded on variable
Lebesgue spaces under certain conditions on the exponents p(x) (see [4]). For the Gaus-
sian Riesz transforms, R, the study of their continuity properties on LP(R", dy), as we
said before, has a long history and it began with Muckenhoupt’s work, [5], for the one-
dimensional case and the first-order Riesz transform. Later, Meyer [6] and Gundy [7] gave
probabilistic proofs for any order and dimension. From the analytical point of view, and
using several and different techniques, we can cite, chronologically, the works of Pisier [8],
Urbina [9], Gutiérrez [10], Gutiérrez et al. [11], Forzani et al. [12], and Pérez [13]. Other
works that include this boundedness are [14,15]. The variable exponents case is an open
problem and it is the main aim of this article.

2. Preliminaries

Given a measure 1 over R", we shall denote by P(R", i) the set of exponents, that is, the
set of -measurable and bounded functions p : R” — [1,00). When w is the Lebesgue
measure, we write P (R"). We will write

* = ess sup p(x).

p~ =essinf p(x), p
xeR" xeRn

Associated with each exponent p € P(R”, 1), we have another exponent p’ € P(R", ),

which is the generalization to the variable context of the Holder’s conjugate exponent given

by
1 1

=1
@ P

almost everywhere.
Given p € P(R", ), we say that a u-measurable function f belongs to L? OR", du) if

the modular
p(x)
Op()u ({) = / ) <@> du(x) < oo
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for some A > 0. In this case, we define the Luxemburg norm on LPOMR", du) by

If lpype = inf {A > 0:0p()p (JX() < 1},

which is the usual norm ||f|l5, = (fgn [f(2)IP du(x))V/P when p(x) = p. It is also well-
known that (LZ®)(R", du), || - llp(-).,) is @ Banach space.

When p is the classical Lebesgue measure, we simply write L? O@®RM), Op() for the modu-
larand || - ||p(.) for the norm. The measure we shall be dealing with is the Gaussian measure,
which is a non-doubling, upper Ahlfors n-regular measure. From now on, u = y.

A very useful and well-known inequality on these spaces is the generalization of Holder’s
inequality, that is, given a measure u, for every pair of functions f € LP*)(R",du) and
g e POR", dp),

/Rn If (0)g) | dpe(x) < 201fllp(),pe Iy 10 (2.1)

Another important property is the norm conjugate formula: for any (-measurable function
£, the following inequalities

1
E”f||p(~),u < sup [f ()g (O dp(x) < 2[f lpey (2.2)
”g”p/(,))ﬂfl R"

hold (see [16, Corollary 3.2.14]). For more information about LPO) spaces, see [4,16] or
[17].

The exponents we will consider are not arbitrary, but we may allow them to have some
continuity properties. The following conditions on the exponent arise related with the
boundedness of the Hardy-Littlewood maximal operator on L") (R") (see, e.g. [18] or
(19]):

(1) We will say that p € LHo(R") if there exists Cjog(p) > 0 such that, for any pair x, y €
R"with 0 < [x — y| < %,
Clog(P)

_ 2.3
—log(|x — yI) 23)

lp(x) —p)| =
(2) We will say that p € LHyo (R") if there exist constants Co, > 0 and po > 1 for which

[p(x) = pool < Vx € R". (2.4)

Coo

log(e + [x)”

Conditions (2.3) and (2.4) are usually called the local log-Hélder condition and the
decay log-Holder condition, respectively. When p satisfies both conditions, we shall denote
itby p € LH(R"). It is well-known that for 1 < p~ < p™ < oo, LH(R") is sufficient for the
Hardy-Littlewood maximal operator My, to be bounded on variable Lebesgue spaces (see
[18]). However, it is known that while these are the sharpest possible pointwise conditions,
they are not necessary (see Examples 4.1 and 4.43 in [4]). The authors in [16] gave a neces-
sary and sufficient condition for the L") -boundedness of M, but it is not easy to work
with it, from a practical point of view.
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The LH(RR") class is also sufficient for the boundedness on LP*) spaces of singular inte-
grals of Calderon-Zygmund type (see [4, Theorem 5.39]). We include this result and the
corresponding one about My in the following theorem.

