—
Bessel Potentials in Ahlfors Regular Metric

Spaces

Miguel Andrés Marcos

Potential Analysis
An International Journal Devoted to
the Interactions between Potential

Theory, Probability Theory, Geometry POTENTIAL ANAL.™

and Functional Analysis
ISSN 0926-2601

Potential Anal
DOI 10.1007/s11118-016-9543-4

@ Springer



Your article is protected by copyright and all
rights are held exclusively by Springer Science
+Business Media Dordrecht. This e-offprint

is for personal use only and shall not be self-
archived in electronic repositories. If you wish
to self-archive your article, please use the
accepted manuscript version for posting on
your own website. You may further deposit
the accepted manuscript version in any
repository, provided it is only made publicly
available 12 months after official publication
or later and provided acknowledgement is
given to the original source of publication

and a link is inserted to the published article
on Springer's website. The link must be
accompanied by the following text: "The final
publication is available at link.springer.com”.

@ Springer



Potential Anal i

DOI 10.1007/s11118-016-9543-4 CrossMark

@

Bessel Potentials in Ahlfors Regular Metric Spaces

Miguel Andrés Marcos!

Received: 1 July 2015 / Accepted: 5 February 2016
© Springer Science+Business Media Dordrecht 2016

Abstract In this paper we introduce Bessel potentials and the Sobolev potential spaces
resulting from them in the context of Ahlfors regular metric spaces. The Bessel kernel is
defined using a Coifman type approximation of the identity, and we show integration against
it improves the regularity of Lipschitz, Besov and Sobolev-type functions. For potential
spaces, we prove density of Lipschitz functions, and several embedding results, including
Sobolev-type embedding theorems. Finally, using singular integrals techniques such as the
T'1 theorem, we find that for small orders of regularity Bessel potentials are inversible, its
inverse in terms of the fractional derivative, and show a way to characterize potential spaces,
concluding that a function belongs to the Sobolev potential space if and only if itself and
its fractional derivative are in L”. Moreover, this characterization allows us to prove these
spaces in fact coincide with the classical potential Sobolev spaces in the Euclidean case.

Keywords Bessel potential - Ahlfors spaces - Fractional derivative - Sobolev spaces -
Besov spaces

Mathematics Subject Classification (2010) 43A85

1 Introduction

Riesz and Bessel potentials of order @ > 0 in R" are defined as the operators Z, =
(=A% and T, = (I — A)~%/2 respectively, where A is the Laplacian and [ the identity.
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By means of the Fourier transform, it can be shown they are given by multipliers

T )" () = QrlED (), (T ) () = A +472E) 2 f ().

These frequency representations of Riesz and Bessel potentials, as well as of their asso-
ciated fractional differential operators, depend on the existence of Fourier Transforms on
the underlying space. In more general settings alternative tools are needed. Spaces such as
self similar fractals are more general, but are still Ahlfors regular. In spaces with this type
of regularity, scales are a good substitute of frequencies.

Both the Riesz potential and its inverse the fractional derivative &, = (—A)*/2 which
on the frequency side is given by

(Zaf)" &) = QrIEN* (&),

have an immediate generalization to metric measure spaces, as they take the form

Tof () = Cam / _JO fO-f®,

|x — y|*—e lx — y|rte

dy, gaf(x) = Eot,n s
at least for functions of certain integrability or regularity and « < 2. One can just replace
|x — y|* by a distance or quasi-distance d(x, y)*, Lebesgue measure by a general measure
and |x — y|" by the measure of the ball of center x and radius d(x, y).

For spaces of homogeneous type, fractional integrals (i.e. Riesz potentials) and deriva-
tives, as well as their composition, have been widely studied. In the absence of Fourier
transform, other techniques have been developed, such as the use of a Coifman type approx-
imation of the identity (see for instance [2, 8]). It has been proven that even though the
composition of a fractional integral and a fractional derivative (of the same order) is not nec-
essarily the identity, at least for small orders of regularity it is an inversible singular integral.
See [3, 4] for the study of this composition in L? and [10] for Besov and Triebel-Lizorkin
spaces.

Bessel potentials have essentially the same local behavior than Riesz potentials, but
behave much better globally. For instance, they are bounded in every L? space, whereas
7, is bounded from L? only to L7 with % — é = 7. This leads to define potential spaces
LYP = J,(LP), and these coincide with Sobolev spaces when « is an integer.

Foroa > 0, as

Joay L CEIEDT
= (U An2EP2 =

)

the composition (I + Z)Jy is inversible in L2. In fact, as shown in [14], for 1 < p < oo
and 0 < a < 2,

feLl*Pifandonlyif f, Z,f € L, €))
and in terms of Riesz potentials,
f e L%P ifand only if f € L? and there exists y € L? with f = Z,y. 2)

Bessel operators have been rarely studied in the metric setting, although in R” they can
be represented as

Taf () = f % Galx) = / FO)Galx — y)dy,

where G, is a radial function, so their definition does not present a limitation. In this paper
we define Bessel-type potentials using the same construction found in [4].
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Bessel Potentials in Ahlfors Regular Metric Spaces

A different construction can be found in [12]. Assuming the metric space is endowed
with a stochastically complete heat kernel, the authors construct Bessel operators, prove
they have an inverse, define Sobolev potential spaces and prove embedding theorems.

All the known tools and definitions used in this paper are described in Section 2, such
as approximations of the identity and singular integrals. In Section 3 we define a Bessel-
type potential operator and prove it increases the regularity of Lipschitz, Besov and Sobolev
functions. In Section 4 we describe the potential space obtained with this operator, and find
relationships with Lipschitz, Besov and Sobolev functions, as well as a Sobolev embed-
ding theorem. In Section 5 we prove an inversion result for the Bessel operator using the
techniques from [4, 10]. We finish this paper characterizing the potential space with the
fractional derivative analogous to the Euclidean version in Eq. 1 and with the fractional
integral, analogous to Eq. 2, and analyze the case of R".

2 Preliminaries

In this section we describe the geometric setting and basic results from harmonic analysis
on spaces of homogeneous type needed to prove our results.

2.1 The Geometric Setting

We say (X, p, m) is a space of homogeneous type if p is a quasi-metric on X and m a
measure such that balls and open sets are measurable and there exists a constant C > 0 such
that

my(B(x,2r)) < Cm(By(x,r))

foreachx € X and r > 0.
If m({x}) = 0 for each x € X, by [13] there exists a metric d giving the same topology
as p and a number N > 0 such that (X, d, m) satisfies

m(By(x,2r) ~rV 3)

foreach x € X and 0 < r < diam(X).
Spaces that satisfy condition (3) are called Ahlfors N-regular. Besides R” (with N = n),
examples include self-similar fractals such as the Cantor ternary set or the Sierpifiski gasket.
Throughout this paper we will assume (X, d, m) is Ahlfors N-regular. One useful
property these spaces have is regarding the integrability of the distance function:

d(x, y)’dm(y) < oo if and only if —N < s < o0, and here
Jaern A0, ) dm(y y
[ awyydme) ~ e
B(x,r)
- fX\B(x,r) d(x,y)*dm(y) < ooif and only if —co < s < —N, and here
/ d(x,y) dm(y) ~ r’tV.
X\B(x,r)

If we add (locally integrable) functions we get

- if—N <s <00,

fB o FdGx, ) dm(y) < CritV M (x);
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- if—o0o<s < —N,

f FOd(x, y) dm(y) < CrtVMf (v,
X\B(x,r)

where M f is the Hardy-Littlewood maximal function of f.

