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Abstract In this paper we introduce Bessel potentials and the Sobolev potential spaces
resulting from them in the context of Ahlfors regular metric spaces. The Bessel kernel is
defined using a Coifman type approximation of the identity, and we show integration against
it improves the regularity of Lipschitz, Besov and Sobolev-type functions. For potential
spaces, we prove density of Lipschitz functions, and several embedding results, including
Sobolev-type embedding theorems. Finally, using singular integrals techniques such as the
T 1 theorem, we find that for small orders of regularity Bessel potentials are inversible, its
inverse in terms of the fractional derivative, and show a way to characterize potential spaces,
concluding that a function belongs to the Sobolev potential space if and only if itself and
its fractional derivative are in Lp . Moreover, this characterization allows us to prove these
spaces in fact coincide with the classical potential Sobolev spaces in the Euclidean case.

Keywords Bessel potential · Ahlfors spaces · Fractional derivative · Sobolev spaces ·
Besov spaces
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1 Introduction

Riesz and Bessel potentials of order α > 0 in R
n are defined as the operators Iα =

(−�)−α/2 and Jα = (I −�)−α/2 respectively, where � is the Laplacian and I the identity.
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By means of the Fourier transform, it can be shown they are given by multipliers

(Iαf )∧ (ξ) = (2π |ξ |)−αf̂ (ξ), (Jαf )∧ (ξ) = (1 + 4π2|ξ |2)−α/2f̂ (ξ).

These frequency representations of Riesz and Bessel potentials, as well as of their asso-
ciated fractional differential operators, depend on the existence of Fourier Transforms on
the underlying space. In more general settings alternative tools are needed. Spaces such as
self similar fractals are more general, but are still Ahlfors regular. In spaces with this type
of regularity, scales are a good substitute of frequencies.

Both the Riesz potential and its inverse the fractional derivative Dα = (−�)α/2, which
on the frequency side is given by

(
Dαf

)∧
(ξ) = (2π |ξ |)αf̂ (ξ),

have an immediate generalization to metric measure spaces, as they take the form

Iαf (x) = cα,n

∫
f (y)

|x − y|n−α
dy, Dαf (x) = c̃α,n

∫
f (y) − f (x)

|x − y|n+α
dy,

at least for functions of certain integrability or regularity and α < 2. One can just replace
|x − y|α by a distance or quasi-distance d(x, y)α , Lebesgue measure by a general measure
and |x − y|n by the measure of the ball of center x and radius d(x, y).

For spaces of homogeneous type, fractional integrals (i.e. Riesz potentials) and deriva-
tives, as well as their composition, have been widely studied. In the absence of Fourier
transform, other techniques have been developed, such as the use of a Coifman type approx-
imation of the identity (see for instance [2, 8]). It has been proven that even though the
composition of a fractional integral and a fractional derivative (of the same order) is not nec-
essarily the identity, at least for small orders of regularity it is an inversible singular integral.
See [3, 4] for the study of this composition in L2 and [10] for Besov and Triebel-Lizorkin
spaces.

Bessel potentials have essentially the same local behavior than Riesz potentials, but
behave much better globally. For instance, they are bounded in every Lp space, whereas
Iα is bounded from Lp only to Lq with 1

p
− 1

q
= α

n
. This leads to define potential spaces

Lα,p = Jα(Lp), and these coincide with Sobolev spaces when α is an integer.
For α > 0, as

2−α/2 ≤ 1 + (2π |ξ |)α
(1 + 4π2|ξ |2)α/2

≤ 2,

the composition (I + Dα)Jα is inversible in L2. In fact, as shown in [14], for 1 < p < ∞
and 0 < α < 2,

f ∈ Lα,p if and only if f,Dαf ∈ Lp, (1)

and in terms of Riesz potentials,

f ∈ Lα,p if and only if f ∈ Lp and there exists γ ∈ Lp with f = Iαγ. (2)

Bessel operators have been rarely studied in the metric setting, although in R
n they can

be represented as

Jαf (x) = f ∗ Gα(x) =
∫

f (y)Gα(x − y)dy,

where Gα is a radial function, so their definition does not present a limitation. In this paper
we define Bessel-type potentials using the same construction found in [4].
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A different construction can be found in [12]. Assuming the metric space is endowed
with a stochastically complete heat kernel, the authors construct Bessel operators, prove
they have an inverse, define Sobolev potential spaces and prove embedding theorems.