Theorem 2.1 ([4,18]): Let p € LH(R") with 1 <p~ <pt < oo. Then, the Hardy-
Littlewood maximal operator and singular integrals of Calderén-Zygmund type are bounded

on [PV (R™).

An easy consequence of condition (2.4) is given in the following lemma, which says
that sometimes we can replace a variable exponent p for the constant exponent po,, and
viceversa, adding an integrable error (see, for instance, [4, Lemma 3.26]).

Lemma 2.2 ([4]): Letp € LHoo(R") with1 < p~ < pt < o0. Then, there exists a constant
C, depending on n and Cwo, such that for any measurable set E and any function G with
0<G(y) <lfory€ekE,

/ G dy<cC / G(y)P> dy + / (e+ [y~ dy, (2.5)

E E E

/ Gy)P=dy < C / Gy)PY) dy + / (e+[yD™" dy. (2.6)
E E E

We will introduce now a new class of exponents that is more restrictive than the above
LHoo (R™), but is related with the underlying measure y.

Definition 2.3: Given p € P(R",y), we will say thatp € 77;’0 (R™) if there exist constants
C, > 0and py > 1 such that

C
p(x) — pool < =5, Yx e R"\{(0,...,0)}. (2.7)

x|’

Easy examples of this kind of exponents are those of the form

P(X) = Poo + —(e T |x|)q,

forany poo > 1,A > 0and g > 2.

Remark 2.4: Clearly, if p € P)°(R"), then p € LHoo(R") by virtue of the inequality
log(e + |x|) < C|x|?. Moreover, if p~ > 1, also p’ € Py (R™) with PNoo = (Poo)’ < 00,
which will be simply denoted by p . An easy consequence is that ps, = lim|y— o0 p(x),
which gives po, > 1 whenever p~ > 1.

A very useful characterization of the class 73;’0 (R") will be used. The proof is immediate
so we shall omit it.

Lemma 2.5: If1 < p~ < p*™ < o0, the next two statements are equivalent.

(i) pePP®RY;
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(ii) There exists poo > 1 such that
crl < e HPe@/Pe=D < ¢ and cl < e PP @/ < ¢, (2.8)
for every x € R", where C; = /P> and Cy = eCr(#7) /P,

The following definition was first introduced by Berezhnoi in [20] for ideal Banach
spaces (see also [21]), defined for families of disjoint balls or cubes. In the context of vari-
able exponent spaces was considered in [16], allowing the family to have bounded overlap.
If B is a family of balls (or cubes) of R”, we say that it is N-finite if ) _p_z xp(x) < N for
every x € R"; that is, no more than N balls (resp. cubes) can intersect at the same time.
In what follows, we will use this notation: given two functions f and g, by the symbols <

and = we will mean that there exists a positive constant ¢ such that f < ¢g and ¢f > g,
respectively. When both inequalities hold, that is, f < ¢ < f, we will writeitas f = g.

Definition 2.6: Given an exponent p € P(R"), we say that p € G if, for every N-finite
family of balls (or cubes) B,

D W xslpolgxsllye S Ifllpo lghyo
BeB

for every pair of functions f € LP*)(R") and g € LP') (R"). The constant may depend on
N.

For certain kind of exponents, we can guarantee the validity of the G-condition.
Lemma 2.7 ([16]): Ifp € LHR"), thenp € G.
By virtue of Remark 2.4, the following corollary holds.

Corollary 2.8: Ifp € P°(R") N LHo(R"), thenp € G.

3. Main results

The first-order Riesz transforms introduced before can be written as a principal value

Rif (x) = pv. /R s nf) dy

where the kernels k; are defined by

k YN e yeiaen) dr, 1<j<
j(X,)/) - C”/O —logr (1— r2)(n+3)/ze " =)j=n

In the case of the higher-order Riesz transforms, they can also be expressed as a principal
value. For a given multi-index o = (a1, ...,,) € N\ {(0,...,0)}, on functions having
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mean value zero with respect to the Gaussian measure, they are defined by

Ref(x) = p.v. /R ) ko (x, )f () dy,

with

1 1 lael/2—1 _ —ly—rx>/(1—r?)
ko (x,y) = Cﬂ/ re i2” Hy 2 2er 2 : s 4
0 1—7r (1—r)H/2 ) (1 —r2)yn/2+

More generally, one can consider linear operators T with kernels of the form

! —logr\™*! - ~ly—rx?/(1=1)
_ m—1 gr y—rx e
KF(x,y)—cnfO r (1—r2> F<(1—r2)1/2) 12y dr, meN,

being F a function in C! (R") (differentiable with continuous first-order derivatives) that is
orthogonal to y, that s, fR" F (z)e"z|2 dz = 0. These type of operators were first introduced
by Urbina [9] (see also [13]).