2.2 Aproximations of the Identity

In Ahlfors spaces of infinite measure (and thus unbounded), Coifman-type aproximations
of the identity can be constructed. In this paper we will work with a continuous version, as
presented in [4]. See [8] for the discrete version. The construction is as follows.

Let (X, d, m) be an Ahlfors N-regular space with m(X) = oco. Let i : [0, c0) — R be
a non-negative decreasing C* function with 2 = 1 in [0, 1/2] and & = 0 in [2, c0). For
t>0and f € Llloc, define

- Tf@ = S (452 fdm
— M f(x) = @(x, 1) f(x), with p(x, ) = Tll(x);
- Vif&x) =y, 0)f(x), withy(x, 1) = W

- S f@)=MTViTIM f(x) = [y s(x,y. 1) f(y)dm(y), where

Sy 1) = o(x, t)w(y,t)/ (d(x z)) <d(y Z)>w(z dm ().

(S¢)r=0 will be our aproximation of the identity, with kernel s. We now list some of the
properties they possess, they can be found in [4] for the case N = 1.

S;1=1forallt > 0;

s(x,y,t) =s(y,x,t)forx,ye X, t > 0;

s(x,y,t) < C/tN forx,y e X,t > 0;

s(x,y,t) =0ifd(x,y) > 4t;

s, y, 1) = C /N ifd(x, y) < t/4;

(e, y. 1) = s, y. 0] < € herd (x, X

S; is linear and continuous from L? to L?;

S; f — f pointwise when t — 0 if f is continuous;
|S: f(x) — f(x)] < Ct? for each x if f is Lipschitz-y;
S; f (x) — 0 uniformly in x when t — ooif f € L';
s is continuously differentiable with respect to .

—_
R RO

—_

Continuity of a linear operator 7 from A to B will be denoted throughout this paper
as

T:A— B.

To include an interesting example of an Ahlfors space satisfying m(X) = oo (and thus
having a Coifman-type approximation of the identity), we can modify the Sierpinski gasket
T by taking dilations (powers of 2): T = U=12KT. This T preserves some properties of
the original triangle, including the Ahlfors character.
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2.3 Calderén Reproducing Formulas

With this approximation of the identity (S;);~0 we will construct our Bessel potential J,.
For the proof relating J,, with the fractional derivative D, we will follow the proof for the
fractional integral as presented in [4, 10], which requires the derivative of S; (that exists
because s is continuously differentiable with respect to #): let

doon_ ]
E ) = —?Qtf(XL

SO
d
sz(X)Z/Xq(x,y,t)f(y)dm(y), with —q(x,y. 1) = —t—7s(x, . ).

Some of their properties mirror those from S; and s:

1. Q;1=0forallt > 0;

2. gx,y,t)=q(y,x,t)forx,ye X,t > 0;

3. lgx, vy, 0)| <C/tV forx,ye X,t > 0;

4. q(x,y,t) =0ifd(x,y) > 4t

5. 1g(x,y,0) =g, y, 0] < C' hrd (x, x');

6. Q;:LP — LP;

7. Calderén-type reproducing formulas. (see [1])

fzfoooQ,f% f:/ooofooog,gsﬁii.

2.4 Singular Integrals

In Ahlfors N-regular spaces, the following version of the 7'1 theorem hold (see for instance
[3]). Once again we require m(X) = oo.

A continuous function K : X x X\A — R (where A = {(x, x) : x € X}) is a standard
kernel if there exist constants 0 < n < 1, C > 0 such that

- K@,y <Cdx, »)™;
— forx #y,d(x,x") <cd(x,y) (with ¢ < 1) we have

1K (x,y) — K(x', y)| < Cd(x, x")"d(x, y)~ N7,
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- forx #y,d(y,y") <cd(x,y) (with c < 1) we have
K (x, ) = K(x, )] < Cd(y, y)d(x, y)~ V.

Let CZ denote the space of Lipschitz-y functions with compact support. A linear contin-
uous operator T : CJ — (CY) for0 < y < 1is a singular integral operator with associated
standard kernel K if it satisfies

(Tf g) = /f K(x, y)f(y)gx)dm(y)dm(x),

for f, g € C! with disjoint supports. If a singular integral operator can be extended to a
bounded operator on L? it is called a Calderén-Zygmund operator or CZO.

Every CZO is bounded in L? for 1 < p < oo, of weak type (1, 1), and bounded from
L*®to BMO.

The T'1 theorem characterizes CZO’s. We say that an operator is weakly bounded if

UTF, &)l < Cm(B)'T2Y/N[£],[¢l,,
for f, g € CX(B), for each ball B.

Theorem 2.1 (T1) Let T be a singular integral operator. Then T is a CZO if and only if
T1,T*1 € BMO and T is weakly bounded.

2.5 Besov Spaces
In metric measure spaces (X, d, m), Besov spaces can be defined through a modulus of

continuity, as seen in [5]. For 1 < p < oo and ¢ > 0, the p-modulus of continuity of a
locally integrable function f is defined as

1/p
Epf(t)=</x]i( )If(X)—f(y)I”dm(y)dm(X)> ,
X,t

where fA fdm denotes the average ﬁ fA fdm, and the Besov space B}, , for & > 0 and
1 < g < oo is the space of functions f with the following finite norm

00 dr\ V4
1 £ls, = Ifl, + (/0 t““’Epf(t)"7>

(with the usual modification for g = 00).
For the case p = ¢, if the measure is doubling, an equivalent definition of the norm is

_ If ) = fOI” v
170, =17l </f dGe ) rm(Bx, e, ) " )dm(X)) '

2.6 Sobolev Spaces

A way of defining Sobolev spaces in arbitrary metric measure spaces is Hajtasz approach
(introduced in [7] for the case § = 1, see [11, 15] for a more general case): a nonnegative
function g is a 8-Hajtasz gradient of a function f it the following inequality holds for almost
every pairx,y € X

If () — FOI < d(x, )P (g(x) + g(»).
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For 1 < p < oo, the Hajtasz-Sobolev (fractional) space M B.P is defined as the space of
functions f € LP that have a gradient in L”. Its norm is defined as

1A g = SN +infligl

where the infimum is taken over all 8-Hajtasz gradients of f.

For the case p = 00, the space M coincides with the space C# of bounded Lipschitz-
B functions.

Functions with §-Hajtasz gradients satisfy the following Poincaré inequality

][ \f = fzldm < Cdiam(B) ][ gdm,
B B

for all balls B (again, see [7] for the case § = 1).
If the measure is doubling and 1 < p < oo, then the following relationships hold
between Besov and Sobolev spaces, for § > 0and 0 <€ <

B B.p B—e
Bp’p —> M — Bp’p

(see [5]). Here the expression A < B means A C B with continuous inclusion.