All the known tools and definitions used in this paper are described in Section 2, such
as approximations of the identity and singular integrals. In Section 3 we define a Bessel-
type potential operator and prove it increases the regularity of Lipschitz, Besov and Sobolev
functions. In Section 4 we describe the potential space obtained with this operator, and find
relationships with Lipschitz, Besov and Sobolev functions, as well as a Sobolev embed-
ding theorem. In Section 5 we prove an inversion result for the Bessel operator using the
techniques from [4, 10]. We finish this paper characterizing the potential space with the
fractional derivative analogous to the Euclidean version in Eq. 1 and with the fractional
integral, analogous to Eq. 2, and analyze the case of Rn.

2 Preliminaries

In this section we describe the geometric setting and basic results from harmonic analysis
on spaces of homogeneous type needed to prove our results.

2.1 The Geometric Setting

We say (X, ρ, m) is a space of homogeneous type if ρ is a quasi-metric on X and m a
measure such that balls and open sets are measurable and there exists a constant C > 0 such
that

mρ(B(x, 2r)) ≤ Cm(Bρ(x, r))

for each x ∈ X and r > 0.
If m({x}) = 0 for each x ∈ X, by [13] there exists a metric d giving the same topology

as ρ and a number N > 0 such that (X, d,m) satisfies

m(Bd(x, 2r)) ∼ rN (3)

for each x ∈ X and 0 < r < diam(X).
Spaces that satisfy condition (3) are called Ahlfors N -regular. Besides Rn (with N = n),

examples include self-similar fractals such as the Cantor ternary set or the Sierpiński gasket.
Throughout this paper we will assume (X, d,m) is Ahlfors N -regular. One useful

property these spaces have is regarding the integrability of the distance function:

–
∫
B(x,r)

d(x, y)sdm(y) < ∞ if and only if −N < s < ∞, and here
∫

B(x,r)

d(x, y)sdm(y) ∼ rs+N ;

–
∫
X\B(x,r)

d(x, y)sdm(y) < ∞ if and only if −∞ < s < −N , and here
∫

X\B(x,r)

d(x, y)sdm(y) ∼ rs+N .

If we add (locally integrable) functions we get

– if −N < s < ∞,
∫

B(x,r)

f (y)d(x, y)sdm(y) ≤ Crs+NMf (x);
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– if −∞ < s < −N ,

∫

X\B(x,r)

f (y)d(x, y)sdm(y) ≤ Crs+NMf (x),

where Mf is the Hardy-Littlewood maximal function of f .

2.2 Aproximations of the Identity

In Ahlfors spaces of infinite measure (and thus unbounded), Coifman-type aproximations
of the identity can be constructed. In this paper we will work with a continuous version, as
presented in [4]. See [8] for the discrete version. The construction is as follows.

Let (X, d,m) be an Ahlfors N -regular space with m(X) = ∞. Let h : [0, ∞) → R be
a non-negative decreasing C∞ function with h ≡ 1 in [0, 1/2] and h ≡ 0 in [2, ∞). For
t > 0 and f ∈ L1

loc, define

– Ttf (x) = 1
tN

∫
X

h
(

d(x,y)
t

)
f (y)dm(y);

– Mtf (x) = ϕ(x, t)f (x), with ϕ(x, t) = 1
Tt 1(x)

;

– Vtf (x) = ψ(x, t)f (x), with ψ(x, t) = 1

Tt

(
1

Tt 1

)
(x)

;

– Stf (x) = MtTtVtTtMtf (x) = ∫
X

s(x, y, t)f (y)dm(y), where

s(x, y, t) = ϕ(x, t)ϕ(y, t)

t2N

∫

X

h

(
d(x, z)

t

)
h

(
d(y, z)

t

)
ψ(z, t)dm(z).

(St )t>0 will be our aproximation of the identity, with kernel s. We now list some of the
properties they possess, they can be found in [4] for the case N = 1.

1. St1 ≡ 1 for all t > 0;
2. s(x, y, t) = s(y, x, t) for x, y ∈ X, t > 0;
3. s(x, y, t) ≤ C/tN for x, y ∈ X, t > 0;
4. s(x, y, t) = 0 if d(x, y) > 4t ;
5. s(x, y, t) ≥ C′/tN if d(x, y) < t/4;
6. |s(x, y, t) − s(x′, y, t)| ≤ C′′ 1

tN+1 d(x, x′);
7. St is linear and continuous from Lp to Lp;
8. Stf → f pointwise when t → 0 if f is continuous;
9. |Stf (x) − f (x)| ≤ Ctγ for each x if f is Lipschitz-γ ;

10. Stf (x) → 0 uniformly in x when t → ∞ if f ∈ L1;
11. s is continuously differentiable with respect to t .

Continuity of a linear operator T from A to B will be denoted throughout this paper
as

T : A → B.