It is easy to see that, when F(z) = Hy(z) and m = ||, the operator T is the n-
dimensional Gaussian Riesz transform of order «.

Our main interest is, then, to study the behaviour of this more general singular integral
Tr on variable Lebesgue spaces with respect to the Gaussian measure, which will give us
the boundedness of R, as a particular case.

In order to do so, we will allow the function F to have some exponential growth (see
[9,13]). That is, let us assume that F satisfies that for every ¢ > 0 there exists a positive
constant C, such that

(i) |F(2)] < Ceel’,
(ii) |VE(z)| < Cee€l?.

Let F1(z) = F(—z), Yz € R". Then, F; has the same properties as F.
Let us define, then, the operator

Trf (x) = p.v. ./1‘@” Kr(x, ) f(y) dy, (3.1)

where the kernel considered above can be written in the form

dr

y — X ) e_‘y_rxlz/(l_rz)

1
KF(x,)/) :A me(r)F<m (1 _r2)n/2+1

! VI—tx—y\ e #®
:/(; Ym(V1 —1t)F; ( 7 > prypES] dt

being @, (r) = r™1(—logr/(1 — ) M=2/2 " () = @ (r) /1, for any m € N, and
where we have used the change of variables t = 1 — r2, and

V1 —tx—y?
t .

u(t) =
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We shall analyse the ‘local” and ‘global’ parts of Tr separately, for which we may define
the hyperbolic balls

B(x):={yeR":|x—y| <n(Q Al/lx])}, xeR"

3.1. Thelocal part

Let us define

! JT—tx—y\ e #®
Kl(x,y) = /(; F1 ( ﬁ ) ti’l/2+1 dt.

From Pérez [13, p.503] we know that
Ke(x,y) = ¥m(DK1(x,y) + H(x, y)
with ¥, (1) = ¥, (1) = 2= (m=2/2 apd

1e=d(x—y12/0 4y

H(x,y)| < = H(x — y). 3.2
eyl = [ S e = -y (2
Set
o0 /
_ X\ o 4t QGD
Kz (x) _/(; F <t1/2)e A T |y (3.3)

with ¥’ = x/|x|, Q(x') =2 fO°° Fi (,ox/)e_’oz,o”_1 dp and, clearly,

/ Q(x)do(x) =2 / Fi(z)e 1 dz = 0.
Sn—l Rn

Again, according to Pérez [13], over the local region, that is, for y € B(x), we have

KiGen) — Kol = C gy (3.4)
|Ki(x,y) — Ka(x — )| < |x—y|”—1/2'_ 3(%, ). .
Thus, by considering
If(x) = p.v. fR K= pf () dy, (3.5)
we get
I Te(f xB) ()] S 1Sf ()] + /B( )K3(x,y)[f(y)| dy + (H * |f xBw ) (%), (3.6)

where Sf (x) = T(f xp(x)) (%).

In order to estimate these terms, we will describe a very useful tool that gives us a
decomposition of the space into a family of balls which has bounded overlap but, more
importantly, on each of these balls, all the values of the Gaussian function are equivalent.
This technique leads us to use the boundedness properties of T on variable Lebesgue spaces
but with respect to the Lebesgue measure. This decomposition was used in [13], and the
proof follows similar arguments to those given in [22], so we shall omit it.
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Lemma 3.1: We define the sequence x. = ~/k for k € N. By means of this strictly increasing
sequence of positive real numbers, we can construct a family of disjoint balls B]l»‘, forkeN
and 1 < j < Ny that satisfies the following properties:

(i) zflgji‘ = ZB]]»‘, the collection F = {B(0, 1), {Igji-‘}j,k} is a covering of R";

(ii) F has bounded overlap;

(iii) the centre le< ofB]]-< verifies ij]-‘l = (Xk1 + x0)/2;

(iv) diam(Bf) = xx1 — xx = 1/ 2y} D);

(v) Foreveryball B € F,and every pairx,y € B, y (x) = y (y) with constants independent
of B;

(vi) There exists an uniform positive constant C, such that, if x € B € F, then B(x) C
C,nB := B. Moreover, the collection F = {B} BeF also verifies the properties (ii) and (v).