3 Bessel Potentials

In this section we define the kernel &, (x, y), to replace the convolution kernel G, in the
definition of Jy, and prove some properties this new Bessel-type potential operator Jy
possesses, emulating those from 7.

The convolution kernel G, takes the form

o0 5 _
Go(x —y) = cn,a/ (t"‘eil ) t e
0

_1(l=al)?
where ¢, (x) =t "e 4( d ) is the Gaussian approximation of the identity. This provides

us with a way to define the kernel in our context.

Let (X, d, m) be our fixed Ahlfors N-regular space with m(X) = oo, and (S;);~0 an
approximation of the identity as constructed in the previous section.

For o > 0, we define

-
—~
=
~[1
N2
N
S~—
‘Q..
ey

RS dt
ka(x,y):a A ms(x,y,t)T.

Observe that the factor multiplying the approximation of the identity is as

opposed to 1%~ in G, It presents the same local behaviour, but near infinity it has only
integrable decay. However, the properties obtained for &, will be sufficient for our purposes.

The following properties follow immediately from definition and the properties of the
kernel s, listed in Section 2.

Lemma 3.1 k, satisfies:
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e

ko (x, 2) — ka(y, 2)| < Cd(x, )(d(x,2) Ad(y,z))" V=),

6. lka(x,2) — ke(y,2)| < Cd(x,y)(d(x,2) A d(y,2) NV T1H if d(x,z) > 4 and
d(y,z) =4

7. [y ka(x,2)dm(z) = [y ko(z, y)dm(z) =1 Vx, y.

All results that will be presented in Sections 3 and 4 involving the kernel k, can be
derived from just these properties. The actual need for the definition will become clear in
Section 5.

We are now able to define our Bessel potential

Jag(x) = / 8(@ka(x, 2)dm(z).
X
Observe that from property 7 of the last lemma, we get

IJagllp < llgllp

forl < p < 0.
As expected, we can compare this operator with the Riesz potential, which is be defined
from the kernel

KL (x. y) /oo “s(x, y, 1)L !
x,y) = ats(x,y, t)— ~ ————
o y 0 y P d(x,y)N*“

as
laf(x) = /X FOW, (. y)dm(y).

(see [4]) and we obtain | J,g(x)| < Cl,|g|(x).
We now proceed to prove J, improves regularity on Lipschitz, Besov and Hajtasz-
Sobolev functions. We start with the Lipschitz case

Proposition 3.2 If f = Jygandoa + B < 1 fora, B > 0,
If () — fFO)] < Clglpd(x, y)*TP.

In particular, as Jy is bounded in L*°,

Jy: CP — coth,

Proof We will prove only the first part, the second follows immediately. What we will show
also holds true for /,, as shown in [4]. As f ko = 1, we have

fx)—fy) = /Xg(z) (ko (x,2) — ko (y, 2)) dm(z)

= /X(g(Z) —8(x)) (ka(x,2) — ka(y, 2)) dm(z),

and if we call d = d(x, y)
&) = FO)l = € fB ls0) ~ @I,

2d) dx,z)N=@

lg(x) — g(2)]
< —
! /l;(y,ad) d(y, z)N-« m(z)

e / 18(2) — g(0)] lka (5, 2) — ke (3, 2)] dm(2)
X\B(x,2d)

I+1I+111.

@ Springer



Bessel Potentials in Ahlfors Regular Metric Spaces

Thenfor I and I1,as«, B > 0,

d(x, 2)P
I < Clgl / —2 —dm(z) < Clglpd®™P,
826 B(x.2dy d(x, )N &l

11

IA

1
Clgl dﬂ/ ———dm(z) < C[g] dotp.
g B(y,3d) d(y, )N« P
Finally, as d(x, z) ~ d(y, z) forz € X\B(x,2d),andas o + 8 < 1,

111 < Clglpd f d(x,2)Pd(x, )" V1 "Ydm(z) < Cg)pd* ™.
X\B(x,2d)

Before proving the increase in Besov regularity, we need the following lemma, that
follows from properties 3 and 5 of 31:

Lemma 3.3 Forqg > 0Oandx,y € X,
- ifq(N—a) <N,

/ ko (x, 2) — ko (y, 2)|7dm(z) < Cd(x, y)N 1N,
d(x,z)<2d(x,y)
- IfN <q(N—-—a+1),
/ ko (6. 2) — ket Dl (2) < Cd(x, )N 4N,
d(x,z)>2d(x,y)

Proposition3.4 If f = Jyganda + B < 1 fora, B >0,

[ YO IO psrimer < [ EOEOL
X X

xx d(x, y)N+ethp xx dx,z)Nthp
In particular, as Jy is bounded in LP,

. pb a+pB
Jo Bp’p — Bp’p .

Proof Using [ ko = 1, by Holder’s inequality we have

lf)—fmIP =C (]l; lg(x) — g7 ka(x, 2) —ka(y,z)ldM(z)>

(x,2d(x,y))

r/p
X (/ ke (x, 2) — ko (v, z)ldm(z)>
B(x,2d(x,y))

e ( / 180r) — 8217 lka(x. 2) — k(. z)|"1’dm(z>)
B(x,2d(x,y))¢

, r/p
x (f ko (x, 2) — ko (3, 2)| 1707 dM(z)> :
B(x,2d(x,y))¢
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By the previous lemma, if we find 0 <6 < 1suchthat N < (1 —0)p’(N —a + 1), we get

lf () = fODIP < Cd(x, y)P*™ / 1g(x) — g@)|P ke (x, 2) — ka (¥, 2)|dm(2)
B(x,2d(x,y))
+Cd(x, y)—N+pOt+9p(N—Ot)

X/ lg(x) — g(2)IP lka(x, 2) — ko (y, 2)|"Pdm (2).
B(x,2d(x,y))¢

With this, to conclude the theorem it will be enough to prove

ko (x,2) — ky(y,
/ |k (x, 2) . o (y Z)ldm(y) <c
d(x,)<2d(x,y)  d(x, y)N+br+e

d(x,z)Nthr’

and for the other part

ko (x, 2) — ka(y, 2)|%P
d <C—— .
/d(x,z)22d(x,y) d(x, y)?N+Pp—Op(N—c) miy) = d(x, z)N+hp

e  For the first one, if d(x, z) < 2d(x, y) thend(y, z) < 3d(x, y) and by using the bound
for kg,

/ ko (x, 2) — ko (y, Z)ldm(y)
d(x,7)<2d(x,y) d(x, y)Nthprt+a

1 1 1
<C + dm(y),
/d(x,z)<2d(x,y) d(x, y)N+bpta (d(x, N " d(y, Z)N*"‘> Y

then we consider two cases,

~ ifd(y,2) < 3d(x,2) <3d(x,y), then

1 1 1
+ dm(y)
/d(y,z)<gd(x,z)<3d(x,y) d(x, y)N+pta <d(x, N=¢ " d(y, )N« >

1
<c L / —dm(y)
d(x, NP Joy <3 d(y, DN
|

C——-rrs
T d(x,)N+Pr

~ if3d(x,2) <d(y,2) <3d(x,y),

1 1 1
+ dm(y)
/gd(x,z)<d(y,z)<3d(x,y) d(x, y)N+hr+a (d(xvz)N_“ d()’,Z)N—“)
1 1
<Co— N / T N iprad
(x,2) d(x,y)>d(x,2),2 A(x, y)
1
<C———.
T d(x,p)NtPr

m(y)
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e For the second one, if d(x, z) > 2d(x, y), then d(x, z) ~ d(y, z) and by property 5 in

31,

/d(x,z)zzd(x,y) d(x, y)?N+pp—Op(N—c)

= ¢ d(x, Z)Op(N—a+l)

ko (x, 2) — ko (y, 2|7

dm(y)

1 f d(x, y)or

dm(y)
40220,y A, Y2V N=a) Y
1

d(x, )N+Pp

aslongas N + p < Op(N —a + 1).