To include an interesting example of an Ahlfors space satisfying m(X) = ∞ (and thus
having a Coifman-type approximation of the identity), we can modify the Sierpiński gasket
T by taking dilations (powers of 2): T̃ = ∪k≥12kT . This T̃ preserves some properties of
the original triangle, including the Ahlfors character.
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2.3 Calderón Reproducing Formulas

With this approximation of the identity (St )t>0 we will construct our Bessel potential Jα .
For the proof relating Jα with the fractional derivative Dα , we will follow the proof for the
fractional integral as presented in [4, 10], which requires the derivative of St (that exists
because s is continuously differentiable with respect to t): let

d

dt
Stf (x) = −1

t
Qtf (x),

so

Qtf (x) =
∫

X

q(x, y, t)f (y)dm(y), with q(x, y, t) = −t
d

dt
s(x, y, t).

Some of their properties mirror those from St and s:

1. Qt1 ≡ 0 for all t > 0;
2. q(x, y, t) = q(y, x, t) for x, y ∈ X, t > 0;
3. |q(x, y, t)| ≤ C/tN for x, y ∈ X, t > 0;
4. q(x, y, t) = 0 if d(x, y) > 4t ;
5. |q(x, y, t) − q(x′, y, t)| ≤ C′ 1

tN+1 d(x, x′);
6. Qt : Lp → Lp;
7. Calderón-type reproducing formulas. (see [1])

f =
∫ ∞

0
Qtf

dt

t
, f =

∫ ∞

0

∫ ∞

0
QtQsf

dt

t

ds

s
.

2.4 Singular Integrals

In Ahlfors N -regular spaces, the following version of the T 1 theorem hold (see for instance
[3]). Once again we require m(X) = ∞.

A continuous function K : X × X\� → R (where � = {(x, x) : x ∈ X}) is a standard
kernel if there exist constants 0 < η ≤ 1, C > 0 such that

– |K(x, y)| ≤ Cd(x, y)−N ;
– for x = y, d(x, x′) ≤ cd(x, y) (with c < 1) we have

|K(x, y) − K(x′, y)| ≤ Cd(x, x′)ηd(x, y)−(N+η);
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– for x = y, d(y, y′) ≤ cd(x, y) (with c < 1) we have

|K(x, y) − K(x, y′)| ≤ Cd(y, y′)ηd(x, y)−(N+η).

Let C
γ
c denote the space of Lipschitz-γ functions with compact support. A linear contin-

uous operator T : C
γ
c → (C

γ
c )′ for 0 < γ ≤ 1 is a singular integral operator with associated

standard kernel K if it satisfies

〈Tf, g〉 =
∫∫

K(x, y)f (y)g(x)dm(y)dm(x),

for f, g ∈ C
γ
c with disjoint supports. If a singular integral operator can be extended to a

bounded operator on L2 it is called a Calderón-Zygmund operator or CZO.
Every CZO is bounded in Lp for 1 < p < ∞, of weak type (1, 1), and bounded from

L∞ to BMO.
The T 1 theorem characterizes CZO’s. We say that an operator is weakly bounded if

|〈Tf, g〉| ≤ Cm(B)1+2γ /N [f ]γ [g]γ ,

for f, g ∈ C
γ
c (B), for each ball B.

Theorem 2.1 (T1) Let T be a singular integral operator. Then T is a CZO if and only if
T 1, T ∗1 ∈ BMO and T is weakly bounded.

2.5 Besov Spaces

In metric measure spaces (X, d,m), Besov spaces can be defined through a modulus of
continuity, as seen in [5]. For 1 ≤ p < ∞ and t > 0, the p-modulus of continuity of a
locally integrable function f is defined as

Epf (t) =
(∫

X

 
B(x,t)

|f (x) − f (y)|pdm(y)dm(x)

)1/p

,

where
ffl
A

f dm denotes the average 1
m(A)

∫
A

f dm, and the Besov space Bα
p,q for α > 0 and

1 ≤ q ≤ ∞ is the space of functions f with the following finite norm

‖f ‖Bα
p,q

= ‖f ‖p +
(∫ ∞

0
t−αqEpf (t)q

dt

t

)1/q

(with the usual modification for q = ∞).
For the case p = q, if the measure is doubling, an equivalent definition of the norm is

‖f ‖Bα
p,q

= ‖f ‖p +
(∫∫ |f (x) − f (y)|p

d(x, y)αpm(B(x, d(x, y))
dm(y)dm(x)

)1/q

.