Lemma 3.2: Let F and F be given by Lemma 3.1. If Tg is as in (3.1), K3 and H are the
kernels introduced in (3.4) and (3.2), and T,S are defined as in (3.5) and (3.6), respectively,
then

ISF)| < D AT Ex) 0] + Mur(fxp) () xs (), (3.7)

BeF
/ Kxplfpldy S Z Mur(f x) (%) xB(x) (3.8)
Bx) BeF
and
/B( : Hx—pIfo)ldy S Z Mur(f xp) (x) xB(x), (3.9)

BeF

being Mpy the classical non-centred Hardy-Littlewood maximal function with respect to the
Lebesgue measure. Consequently,

| Tr(f xBe) ()| S Z(IT(fo;)(x)l + Mur(f xp) (%) x(x). (3.10)
BeF

Proof: We shall first prove (3.7). We take x € B and we denote by rp the radius of B and by
Ry = n(1 A 1/|x]) the radius of B(x). Since the operator is not positive, we must split the
principal value into two parts, one over B and the other over B \ B(x). Then,

1Sf (0| =

p.v. / Ky (y — x)f (n)dy —P-v-ﬁ K@y —x0f()dy
B B\B(x)

=

. /R Koy = 0f ) dy'

+/ [Ka(y —0lf W Ixz() dy
Ry=|x—y|<(Cy+Drp

<TG rp) @]+ f FOxa0) dy

rp<ly—x|<(Co+Dyrg [y — X"

ST xp) O] + Mur(fxp) (),
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where we have used that K is a Calderén-Zygmund kernel (see (3.3)) and that Ry > rp
for every x € B. By adding the terms over all B € F, we get the desired inequality (3.7).

Now, let us show (3.8). For each x € B € F, since B(x) C B, we obtain the following
estimates

/ Ks(xp)|f()|dy = (1+|x|1/2)2/ FMixz() d
[x—y| <Ry —o 2

12
(k+DR, <|x—y|<2-kR, % — yI" /

o0
< 2"MuL(fxp) ()1 + x| VH)RY? Y 27k FD/2
k=0

S Mur(fxp) () x(x).

Finally, we shall prove (3.9). Consider the function ¢(z) = Cge“”z‘z, where Cs is a
constant such that fR" ¢(z) dz = 1. Given t > 0, we rescale this function as ¢ i) =

t7"2¢(z/+/t),and, since 0 < ¢ € LL(R™), {¢ ﬁ}t>0 is an approximate identity. Then, since

J3(//T=Ddt < oo,

. ! 1
H(x — dy = — dt d
- (= »Idy /B - ( /0 UNACI Vi )lf(y)l y

Lo
- dt) d
= fo (o) von ([ )

< C/B( ) (sup ¢ si(x —y)) [f ()1 dy.

t>0

In a similar way as we did before, we can show that, if x € B € F, then

/ Hx—plf(yldy < / (Sup ¢ ilx — y)> FOxz() dy,
B(x) R" \1>0

which yields

fB ( )H<x —PIFOIdy < Y x) sup (97 % | xpN ()| < > x)Mur(fxz) (1),
X >

BeF BeF
where we have used a classical result due to E. M. Stein (see [3]), since ¢ is non-increasing.

Inequality (3.10) now follows from (3.6), together with (3.7)-(3.9). [ |

The main result of this section holds for a large class of singular integrals, thanks to
the above decomposition (3.7), and it gives us the boundedness of the local part of Tr on
variable Lebesgue spaces with respect to the Gaussian measure.