Finally, both conditions over  can be rewritten as

N+Bp <Op(N—-—a+1) <N+ {1—-ao)p,

and there is always a value for 6 satisfying them, for 8 < 1 — «. (|

We have now the following result regarding Sobolev regularity.

Proposition 3.5 Let f, g satisfy, for a.e. x, y,

If(x) — FO) < d(x, »P(gx) + gk,

withg >0, 8 > 0. Then fora > Oanda + < 1,

o f(x) = Ja f D] < Cd(x, »)* TP (Mg(x) + Mg(y)).

In particular, if p > 1,

Jy : MPP — ppethor,

Proof Once again, using f ko, = 1, and proceeding as in the Lipschitz case,

A

Vo f (xX) = Jo f(D)] =<

IA

IA

IA

/x Lf () = f@lka(x, 2) — ka(y, 2)|dm(2)

c / d(x,2)P(g(x)
B(x,2d(x,y))

1
+g(2)) <

1
A, Ve d(y, i

>dm(z)

+C / dx. 2 (60 + 8@ —252 4z
B(x,2d(x,y))¢ d

(X7 Z)Nfﬂt‘f’l
Cg(x)d(x, )™ 4 Cd(x, y)* P Mg(x)
+Cd(x, y)Pg(x)d(x, y)* + Cd(x, y)’ Mg(y)d(x, y)*

+Cd(x, y)g(X)d

1 1
Gyt A g M

Cd(x, y)* P (Mg(x) + Mg(y)).
O
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4 Potential Spaces L*P

In this section we define potential spaces L*? and see they are Banach spaces. We prove
they are embedded in certain Sobolev and Besov spaces, and that Lipschitz functions are
dense. We finish the section with Sobolev-type embedding theorems for L*7.

For @ > 0, we define the potential space

L¥P(X)={feLP:3ge Ll f=Jyg}=Ju(LP)
and equip it with the following norm

Iflle.p = Ifllp+  inf igllp.
g€l (SN

Proposition 4.1 L*? is Banach.

Proof To prove completeness, we will show the convergence of every absolutely convergent
series. Let (f,) be a sequence in L*” such that

D i fallap < oo
n

In particular, ), || full, < 00, so the series >, f, converges in L? to some function f.
For each n, take g, in L? with f,, = J, g, and

lgnllp < Il falla,p +27",

then clearly >, lIgll, < oo and >, gn converges to some ¢ € LP. Finally, as J, is
continuous in L7,

f=§ fn=§ Jagn=Ja<§ gn>=-]otg
n n n
so f € L“?, and

< + — 0.

p

=Y f
k=1

f=> f
k=1

n
8= &
k=1

a,p p

O

Remark 4.2 ||Juglla,p < 2llgllp, so it is continuous from L? onto L*P. In particular,

as L N LP? is dense in L? for 1 < p < oo, we get that J,(L>® N L?) is dense in
LeP.

The following theorem shows that ‘potential functions’ have Hajtasz gradients, and this
leads to some interesting results, such as Lipschitz density and embeddings in Sobolev
spaces.

Theorem 4.3 Let f = Jyg for some g such that f is finite a.e.. Then if 0 < a < 1,
If(x) = fO] < Cad(x, y)* (Mg (x) + Mg(y))

for every x, y outside a set of measure zero. If « > 1, then for each B < 1 we get

If(x) = FO)| < Capd(x, y)P (Mg(x) + Mg(y))

for every x, y outside a set of measure zero.
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Proof Assume first < 1. Letd = d(x, y),

lf(x) = fOI = /XIg(Z)Ilka(x,Z)—ka(y,Z)IdM(Z)

B(x.2d) JX\B(x,2d)

In I we have

1 1
C zidmz—i—C/ )| ————dm(z
/B(x,2d) lg( )ld(x,z)N*O‘ () B3 lg( )|d(y,z)N*"‘ (2)
Cd*(Mg(x) + Mg(y)),
and for 11, as d(x, z) ~ d(y, z) we get

1

IA

IA

11 < Cd f lg(2)|d(x, 2)~ N 1= dm(z)
B(x,2d)¢

< Cdd~ " Mg(x) = Cd*Mg(x).

Letnow o > 1 and fix 0 < 8 < 1. Observe that the bound for / also holds in this case, and
ford(x,y) <1 we get

I < Cd*(Mg(x) + Mg(y)) < CdP (Mg(x) + Mg(y)).
We now divide X\ B(x, 2d) in two regions (and use in both cases the fact that d(x, z) ~
d(y,2)

dm(z) dm(z)

/ p—

2@ —m—i——
2d<d(x,z)<5 d(x, 7)N-©@=8
CdP Mg(x);

andifd(x, z) > 5,asd(y, z) > 4 we can use the other bound for differences of k, (property
61in 31)

d
8D —F—7
/2d§d(x,z)<5 d(x, z)N—-a+l

IA

d
8| ——yrarrdm(2) < CdMg(x) < Cd’ Mg(x).
/du,z)zs 8, i Fat 8 §

Finally, if d(x, y) > 1,as | f| < Mg,
If(x) = fO)] < C(Mg(x) + Mg(y)) < Cd(x, y)P (Mg(x) + Mg(»)).
O

Corollary 44 Let1 < p < 00.If0 < a < 1, then LY?P — M*P. Fora > 1, L*?P —
MPP forall0 < B < 1.

Corollary 4.5 Let p = 00. If0 < o < 1, then L**® <> C%. Fora > 1, L*® < C# for
all 0 < B < 1. In particular, functions in L**° are continuous for all o« > 0 (after eventual
modification on a null set).

From this last result and Remark 4.2, we get the following density property.

Corollary 4.6 Let 1 < p < oo and a > 0. Then CP N L®P is dense in L*P for all
O<pB<aifeu<l,andforall0 < B <1lifa>1.