2.6 Sobolev Spaces

A way of defining Sobolev spaces in arbitrary metric measure spaces is Hajłasz approach
(introduced in [7] for the case β = 1, see [11, 15] for a more general case): a nonnegative
function g is a β-Hajłasz gradient of a function f it the following inequality holds for almost
every pair x, y ∈ X

|f (x) − f (y)| ≤ d(x, y)β(g(x) + g(y)).
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For 1 ≤ p ≤ ∞, the Hajłasz-Sobolev (fractional) space Mβ,p is defined as the space of
functions f ∈ Lp that have a gradient in Lp . Its norm is defined as

‖f ‖Mβ,p = ‖f ‖p + inf
g

‖g‖p

where the infimum is taken over all β-Hajłasz gradients of f .
For the case p = ∞, the space Mβ,∞ coincides with the space Cβ of bounded Lipschitz-

β functions.
Functions with β-Hajłasz gradients satisfy the following Poincaré inequality 

B

|f − fB |dm ≤ Cdiam(B)β
 

B

gdm,

for all balls B (again, see [7] for the case β = 1).
If the measure is doubling and 1 ≤ p < ∞, then the following relationships hold

between Besov and Sobolev spaces, for β > 0 and 0 < ε < β

Bβ
p,p ↪→ Mβ,p ↪→ Bβ−ε

p,p

(see [5]). Here the expression A ↪→ B means A ⊂ B with continuous inclusion.

3 Bessel Potentials

In this section we define the kernel kα(x, y), to replace the convolution kernel Gα in the
definition of Jα , and prove some properties this new Bessel-type potential operator Jα

possesses, emulating those from Jα .
The convolution kernel Gα takes the form

Gα(x − y) = cn,α

∫ ∞

0

(
tαe−t2

)(

t−ne
− 1

4

( |x−y|
t

)2
)

dt

t
,

where ϕt (x) = t−ne
− 1

4

( |x−y|
t

)2

is the Gaussian approximation of the identity. This provides
us with a way to define the kernel in our context.

Let (X, d,m) be our fixed Ahlfors N -regular space with m(X) = ∞, and (St )t>0 an
approximation of the identity as constructed in the previous section.

For α > 0, we define

kα(x, y) = α

∫ ∞

0

tα

(1 + tα)2
s(x, y, t)

dt

t
.

Observe that the factor multiplying the approximation of the identity is tα

(1+tα)2 , as

opposed to tαe−t2
in Gα . It presents the same local behaviour, but near infinity it has only

integrable decay. However, the properties obtained for kα will be sufficient for our purposes.
The following properties follow immediately from definition and the properties of the

kernel s, listed in Section 2.

Lemma 3.1 kα satisfies:

1. kα ≥ 0;
2. kα(x, y) = kα(y, x)

3. kα(x, y) ≤ Cd(x, y)−(N−α);
4. kα(x, y) ≤ Cd(x, y)−(N+α) if d(x, y) ≥ 4;
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5. |kα(x, z) − kα(y, z)| ≤ Cd(x, y)(d(x, z) ∧ d(y, z))−(N+1−α);
6. |kα(x, z) − kα(y, z)| ≤ Cd(x, y)(d(x, z) ∧ d(y, z))−(N+1+α) if d(x, z) ≥ 4 and

d(y, z) ≥ 4;
7.

∫
X

kα(x, z)dm(z) = ∫
X

kα(z, y)dm(z) = 1 ∀x, y.

All results that will be presented in Sections 3 and 4 involving the kernel kα can be
derived from just these properties. The actual need for the definition will become clear in
Section 5.

We are now able to define our Bessel potential

Jαg(x) =
∫

X

g(z)kα(x, z)dm(z).

Observe that from property 7 of the last lemma, we get

‖Jαg‖p ≤ ‖g‖p

for 1 ≤ p ≤ ∞.
As expected, we can compare this operator with the Riesz potential, which is be defined

from the kernel

k′
α(x, y) =

∫ ∞

0
αtαs(x, y, t)

dt

t
∼ 1

d(x, y)N−α

as

Iαf (x) =
∫

X

f (y)k′
α(x, y)dm(y),

(see [4]) and we obtain |Jαg(x)| ≤ CIα|g|(x).
We now proceed to prove Jα improves regularity on Lipschitz, Besov and Hajłasz-

Sobolev functions. We start with the Lipschitz case

Proposition 3.2 If f = Jαg and α + β < 1 for α, β > 0,

|f (x) − f (y)| ≤ C[g]βd(x, y)α+β .

In particular, as Jα is bounded in L∞,

Jα : Cβ → Cα+β .