Theorem 3.3: Let p € LHyo(R") N 77;,’0 (R™) with 1 < p~ < p™ < co. Then, there exists a
positive constant C such that

ITE(f xB ) )y < Cllfllpy
for every f € LPO(R", dy).
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Proof: Letf € LPO)(R",dy). We will use the norm on the dual space P OR™, dy):
I TE(f xB) Ip()y <2 sup / I TE(f xBx) () Ig(x)| dy (x).
gy, <1 /R
We split the integral in the following way, according to the pointwise inequality (3.10)

1t @ilsoldr e S 3 [ [7(715) o) lgeole ™ ax

BeF

+ Z /B/\/IHL(fng)(X)Ig(x)le_"'2 dx

BeF

~ S [ 11wl dx

BeF

+ Y el /B M (Fxp) (0lg)] dx,

BeF

where cp is the centre of B and B and we have used the fact that over each ball of the family
F, the values of y are all equivalent. Now, we apply Holder’s inequality with p(-) and p’(-)
with respect of the Lebesgue measure in each integral, the boundedness of T and My, on
LPO)(R™), which hold from the properties on p, Remark 2.4 and Theorem 2.1, obtaining

/R NTE(f X3 @18 dy () S ) eI T(Fxg) xsllpo) g sl
BeF

2
+ > e B Mur(fxg) xsllpo g xsly)
BeF

a2
S Y e xglloe Igxslp
BeF

=D e gllpere T gl (B11)
BeF

Since p € P;O (R andp~ > 1,p € P}o,o(R”). Thus, from Lemma 2.5, for every x € R”,
e WP PW/pe=D) < ¢ and e WP @/IPL-D < . (3.12)

Moreover, since the values of y are all equivalent on each ball B, we have

P ()
/ o)l dy < / ( FO ) " PO PR 4y ()
ACERTTY B \ I xzllpcry

f o)l )P(”
< [ (20 )T a0 <1,
~ /fz (llegllp(-),y YW=

which yields

_ 2
e 1B xpllpey S W xpllpcry -
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Similarly, by applying the second inequality in (3.12), we get

_ 274/
e 1B P gy ey S Ngxally oy

Replacing both estimates in (3.11), we obtain

/]R" ITr(f xB()) ) Ig) [ dy (x) S Z If xgllper 18 X515 ).y

BeF

—1.12 . —1-12/p/(-
— Z |LfXEe ] /p()”p(-)”ng;e [] /P()”p/(')‘
BeF

Since the family of balls F = {B}ges has bounded overlap, from Corollary 2.8 applied
tof(-)e""z/P(‘) e LPORM) andg(-)e""z/f’/(') e IPO(RM), it follows that

[ 1T 0l dr ) S Wl el

Taking the supremum over all functions g with [|g]|,/(,, < 1, the thesis holds. |

3.2. Theglobal part

In order to study the global part of Tr, we will follow the spirit of [13]. To that end, we
might recall the following estimates obtained in that article.

Lemma 3.4 ([13]): Let us consider the kernel Kp(x,y) in the global part, that is, for y €
B(x). Ifa = |x|> + |y|? and b = 2(x, ), we have the following inequalities

(i) Ifb <0, foreach0 < € < 1, there exists Cc > 0 such that
IKp(x, )| < Cee™ =P,

(ii) Ifb > 0, foreach 0 < € < 1/n there exists Cc > 0 such that

e—(l—é)uo

n/2
tO

IKr(x, p)| < Ce

where tg = 2+/a* — b%/(a + v a* — b?) and uy = %(|y|2 — x> + |x + yllx — y)).

Theorem 3.5: Let p € LHo(R") N 77)?0 (R™) with 1 < p~ < p* < oo. Then, there exists a
positive constant C such that

ITe(f xBe) pery = Clif llpe),y

for every f € LPO(R", dy).