As alast corollary of Theorem 4.3, since M g is a Hajtasz gradient for potential functions,
we get the following Poincaré inequality.
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1
loc’

Corollary 4.7 Let 0 < o < 1 and f = Jyg for some g such that f € L
ball B we get

then for each

][ \f — fal < Cdiamw)“][ Mg.
B B

Now, regarding Besov spaces, as M“P —> Bg‘]f forl < p<ocand0 < € < «, from

45 we obtain fora < 1 L%P — B;‘;f . This also holds true for B;’,‘;f. First, a lemma.

Lemma 4.8 Let 0 < o < 1 and g > 0 satifying q(N —a) < N < q(N + q — «). Then
there exists C > 0 such that, for every z € X andt > 0

/ ][ ko (x. 2) — ka3 D) dm (y)dm (x) < CEN -4V =0,
X JB(x,t)

Proof Consider
Ay ={(x,y) :dx,y) <t, d(x,z) <2t}

Ay ={(x,y) :d(x,y) <t,2t <d(x,2)}.

Integrating over A, we get

// LNIka(x,Z) — ko (¥, )|7dm(y)dm(x) < C/ ke (x, 2)|9dm(x)
Al B(z.31)

1
=c —————dm(x
a /B(Z,St) d(x, Z)[I(N—Ot) (x)

< CtN_(I(N_a)’

and the last inequality holds because N > g(N — «).
In A> we have d(x, z) ~ d(y, 2), and then, as d(x, y) < ¢,

1 1
q L
“ //,:\2 N d(x, 2)dN+T-0) dm(y)dm(x)

1
th/ ————dm(x
X\B(z,20) d(x, 2)IN+1-e) )

th[N—q(N+1—a) < CIN_q(N_a),

IA

1
/ /A ka6, ) — ka0, DI dm()dm ()
2

IA

IA

given N < g(N + 1 — o). O

Proposition4.9 Let f = Ju8, 0 <a < land 1 < p < oo, then fort > 0 we get
E,f(t) < Ct%lgllp

Proof If p < oo,

L
7

1y P
/Xlka(x,z)—ka(y,z)ll’ P Ig(z)ldm(z)>

A

If) = fODIP <

IA

</X ko (x, 2) — ko (¥, z)llg(z)lpdm(z)>

20
x(f |ka(x,z)—ka<y,z>|dm(z)> .
X
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By Lemma3.3forg =1,asd(x,y) <tando < 1,

/ lke (X, 2) — ko (v, 2)|dm(z) < Ct*
X

SO

/ ][ £ @) = FO)IPdm(y)dm(x)
X JBGx,b

< crrlv' f ( f ][ |ka<x,z)—ka<y,z)|dm<y>dm<x>) 8@)Pdm ()
X X JB(x,t)

and by Lemma 4.8 (also taking ¢ = 1)
/ ][ |£() = fFOIPdm(y)dm(x) < CrP/P' 12| g || = Cr*P | g|I}.
X JB(x,1)

Forp=o00,asax < 1,

Exof(t) = sup |f(x)— fW)I
d(x,y)<t
< C sup d(x,y)*"(Mg(x)+ Mg(y))
d(x,y)<t
< Ct)Iglloo-

We can now conclude the following embedding in Besov spaces.
Corollary 4.10 Let 1 < p <ocoand(0 <o < 1. Thenfor1 < g <ocoand (0 < € < o we

have L*P — B{"€. For g = 00 we obtain L*P — B} ..

Proof Let f = J,g. By the previous proposition, if g = oo,
IflBs . = I1F1lp + sugt‘“Epf(t) =Clfllap-
1>

And for 1 < g < 00, as we also have E,, f < C|| fll,,

1 dt 1/q
Cllfll, +C (/ l_(a_e)quf(l)ql)
0

L dy C
Cllfll, +Cliglp (/0 t“’t) < m”f”a,]%

IA

”f”Bg;f

IA

O

We finish this section with Sobolev-type embedding theorems for potential spaces. First
we need a lemma.

Lemma 4.11 For o > 0 and q > 0 satisfying g(N —a) < N < q(N + @), there exists
C > 0 such that for every x € X,

/ ko (x, y)?dm(y) < C < oo.
X
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Proof By Lemma 3.1,

ko(x,y)? < C XBa.H () XxX\B(x.4) () ,
d(x,y)aW=o = 7 d(x, y)aN+e)
and restrictions over g guarantee integrability. 0

Theorem 4.12 Let 1 < p < 00 and o > 0. The following embeddings hold for L*-P

N
a Ifp <<,
LOP — 4
* 1L _1_«a
forp<q<p whereF_]7 N
b. pr:%,thenforpfq<oo,
L%P — L9,
If in addition a < 1,
L%? — BMO.
N
c. Ifp> thenforp <q <oo
L%P — L9,

If in additiona < 1+ N/p,
L%P s C¥N/P,

Proof a. We know L%? — L? (for || fll, < |l fll«,p) then if we prove L*? < LP*,
by an interpolation argument we are done. This follows from |J, f| < Cl,|f], as
(N —a)p’ > N and for any t > 0 we get

Lf )l /' Lf D)l
Jo <C ————d C ————d
Mo f @)l = /B(x,t) d(x, )N« o+ X\B(x.r) d(x, )N~ )
< CIMf (x) + CtOV=N=02/0 ) 1

= CIOOMfx) + VP £l

This last expression attains its minimum for t = CMf(x)"P/N| f ||§/ N and for this
value of r we obtain

[Jo f(X)] < CMf(x)P/P* ”f”Il]—P/P*,

and as p > 1, boundedness of the maximal function implies

/Xuafv’*dm < C||f||£**”fX(Mf>Pdm <cin.

b. Let N/a = p < g < o0, so there exists a > 1 such that
- 1« +1
q_N a’

In particular a(N — @) < N (and also N < a(N + @), as a > 1), so by the previous
lemma

/ ko (x, y)*dm(y) < C < o0.
X
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Letnow f = Jyg with g € L?, as % =1 4 % by Holder’s inequality we obtain the

p/
following Young-type inequality

fwl < / ke Cx y)HTHIP | () |PIEHPI ()
X

1/q 1/a’
( /X ka<x,y)“|g<y>|f’dm<y)) ( /X |g(y)|"dm<y))

1/p
X (/X ke (x, y)“dm(y)>

, 1/q
Clglb/ ( fx ka(x,y>“|g<y>|"dm(y>>

IA

IA

(here we use a/q +a/p’ = 1and p/q + p/a’ = 1) and
/le(x)|qdm(x) < C||g||%”/“’/X/Xka(x,y)“lg(y)l"dm(y)dm(x)

A

"+1
Clglh @™ = cjg|4.