Proof We will prove only the first part, the second follows immediately. What we will show
also holds true for Iα , as shown in [4]. As

∫
kα = 1, we have

f (x) − f (y) =
∫

X

g(z) (kα(x, z) − kα(y, z)) dm(z)

=
∫

X

(g(z) − g(x)) (kα(x, z) − kα(y, z)) dm(z),

and if we call d = d(x, y)

|f (x) − f (y)| ≤ C

∫

B(x,2d)

|g(x) − g(z)|
d(x, z)N−α

dm(z)

+C

∫

B(y,3d)

|g(x) − g(z)|
d(y, z)N−α

dm(z)

+C

∫

X\B(x,2d)

|g(z) − g(x)| |kα(x, z) − kα(y, z)| dm(z)

= I + II + III.
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Then for I and II , as α, β > 0,

I ≤ C[g]β
∫

B(x,2d)

d(x, z)β

d(x, z)N−α
dm(z) ≤ C[g]βdα+β,

II ≤ C[g]βdβ

∫

B(y,3d)

1

d(y, z)N−α
dm(z) ≤ C[g]βdα+β.

Finally, as d(x, z) ∼ d(y, z) for z ∈ X\B(x, 2d), and as α + β < 1,

III ≤ C[g]βd

∫

X\B(x,2d)

d(x, z)βd(x, z)−(N+1−α)dm(z) ≤ C[g]βdα+β .

Before proving the increase in Besov regularity, we need the following lemma, that
follows from properties 3 and 5 of 31:

Lemma 3.3 For q > 0 and x, y ∈ X,

– if q(N − α) < N ,
∫

d(x,z)<2d(x,y)

|kα(x, z) − kα(y, z)|qdm(z) ≤ Cd(x, y)N−q(N−α);

– if N < q(N − α + 1),
∫

d(x,z)≥2d(x,y)

|kα(x, z) − kα(y, z)|qdm(z) ≤ Cd(x, y)N−q(N−α).

Proposition 3.4 If f = Jαg and α + β < 1 for α, β > 0,
∫∫

X×X

|f (x) − f (y)|p
d(x, y)N+(α+β)p

dm(y)dm(x) ≤ C

∫∫

X×X

|g(x) − g(z)|p
d(x, z)N+βp

dm(z)dm(x).

In particular, as Jα is bounded in Lp ,

Jα : Bβ
p,p → Bα+β

p,p .

Proof Using
∫

kα = 1, by Hölder’s inequality we have

|f (x) − f (y)|p ≤ C

(∫

B(x,2d(x,y))

|g(x) − g(z)|p|kα(x, z) − kα(y, z)|dm(z)

)

×
(∫

B(x,2d(x,y))

|kα(x, z) − kα(y, z)|dm(z)

)p/p′

+C

(∫

B(x,2d(x,y))c
|g(x) − g(z)|p|kα(x, z) − kα(y, z)|θpdm(z)

)

×
(∫

B(x,2d(x,y))c
|kα(x, z) − kα(y, z)|(1−θ)p′

dm(z)

)p/p′

.
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By the previous lemma, if we find 0 ≤ θ ≤ 1 such that N < (1 − θ)p′(N − α + 1), we get

|f (x) − f (y)|p ≤ Cd(x, y)pα−α

∫

B(x,2d(x,y))

|g(x) − g(z)|p|kα(x, z) − kα(y, z)|dm(z)

+Cd(x, y)−N+pα+θp(N−α)

×
∫

B(x,2d(x,y))c
|g(x) − g(z)|p|kα(x, z) − kα(y, z)|θpdm(z).

With this, to conclude the theorem it will be enough to prove

∫

d(x,z)<2d(x,y)

|kα(x, z) − kα(y, z)|
d(x, y)N+βp+α

dm(y) ≤ C
1

d(x, z)N+βp
.

and for the other part

∫

d(x,z)≥2d(x,y)

|kα(x, z) − kα(y, z)|θp
d(x, y)2N+βp−θp(N−α)

dm(y) ≤ C
1

d(x, z)N+βp
.

• For the first one, if d(x, z) < 2d(x, y) then d(y, z) < 3d(x, y) and by using the bound
for kα ,

∫

d(x,z)<2d(x,y)

|kα(x, z) − kα(y, z)|
d(x, y)N+βp+α

dm(y)

≤ C

∫

d(x,z)<2d(x,y)

1

d(x, y)N+βp+α

(
1

d(x, z)N−α
+ 1

d(y, z)N−α

)
dm(y),

then we consider two cases,

– if d(y, z) < 3
2d(x, z) < 3d(x, y), then

∫

d(y,z)< 3
2 d(x,z)<3d(x,y)

1

d(x, y)N+βp+α

(
1

d(x, z)N−α
+ 1

d(y, z)N−α

)
dm(y)

≤ C
1

d(x, z)N+βp+α

∫

d(y,z)< 3
2 d(x,z)

1

d(y, z)N−α
dm(y)

≤ C
1

d(x, z)N+βp
;

– if 3
2d(x, z) ≤ d(y, z) < 3d(x, y),

∫

3
2 d(x,z)≤d(y,z)<3d(x,y)