Proof: We shall consider two cases, based on Lemma 3.4, for which we will denote by
E = {(x,y) : b(x,y) > 0}.
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Ifb<0,wetake0 <€ < 1/(p))T =1/(p~) < 1in Lemma 3.4(i) and write 1 — ¢ =
€+ 1/p~soé > 0.Then, foranyf € LP*)(R", dy) with ||f]|p(,, = 1, byapplying Holder’s
inequality, we have

p(x)
1=/ (/ IKF(x,y)Ilf(y)ldy> dy (x)
" B¢(x)NE*

" 2 p(x)
L(LAar0) " w

, NGV L \P@/Y
,f,/ </ e f oI dy) (/ e €@yl dy) dy (x)
) RN
< f ( f e M IFoP dy) dy (x).
n Rn

Since |flp(),, = 1, we know that f]R“ lf» P») dy (y) < 1. Then,

/ e_‘ylzlf(y)lpi dy < / FDIPY dy () +f
R® IfI>1 |

If1=

1dy(y) <1+ C,.
1
Hence,
IS / 1+ C)! P dy(x) < Chp>

which means that || Tr(f xge(.)nee)llp(),y < Cnyp for every f € LPO(R", dy) with norm
Ifl5¢),, = 1. By homogeneity, we get the same result for every f € LPOR", dy).

Now, if b> 0, from Lemma 3.4(ii), with 0 < € < 1/x and for every f € LP*)(R", dy)
with [|fllp(.),, = 1, we obtain that

px)
II= f ( f IKF(x,y)ILf(y)Idy) dy (x)
n \JB¢(x)NE

e—(l—e)uo PX)
S / / — Oy dy (x)
n \JBonE

—(1=)ug plyI1? /p() —IxI2/p () P
:/ / ¢ v lf(y)|e—|y\2/170’) dy dx,
n \JBe)nE tg/z

where tg = 2¢/a2 — b2/(a + v/a? — b?) and ug = 3(|y|> — [x|* + x + yllx — y)).
Since p € P;°(R"), from Lemma 2.5 we have that PP =12 /p() g Uy =Ix?)/poc

Notice that, on one hand, we have that |[y|? — |x|?| < |x + y||x — y|; on the other hand, for
b>0, |x + y||x — y| > n whenever y € B°(x). Moreover, ty = |x — y||x + y|/(|x|* + [y|*)



416 (&) E.DALMASSO ANDR.SCOTTO

(see [13, p.499]). Thus, since |x|> + [y]*> = a < a + b = |x + y|?, we have that
P y Y

Ix—ylliryI>C n
X242 T x4y

Thus, we can bound part of the integrand in the following way

~(1-e) (yP =121 (1 /poc—(1=€)/2)
¢ Il /ps) _ € i’ i o= (1=€)/2)lxtyllx—y|
n/2 tn/Z
0

< |x+y|ne—aoo\x+y|\x—y|

where the constant

Uoo :=

is positive if we choose € < 1/p/. Thus, we take 0 < € < min{1/n,1/p. }. As we can

see, we have obtained a kernel P(x, y) := |x +y|”e_°‘°°|x+)’||"_y| as in [13], and as it was
proved there, P(x, y) is integrable in each variable (since it is symmetric), with constant
independent of x and y.

So, we have

—(1=e)uo glyI*/p()—IxI/p(x)
/ e ’e F() e WP gy
B(x)NE

n/2
)

<c / Py ()le "0 gy,
B¢(x)

Letusdefine Ay = {y: n/|x| < |y — x| < %} and C, = B(x, %), so that B°(x) = A, U C,.
Then, we will show that the above operator restricted to A, and to Cy is bounded by con-
stants independent of x, in order to replace the variable exponent p(x) with a suitable
constant exponent related with p. Set

I = / P(x,y) Uc(y”efl)’\z/P(}’) dy, | = / P(x,y) Lf(y)|e*|}’|2/P(y) dy.
Ax

X

In order to estimate J;, we shall notice first that |y| ~ |x| whenever n/|x| < |x — y| <
1/2.Indeed, it is easy to see that

Zlxl < Iyl < §lxl.
On the other hand, |x + y| < |x| 4+ |y| < 5|x|, and from the parallelogram law, we have

3x® < 20xP + Lyl <2(x + 1) < x4+ y12 + 1 < Ix+y1* + 202,
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so |x + y| > |x|. Thus, |x 4+ y| = |x|. By applying this fact to J;, we obtain

h< / el £ (e PP g
n/1x|<|x—yl

o0

|x|ne—aoo|x\Ix—ylf(y)e—\ylz/p()’) dy

—1 /kn/lx<|x—y|§(k+1)(”/|x)

5 CZ |x|l’l ((k+ 1)£> e—aooﬂkMHL(f(')e_l'lz/p('))(x)
k=1

|x|

= M (FOe™70) 0 37k + Dny"e ™™ < Mg (F()e™ PO ),
k=1

since @ > 0. The constant in the above inequality only depends on n and p. From the
hypotheses on the exponent p, we know that

1.2 . 1.2 .
IMuL(FOe PN 0 S IFOe™ PO L0 = Ifllpe,y = 1.