A

Moreover, if ¢ < 1, by Poincaré inequality for any ball B,

o/N
][ |f — fp| < Cdiam(B)“ ][ Mg < Cm(B)*/N (][ (Mg)N/“)
B B B

o/N
c ( /B <Mg>N/“) < Cligln/e

A

IA

and we conclude

Il fllBso < Clliflla,Nse-
c. For the first part, again by interpolation it is enough to prove L*? — L®° If f = J,g
with g € L?,

[f] = Vag()| < /Xka(x,y)lg(y)ldm(y)

, 1/p'
lgllp </X ko (x, )P dm(y)>

Cliglpy = Cll flla,p

aslong as p'(N —a) < N < p/(N + «). The second inequality is trivial for p’ > 1
and the first one is equivalent to pa > N.
Assume now o < 1 4+ N/p. Then

IA

IA

lf ) = fI =< /XIka(x,z)—ka(y,z)llg(z)ldm(z)

IA

, 1/p
sl (/X lha (5. 2) — ka3, )17 dm(z))

N-p/(N-a)

Cligllpd(x,y) 7 =Cligllyd(x,y)* NP

if p(N —a) < N < p/(N —a + 1). The first inequality is once again equivalent to
p > N/a,and the secondtoa < 1+ N/p.

IA

O

@ Springer



M. A. Marcos

5 The Inverse of J,

In this section, with the fractional derivative D,, as defined in [4], we prove conditions for
the composition (I + Dy)Jy to be inversible in L? for 1 < p < oo, which in turn will lead
to inversibility of J,. We follow the techniques used in [9], proving

I — (I + Dg)JollLr—rr <1

by rewriting the operators in terms of (Q;);~o instead of (S;);~0, and applying the 7T'1
theorem for Ahlfors spaces (see [3]).
Let ¢ > 0. Define

o, dt
ng(x,y) = at “s(x,y, 07'
0

This kernel satisfies
1
ng(x, y) dGr, y)Nie

and
e (x, ) = ng(x', )| < Cd(x, x)(d(x, y) Ad(x', y)) N H+o),

The fractional derivative can be then defined as
D f(x) = / Rae, YY) = FONdm()
X

(see [4]), whenever this integral makes sense (for instance if f has sufficient regularity of
Lipschitz or Besov type).

Let us now rewrite the operators with Q; = —t%St. Assume f € C! forsomea < y <
1, then

a—1

X ot
Juf () = /X ka (X, ) f(0)dm(y) = /X /0 s D ()i )

o) Oll‘a_] © 4 1
= S dt = — | —F ]S dt
/o (1+ “)2 A /0 dt (H—t*“) 0/ %)
S f(x) | o 1 d dt
= — | —t—S, -
RN +/o 1+f‘¥ a0 )
o 1
| merw?
where we have used S; f — f whent — O and S, f — 0 whent — oo.
On the other hand, we obtain

Daf(x) = /X na (v, V)(F () — F()dm(y)

= fx/o at™ s, y, ) (f(x) — £(y)dtdm(y)

0o > d
./ at™ N (f(x) = Si f (x)d1 :fo 2 T Sef ) = f )i

0
oo+/°°f“ Lsron) L
LN
o Jo de™' t

(S () — F(x))
o0 d
/ 0,0,
0 t

tOt
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where we have used that S; f — 0 when # — oo and that |S; f(x) — f(x)| < Ct?. Since
we also have

* d o0 d
f<x>=—f0 o8 f oo =f0 0,
we get
o0 _ dt
(1+Da)f(x)=/0 (1 +70f 0

This way,
O O] 457 dtds
14+ D)y f =
(+ot)ozf /0/() 1+taQQtf
and as we also have

f=f / 0,0 2%
0 0 t s
we conclude
o dt ds
(U —U+Dg)Ja) f = / / ( 1+[_a)Qstf*T

Y —s dt ds
- [ e

—/ (1—“></ L) S )d”
—0 v A 1+(u)a uQuv >

For each v > 0 we define

o 1 du
Ta = T g, Zuluv) —>
of /0 e Q6@

and, following [9], if we can prove
”Ta,vf”p = Ca,p(v)”f”p»
with

o0 o dv
[T = v¥|Cq,p(v)— < 1
0 v

for o small enough, we will obtain

© o dv
(I — (I + De)Jo) fllp < A [1—v |||Tv,af||p7 <IIfllp

and therefore (I 4+ Dy)J, will be inversible for those values of «.

To prove the boundedness of T, ,, we will use the T'1 theorem as presented in 21. As a
first step, we need to show Ty, is a singular integral operator, for which we need to find its
kernel.

Lemma 5.1 Foru,v>0,x,z € X,

’/Xq(x,y,u)q(y,z,uv)dm(y)

1 1
<c(on ) WX (g )

1 1
<ClvA—)—.
( v) d(x, )N
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Proof The second inequality follows immediately from the first one. For this one, as
q(x,y,u) =0whend(x,y) >4u; q(y,z,uv) =0whend(y,z) > 4uv,

for the product to be non zero d(x, 7) < 4u(v + 1) must hold. If v > 1, as we have that
[y a(x, y,w)q(x, z, uv)dm(y) = 0,

‘/Xq(x,y, u)q(y,z,uv)dm(y)‘ ‘/Xq(x,y,u)(q(y,z,uv)—q(x,z,uv))dm(y)‘

1 dx,y) 11
< C/ — g dm(y) < C— —7s
Bee,duy u (uv)N+1 ulV pN+1

andifv < 1, as fX q(x,z,u)q(y, z,uv)dm(y) =0,

‘/Xq(x,y,u)q(y,z,uv)dM(y)‘ ’[X(q(x,y,u)—q(x,z, u))q(y,z,uv)dm(y)‘

d(y,z) 1 1
< Cf dm(y) < C—v.
B(z,4uv) uN+1 (uv)N uN

Letnow f, g € Cﬁ with disjoint suppons and let x € supp(g). Then

o0 1
TO('U = uuv
wf ) /0 T 20 f

:/ 17</ q(x,y,u) (/ q(y,z,uv)f(z)dm(z)>dm(y))l
o 1+ @v* \Jx X “

and from the previous lemma we have this integral converges absolutely, so we can change
the order of integration and obtain

(Taw f. g)=/X/XNa,u(x,z)f(z)g(x)dm(z)dm(X),
where

o0 1 du
Na.u(x,z)zfo mfxq(x,y,u)q(y,z,uv)dm(y)j-

From the previous lemma, Ny ,(x,z) < C (v A 1) To see that T, , is a singular

d(x,2)N "
integral operator we need to check the smoothness conditions for the kernel N ;.

Lemma 5.2 Foru,v>0,x,x",z€ Xand0 < § < 1, it holds

‘/X(q(x, you) —q(,y, u)q(y, z, uv)dm(y)‘

dx, x)\' 7 [ 1 1
<C » v AW MNX(M )(”)

From this we obtain

o 1 , du
/O 1Jr(uv)a/X(q(x,y,u)—q(x,y,u))q(y,z,uu)alm(y)M’

<C d(x,x’)l $ ( /\1>5
=Wy nd oV Uy )
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Proof As in the other lemma, the second inequality follows from the first one. We consider
two cases: If v > 1y d(x, x") > u, by that same lemma,

’fx(q(x, you) —q&',y, u)g(y, z, uv)dm(y)’

1 1
= o (K o K )

4(v+D)’ 4(v+1)>
1 1

< C— v X{ deond 2) ()
ONHT N A (Legndald o)

1 1
< C—g W X(dwonde’ o\ (@)
N ( Ende, ’,oo)

And ford(x, x") < u, the integrand will be nonzero only if d(x, z) < 4u(v+1)ord(x’, z) <
4u(v+ 1), so

d(x,)c’))l_‘S
p .