1

d(x, y)N+βp+α

(
1

d(x, z)N−α
+ 1

d(y, z)N−α

)
dm(y)

≤ C
1

d(x, z)N−α

∫

d(x,y)>d(x,z)/2

1

d(x, y)N+βp+α
dm(y)

≤ C
1

d(x, z)N+βp
.
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• For the second one, if d(x, z) ≥ 2d(x, y), then d(x, z) ∼ d(y, z) and by property 5 in
31,

∫

d(x,z)≥2d(x,y)

|kα(x, z) − kα(y, z)|θp
d(x, y)2N+βp−θp(N−α)

dm(y)

≤ C
1

d(x, z)θp(N−α+1)

∫

d(x,z)≥2d(x,y)

d(x, y)θp

d(x, y)2N+βp−θp(N−α)
dm(y)

≤ C
1

d(x, z)N+βp

as long as N + βp < θp(N − α + 1).

Finally, both conditions over θ can be rewritten as

N + βp < θp(N − α + 1) < N + (1 − α)p,

and there is always a value for θ satisfying them, for β < 1 − α.

We have now the following result regarding Sobolev regularity.

Proposition 3.5 Let f, g satisfy, for a.e. x, y,

|f (x) − f (y)| ≤ d(x, y)β(g(x) + g(y)),

with g ≥ 0, β > 0. Then for α > 0 and α + β < 1,

|Jαf (x) − Jαf (y)| ≤ Cd(x, y)α+β(Mg(x) + Mg(y)).

In particular, if p > 1,

Jα : Mβ,p → Mα+β,p.

Proof Once again, using
∫

kα = 1, and proceeding as in the Lipschitz case,

|Jαf (x) − Jαf (y)| ≤
∫

X

|f (x) − f (z)||kα(x, z) − kα(y, z)|dm(z)

≤ C

∫

B(x,2d(x,y))

d(x, z)β(g(x)

+g(z))

(
1

d(x, z)N−α
+ 1

d(y, z)N−α

)
dm(z)

+C

∫

B(x,2d(x,y))c
d(x, z)β(g(x) + g(z))

d(x, y)

d(x, z)N−α+1
dm(z)

≤ Cg(x)d(x, y)α+β + Cd(x, y)α+βMg(x)

+Cd(x, y)βg(x)d(x, y)α + Cd(x, y)βMg(y)d(x, y)α

+Cd(x, y)g(x)
1

d(x, y)1−(α+β)
+ Cd(x, y)

1

d(x, y)1−(α+β)
Mg(x)

≤ Cd(x, y)α+β(Mg(x) + Mg(y)).
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4 Potential Spaces Lα,p

In this section we define potential spaces Lα,p and see they are Banach spaces. We prove
they are embedded in certain Sobolev and Besov spaces, and that Lipschitz functions are
dense. We finish the section with Sobolev-type embedding theorems for Lα,p.

For α > 0, we define the potential space

Lα,p(X) = {f ∈ Lp : ∃g ∈ Lp, f = Jαg} = Jα(Lp)

and equip it with the following norm

‖f ‖α,p = ‖f ‖p + inf
g∈J−1

α ({f })
‖g‖p.

Proposition 4.1 Lα,p is Banach.

Proof To prove completeness, we will show the convergence of every absolutely convergent
series. Let (fn) be a sequence in Lα,p such that

∑

n

‖fn‖α,p < ∞.

In particular,
∑

n ‖fn‖p < ∞, so the series
∑

n fn converges in Lp to some function f .
For each n, take gn in Lp with fn = Jαgn and

‖gn‖p ≤ ‖fn‖α,p + 2−n,

then clearly
∑

n ‖gn‖p < ∞ and
∑

n gn converges to some g ∈ Lp . Finally, as Jα is
continuous in Lp ,

f =
∑

n

fn =
∑

n

Jαgn = Jα

(
∑

n

gn

)

= Jαg

so f ∈ Lα,p , and
∥∥
∥∥∥
f −

n∑

k=1

fk

∥∥
∥∥∥

α,p

≤
∥∥
∥∥∥
f −

n∑

k=1

fk

∥∥
∥∥∥

p

+
∥∥
∥∥∥
g −

n∑

k=1

gk

∥∥
∥∥∥

p

→ 0.

Remark 4.2 ‖Jαg‖α,p ≤ 2‖g‖p, so it is continuous from Lp onto Lα,p. In particular,
as L∞ ∩ Lp is dense in Lp for 1 ≤ p ≤ ∞, we get that Jα(L∞ ∩ Lp) is dense in
Lα,p .

The following theorem shows that ‘potential functions’ have Hajłasz gradients, and this
leads to some interesting results, such as Lipschitz density and embeddings in Sobolev
spaces.