1 P(x, y)f (y)e " */p() dy. In this case, we can apply

y*x|Z§

We shall now analyse J, = fl
Holder’s inequality to obtain

1.2 .
I < IPGs Y xe o llfe™ P00 = 1PG ) xe,lly s

and we estimate the remaining norm. We shall see that the corresponding modular, that
is, 0p((P(x, ) Xc,)» is smaller than a constant, independent of x, which implies that the
norm is also finite. Indeed,

/ PO,y O dy < / x| D e /Dt O) g,
Cy R?
- / x + yle @/ Dletyl gy
lxt+yl<1
+/ |x+y|n(P/)+e*((¥oo/2)|x+)’| dy
[x+yl>1

= / (2" + |Z|ﬂ(p/)+)e—(aoo/2)|2\ dz < / e~ (@oo/Dl2l 4, < Cn,p-
Rn

n

Thus, [[P(x, ) xc, M) < Cup-
Combining the estimates on A, and C,, we have proved that there exists a constant
D > 0, independent of x, such that

/ P(x,y) [f(y)|e*\y|2/P(}’) dy <D.
B(x)
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We split the function g(y) = [f(y)le"y'z/f’(y) =g1(y) + £(y), where g1 = gx(g>1}-
Then,

1 26 1 26
Ug/(}/ P@ﬁg@@) dxﬁ/(—/ P@ﬁ&@@? dx
n \ D Jpe(y) n \D Jpe(x)

= I, + I,.

The exponent p(x) in II; can be now replaced by p~. For II;, we will use Lemma 2.2 with
G(x) = (1/D) f Be(x) P(x,y)g2(y) dy. Hence, we get

1 Poo 1
II < = P(x,y) ()d) de+ | ————dx
? / (D fo(x) P& R (e + |x])"

and this last term is finite since p~ > 1. We get, then, that

P Poo
IIS/ (/};()P(x,y)gl(y)dy) dx—i—/ (/;()P(x,y)gz(y)d)) dx + C.

We will proceed to estimate the above integrals. In the first one, we apply Holder’s inequal-
ity with p~, splitting P(x, y) = P(x, y)"/ ®7) p(x, y)/P” and recalling that P is symmetric
and integrable in each variable with constant independent of x and y, to get

p_ —
/ < / P(x,y)gl(y)dy> dx < / af dy < / g (PP dy
" \JB@) R" R
5[ Lf(y)|P(y)efly\2 dy <1,
Rn

since gy > lorg; =0,and flp.), = 1.
Similarly, for the integral involving g», with po instead of p~, we obtain

P
/ (/ PWJMA”@) dx§/1&@Vw®-
n B¢(x) R~

Since 0 < g < 1, we apply again Lemma 2.2 to get

Po 1
P(x.y) ()d) dxsf ()P d +/ 1 g
/n<ﬁc(x) Y)\y)dy Rngz)’ Ly B (e + )™ Ly

< / If(») |P()')e—|y|2 dy+C<1+C
Rn
Therefore, we have shown that for any function f € Lf OR™, dy) with ||f]| Oy =1L

p(x)
/(f IKp(x,y)llf(y)ldy> dy( < C,
n B¢(x)NE

which yields || Tr(f xpe()nE) lp(,y < C and, from the homogeneity of the norm, the result
holds for every function f € LP)(R", dy). Combining both cases, b < 0 and b > 0, we get
the thesis. |
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Finally, we can deduce the boundedness result for the higher-order Gaussian Riesz
transforms, taking F(z) = Hy(z) and m = |«|.

Theorem 3.6: Let p € LHo(R™) NPp°(R") with 1 < p~ < p™ < oo. Then, given any
multi-index a, there exists a positive constant C such that

IRefllpcry = Clif llpery

for every f € LPO(R", dy).
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