‘/X(q(x, you) —qx', y,u)g(y, z, uv)dm(y)‘

‘/;((q(xa Y, M) - CI(x/7 Vs ”))(CI()” 25 MU) - Q(x’ <5 ”U))dm(y)'

1 1
uN+1 (uv)N+1

IA

Cd(x,x") d(x, y)dm(y)

/B(x,4u)UB(x/,4u)
11 d(x,x")
< CW ﬁX(d(x.z)/\d(x’,z) ,oo) () "

4(v+1)
d(x,x’) 1-6
» .

1

< C—g T X(dwaondw . (@)
DT (4t o)

For the case v < 1, on one hand by the previous lemma we obtain

1
X,y,u)— x/, ,u , Z, UV dm < Cv— d(x,2)Ad(x' 2
/X(q( you) =gy, u)q(y )dm(y)| = Cvg X(sgpasa o

) (),
on the other hand

dx,x") 1
Vx(‘?(x,y,u) —q(x', y,w)q(y, z, uv)dm(y) .x) 1

X(dx.0rd2) (M),
WV (it o)

<C

and by combining both inequalities we get

‘/X(q(x, you)—q (', y, u))q(y, z, uv)dm(y)

4(v+1)

s(de, xN'0 1
<Cv T uiNX(d(,\',z)Ad(x/,z)yoo)(u)-

O

For the rest of the section, we fix 0 < § < 1. Joining both lemmas we conclude

Theorem 5.3 T, , is a singular integral operator. Its kernel N, satisfies

1
d(x, )N’

1\°
|Na,v(x7Z)| <C <v AN ;)
and for 3d(x,x’) < d(x, z),

1\ 4 x)l-8
Naw (6, 2) = N ) < € (0 a L) 402) 7
7 ’ v) d(x,o)N+1-3
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and
d(x,x"H1=

1 §
/
|No¢,v(Z,x) - N(X,U(Za x)=C <U A 7) W

v

To prove each Ty, is a Calderén-Zygmund operator, and thus bounded in L?, we will
use the 7'1 theorem. The next lemma proves the other conditions needed.

Lemma 5.4 T, , satisfies
Tyl =0,

T} ,1=0,

and for f, g € Cf(B),for some ball B,

1y’ 1+%
(Tanfo8) = C (v A ;) m(B)"V [flplgls-

Proof The first equality is immediate, the second uses the fact that g is symmetrical.

(Tunf.g) = /X ( /X Na,v(x,z>f(z>dm<z)) g(o)dm(x)

o0 1
_/X/X/o /x1+<uv>a

d
xq(x, y, 0)q(y, 2, uv)dm(y)ff(z)dm(z)g(x)dm(x)

_ /X £ ( [X N;,U(z,x)gu)dm(x)) dm(2) = (£, T} ,8)

so clearly 7;7 )1 = 0.
For the third one, as

(Tun f. 8)

1 d
- f e f / / q(x, v, 0 (v, 2, wv) £ (Dgx)dm(y)dm(2)dm(x) =
, + @v)* Jx Jx Jx u

we observe that the triple integral inside may be estimated in three different ways

—  Firstly,

A =

///q(x,y,u)q(y,z,uv)f(z)g(X)dm(y)dm(z)dm(x)
XJXJX

IA

1 1
Clliflloligloo (v A W) N fB /B XB(x 4u(v+1)) (2)dm(2)dm(x)

IA

1
Clf1plglgm(B)*P/N (v A ) m(B)(v+ DY

IA

c (v A %) LF1slglpm(B) F26/N.
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—  Secondly, using the fact that [y g(x, y, u)q(y, z, uv) f(y)g(x)dm(z) =0,

A =

/XfX/Xq(x,y,u)q(y,z,uv)(f(z)—f(y))g(x)dm(z)dm(y)dm(x)

< Clf1slglos / ][ ][ d(z. y)Pdm(@)dm(y)dm(x)
B J B(x,4u) J B(y,4uv)
Clf1plglpm(B)TP/N (uv)P

<=y )ﬂ[f] [glgm(B)'+2/N
= " \m /v ) VPR '

—  And lastly, it also holds

A

IA

m(B)?
(uv)N

—N
uv
=€ (W) [F1plglgm(B)' T2/N

A

A

= Cliflloollglloo

By taking an appropriate combination of the previous three inequalities, we have

A

//fq(x,y,u)q(y,z,uv)f(z)g(x)dm(y)dm(z)dm(x)
XJXJX

1 g uv B uv -N - 14+28/N
C(M5> (m(B)l/N) A(m(B)l/N> lalelm () ’

and conclude

IA

e
|(Ta,vf, g)| <C (v A ;) [f]ﬂ[g]ﬁm(B)l—Hﬂ/N'

Thus the T'1 theorem holds for each 7, ,, and we get

Theorem 5.5 For1 < p < ocoand0 < § < 1 the following holds
1\
1T fllp = Cp (v A ;) If1lp-

The fact that the L”-constant of 7, , is bounded by the constants appearing in Theo-
rem 5.3 and Lemma 5.4 follows the same ideas that the Euclidean case (see for instance

(6.

From this result, as for « < § we have

o o dv o
11—+ Do)dallrsrr < | 11 =0 Tanllrorr— < Cpg—s
0 v 5 —«
so we obtain the estimate we were looking for and we can conclude

— ForanyO0 <« < 1,1 — (I + Dy)Jy, and thus (I 4+ Dy)J,, is bounded in L?
—  There exists oy < 1 such that, for ¢ < «,

I — (I + Dg)JollLr—rr <1,
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and thus (I + Dy)Jy is inversible (with bounded inverse) in L?. As J, maps L? onto
Lo,

[(I + Do) Jo] ™" (I + Do) Jy = Idpr
o0 Jy is inversible with inverse J L. L%P — LP given by

J7V =1 + Do) I 1™ (I + Dy).

6 A Characterization of L*? in Terms of D,
For0 <a < land 1 < p < oo, we proved that, if f € L%?, then f € L? (this holds for
anya >0and 1 < p <oo)and (I + D,) f € L?, so
If f e L%P, then f, Dy f € L?,
moreover,

[Da fllp = Cllf llap-

For the case ¢ < &g, we obtain the reciprocal.

Theorem 6.1 Let 1 < p < ooand0 < o < ag. Then
feL*?ifandonlyif f, Dy f € L?,
Furthermore,

I flle.p ~ I + Do) flp-

Proof We have already seen in this case Jy : L? — L%7? is bijective, and therefore I + D,
is also bijective. If f, Dy f € LP, define

g =1+ Da)Jo]™" (I + Do) f,
we get g € L? and
Jag = Jou [(I + Do) Jo1™" (I + Do) f = JuJy (I + Do)~ '(I + Do) f = f.
We also get
LAy + 1 Ny
ClJy " fllp = CILU + Do) Jol™" (I + Do) f I
CII + Do) f I p-

lf llee, p

Al

IA

O
We can also characterize functions in L*? in terms of the Riesz potential 1, as follows.
In [3, 4], it is proven there exists 0 < &g such that, for ¢ < &g, the operator Dy I, is

inversible in L”, 1 < p < oo. Thus we obtain

Corollary 6.2 For a > 0 satisfying o < ag Aagand 1 < p < 0o, we get
f e L’ ifand only if f € L? and there exists y € L? with f = I,y.