Theorem 4.3 Let f = Jαg for some g such that f is finite a.e.. Then if 0 < α < 1,

|f (x) − f (y)| ≤ Cαd(x, y)α(Mg(x) + Mg(y))

for every x, y outside a set of measure zero. If α ≥ 1, then for each β < 1 we get

|f (x) − f (y)| ≤ Cα,βd(x, y)β(Mg(x) + Mg(y))

for every x, y outside a set of measure zero.
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Proof Assume first α < 1. Let d = d(x, y),

|f (x) − f (y)| ≤
∫

X

|g(z)||kα(x, z) − kα(y, z)|dm(z)

≤
∫

B(x,2d)

+
∫

X\B(x,2d)

= I + II.

In I we have

I ≤ C

∫

B(x,2d)

|g(z)| 1

d(x, z)N−α
dm(z) + C

∫

B(y,3d)

|g(z)| 1

d(y, z)N−α
dm(z)

≤ Cdα(Mg(x) + Mg(y)),

and for II , as d(x, z) ∼ d(y, z) we get

II ≤ Cd

∫

B(x,2d)c
|g(z)|d(x, z)−(N+1−α)dm(z)

≤ Cdd−(1−α)Mg(x) = CdαMg(x).

Let now α ≥ 1 and fix 0 < β < 1. Observe that the bound for I also holds in this case, and
for d(x, y) < 1 we get

I ≤ Cdα(Mg(x) + Mg(y)) ≤ Cdβ(Mg(x) + Mg(y)).

We now divide X\B(x, 2d) in two regions (and use in both cases the fact that d(x, z) ∼
d(y, z))

∫

2d≤d(x,z)<5
|g(z)| d

d(x, z)N−α+1
dm(z) ≤

∫

2d≤d(x,z)<5
|g(z)| dβ

d(x, z)N−(α−β)
dm(z)

≤ CdβMg(x);
and if d(x, z) ≥ 5, as d(y, z) ≥ 4 we can use the other bound for differences of kα (property
6 in 31) ∫

d(x,z)≥5
|g(z)| d

d(x, z)N+α+1
dm(z) ≤ CdMg(x) ≤ CdβMg(x).

Finally, if d(x, y) ≥ 1, as |f | ≤ Mg,

|f (x) − f (y)| ≤ C(Mg(x) + Mg(y)) ≤ Cd(x, y)β(Mg(x) + Mg(y)).

Corollary 4.4 Let 1 < p < ∞. If 0 < α < 1, then Lα,p ↪→ Mα,p . For α ≥ 1, Lα,p ↪→
Mβ,p for all 0 < β < 1.

Corollary 4.5 Let p = ∞. If 0 < α < 1, then Lα,∞ ↪→ Cα . For α ≥ 1, Lα,∞ ↪→ Cβ for
all 0 < β < 1. In particular, functions in Lα,∞ are continuous for all α > 0 (after eventual
modification on a null set).

From this last result and Remark 4.2, we get the following density property.

Corollary 4.6 Let 1 ≤ p ≤ ∞ and α > 0. Then Cβ ∩ Lα,p is dense in Lα,p for all
0 < β ≤ α if α < 1, and for all 0 < β < 1 if α ≥ 1.

As a last corollary of Theorem 4.3, since Mg is a Hajłasz gradient for potential functions,
we get the following Poincaré inequality.
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Corollary 4.7 Let 0 < α < 1 and f = Jαg for some g such that f ∈ L1
loc, then for each

ball B we get  
B

|f − fB | ≤ Cdiam(B)α
 

B

Mg.

Now, regarding Besov spaces, as Mα,p ↪→ Bα−ε
p,p for 1 ≤ p < ∞ and 0 < ε < α, from

45 we obtain for α < 1 Lα,p ↪→ Bα−ε
p,p . This also holds true for Bα−ε

p,q . First, a lemma.

Lemma 4.8 Let 0 < α < 1 and q > 0 satifying q(N − α) < N < q(N + q − α). Then
there exists C > 0 such that, for every z ∈ X and t > 0

∫

X

 
B(x,t)

|kα(x, z) − kα(y, z)|qdm(y)dm(x) ≤ CtN−q(N−α).

Proof Consider
A1 = {(x, y) : d(x, y) < t, d(x, z) < 2t};
A2 = {(x, y) : d(x, y) < t, 2t ≤ d(x, z)}.