As another corolary, the following embeddings hold.
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- IfO0<oa<apande > Osatisfies0 <o +€ < 1,for 1 < p < oo we have

MOTOP s L0P s YOP.

Proof L*P — M%? is Corollary 4.4, and the other embedding follows from the fact that
Dy f € LP for f € M*T€P_ 5o Theorem 6.1 applies. O

- If0<a<apand0 < € < a satisfies0 <o +€ < 1,for 1 < p < co we have
a+e a,p a—€
Bp,p(—>L f—>prp.

Proof L*? — Bj"f is Corollary 4.10, the other follows from the fact that B;‘:‘; —

MOTEP (see Section 2.6) and the previous item. O

- IfO0<a<apand B > Osatisfiesae < 8 < 1,for 1 < p < oo we have

LAP s por,

Proof Under those conditions there exists an € > 0 such that Bf,};f — ngf, and we can

use the embeddings we have just proven. (]

As a final result, we show that in R”, for ¢ < a9, the space L*? coincides with the
classical L*P.

Let (S¢)s~0 be an approximation of the identity as constructed in the introduction, from
a function h. Let H(x) = h(|x|) and H,;(x) =t " H(x/t). Then

Tr@ = [h(B5) F0)dy = [ Hix = ) FO)dy = Hyx £
T;1=[H = [H=cyforeverys > 0and x € R", then ¢ = iandwE 1.

- Sf= C%Ht * Hy  f = f (LHt *Hz> (x =) f(ydy.

2
H

s(x,y, 1) = (C%Ht * Hz) (x = y).
H
We will see that

S(x»yzt) :¢t(-x_y)

where ¢ is radial. Observe

H, % H,(x) = %fﬂ(x;wa(%)dy:tin H(;—Z>H(z)dz

1
o CH H)(x/1) = (H * H), (x).

Besides, if p is a rotation, as H is radial, we get
HxHpo = [ Hipx = HOMy = [ Hp =50 HEo™ )y

= fH(x —p 'WH(p'y)dy = H x H(x).
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This way, if ¢ = CITH * H, we will have
H
1
TH[ * H[ = (]5;.
c
H
With this expression for s, we obtain

© dt © 1] X — dt
na(x,y)=/0 at O‘s(x,y,t)7=/0 at “t—nd)( ty>7

© du c
— %\/\ au”“‘qﬁ(ue])f:%
lx — y["** Jo u o fx =y

and the last integral converges because ¢ is bounded and compactly supported.
Now, recall that for 0 < o < 2,

fO) —f&®

-@af(x) = P.V. Ca,n |x — y|n+oz

and that for those values of «,
feL%Pifandonlyif f, Z, f € LP.
From the previous result, we get
Do f = CpanZal,
and thus
feL%Pifand onlyif f, Dy f € LP.

In conclusion, for 0 < a < g, by the characterization theorem the spaces L*” (R") are
independent from the choice of 4 in the aproximation of the identity (S;), and they coincide
with the classical space

L%P = Lo,

Acknowledgments The author is infinitely indebted to his advisors Eleonor ‘Pola’ Harboure and Hugo
Aimar for their guidance and support throughout the development of his doctoral thesis and its resulting
papers.

References

1. Coifman, R.R.: Multiresolution analysis in non homogeneous media. In: Combes, J.M., Grossman,
A., Tchamitchian, P. (eds.) Wavelets, Time Frequency Methods and Phase Space, Proceedings of the
International Conference, Marseille, December 14-18, 1987 (1990 2Nd Ed.), p. 1990. Springer

2. David, G., Journé, J.L., Semmes, S.: Opérateurs de Calderén-Zygmund, conctions para-accrétives et
interpolation. Rev. Mat. Iberoamericana 1, 1-56 (1985)

3. Gatto, A.: On fractional calculus associated to doubling and non-doubling measures, dedicated to S.
Viagi Mathematics Subject Classification (2000)

4. Gatto, A., Segovia, C., Vagi, S.: On fractional differentiation and integration on spaces of homogeneous
type. Revista Matematica Iberoamericana 12, 111-145 (1996)

5. Gogatishvili, A., Koskela, P., Shanmugalingam, N.: Interpolation properties of Besov spaces defined on
metric spaces. (English summary). Math. Nachr. 283(2), 215-231 (2010)

6. Grafakos, L.: Modern Fourier analysis, 3rd edition. Graduate Texts in Mathematics, vol. 250, p. xvi+624.
Springer, New York (2014). ISBN: 978-1-4939-1229-2; 978-1-4939-1230-8

7. Hajtasz, P.: Sobolev spaces on an arbitrary metric space. Potential Anal. 5, 403—415 (1995)

8. Han, Y.S., Sawyer, E.T.: Littlewood Paley theory on spaces of homogeneous type and the classical
function spaces. Mem. Amer. Math. Soc. 110(530) (1994)

@ Springer



Bessel Potentials in Ahlfors Regular Metric Spaces

9. Hartzstein, S.: Acotacién de operadores de Calderén-Zygmund en espacios de Triebel-Lizorkin y de
Besov generalizados sobre espacios de tipo homogéneo. Tesis para la obtencién del Grado Académico
de Doctor en Matematica. Advisor: B. Viviani. Universidad Nacional Del Litoral, Facultad de Ingenieria
Quimica, Argentina (2000)

10. Hartzstein, S., Viviani, B.: Homeomorphisms acting on Besov and Triebel-Lizorkin spaces of local
regularity ¥ (¢). Collect. Math. 56, 27-45 (2005)

11. Hu, J.: A note on Hajtasz-Sobolev spaces on fractals. J. Math. Anal. Appl. 280, 91-101 (2003)

12. Hu, J., Zihle, M.: Potential spaces on fractals. Studia Math. 170, 259-281 (2005)

13. Macias, R.A., Segovia, C.: Lipschitz functions on spaces of homogeneous type. Adv. Math. 33, 257-270
(1979)

14. Stein, E.: Singular Integrals and Differentiability Properties of Functions, p. 1984. Princeton University
Press (1971)

15. Yang, D.: New characterizations of Hajlasz-Sobolev spaces on metric spaces. Sci. China Ser. A 46,
675-689 (2003)

@ Springer



	Bessel Potentials in Ahlfors Regular Metric Spaces
	Abstract
	Introduction
	Preliminaries
	The Geometric Setting
	Aproximations of the Identity
	Calderón Reproducing Formulas
	Singular Integrals
	Besov Spaces
	Sobolev Spaces

	Bessel Potentials
	Potential Spaces L,p
	The Inverse of J
	A Characterization of L,p in Terms of D
	Acknowledgments
	References