Integrating over A1, we get
∫∫

A1

1

tN
|kα(x, z) − kα(y, z)|qdm(y)dm(x) ≤ C

∫

B(z,3t)

|kα(x, z)|qdm(x)

≤ C

∫

B(z,3t)

1

d(x, z)q(N−α)
dm(x)

≤ CtN−q(N−α),

and the last inequality holds because N > q(N − α).
In A2 we have d(x, z) ∼ d(y, z), and then, as d(x, y) < t ,

∫∫

A2

1

tN
|kα(x, z) − kα(y, z)|qdm(y)dm(x) ≤ Ctq

∫∫

A2

1

tN

1

d(x, z)q(N+1−α)
dm(y)dm(x)

≤ Ctq
∫

X\B(z,2t)

1

d(x, z)q(N+1−α)
dm(x)

≤ CtqtN−q(N+1−α) ≤ CtN−q(N−α),

given N < q(N + 1 − α).

Proposition 4.9 Let f = Jαg, 0 < α < 1 and 1 ≤ p ≤ ∞, then for t > 0 we get

Epf (t) ≤ Ctα‖g‖p

Proof If p < ∞,

|f (x) − f (y)|p ≤
(∫

X

|kα(x, z) − kα(y, z)| 1
p

+ 1
p′ |g(z)|dm(z)

)p

≤
(∫

X

|kα(x, z) − kα(y, z)||g(z)|pdm(z)

)

×
(∫

X

|kα(x, z) − kα(y, z)|dm(z)

)p/p′

.
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By Lemma 3.3 for q = 1, as d(x, y) < t and α < 1,
∫

X

|kα(x, z) − kα(y, z)|dm(z) ≤ Ctα

so
∫

X

 
B(x,t)

|f (x) − f (y)|pdm(y)dm(x)

≤ Ctαp/p′
∫

X

(∫

X

 
B(x,t)

|kα(x, z) − kα(y, z)|dm(y)dm(x)

)
|g(z)|pdm(z)

and by Lemma 4.8 (also taking q = 1)
∫

X

 
B(x,t)

|f (x) − f (y)|pdm(y)dm(x) ≤ Ctαp/p′
tα‖g‖p

p = Ctαp‖g‖p
p.

For p = ∞, as α < 1,

E∞f (t) = sup
d(x,y)<t

|f (x) − f (y)|

≤ C sup
d(x,y)<t

d(x, y)α(Mg(x) + Mg(y))

≤ Ctα‖g‖∞.

We can now conclude the following embedding in Besov spaces.

Corollary 4.10 Let 1 ≤ p ≤ ∞ and 0 < α < 1. Then for 1 ≤ q < ∞ and 0 < ε < α we
have Lα,p ↪→ Bα−ε

p,q . For q = ∞ we obtain Lα,p ↪→ Bα
p,∞.

Proof Let f = Jαg. By the previous proposition, if q = ∞,

‖f ‖Bα
p,∞ = ‖f ‖p + sup

t>0
t−αEpf (t) ≤ C‖f ‖α,p.

And for 1 ≤ q < ∞, as we also have Epf ≤ C‖f ‖p,

‖f ‖Bα−ε
p,q

≤ C‖f ‖p + C

(∫ 1

0
t−(α−ε)qEpf (t)q

dt

t

)1/q

≤ C‖f ‖p + C‖g‖p

(∫ 1

0
tεq

dt

t

)

≤ C

ε1/q
‖f ‖α,p.

We finish this section with Sobolev-type embedding theorems for potential spaces. First
we need a lemma.

Lemma 4.11 For α > 0 and q > 0 satisfying q(N − α) < N < q(N + α), there exists
C > 0 such that for every x ∈ X,

∫

X

kα(x, y)qdm(y) ≤ C < ∞.
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Proof By Lemma 3.1,

kα(x, y)q ≤ C
χB(x,4)(y)

d(x, y)q(N−α)
+ C

χX\B(x,4)(y)

d(x, y)q(N+α)
,

and restrictions over q guarantee integrability.

Theorem 4.12 Let 1 < p < ∞ and α > 0. The following embeddings hold for Lα,p

a. If p < N
α
,

Lα,p ↪→ Lq

for p ≤ q ≤ p∗ where 1
p∗ = 1

p
− α

N
.

b. If p = N
α
, then for p ≤ q < ∞,

Lα,p ↪→ Lq.

If in addition α < 1,

Lα,p ↪→ BMO.

c. If p > N
α
,then for p ≤ q ≤ ∞

Lα,p ↪→ Lq.

If in addition α < 1 + N/p,

Lα,p ↪→ Cα−N/p.

Proof a. We know Lα,p ↪→ Lp (for ‖f ‖p ≤ ‖f ‖α,p), then if we prove Lα,p ↪→ Lp∗,
by an interpolation argument we are done. This follows from |Jαf | ≤ CIα|f |, as
(N − α)p′ > N and for any t > 0 we get

|Jαf (x)| ≤ C

∫

B(x,t)

|f (y)|
d(x, y)N−α

dm(y) + C

∫

X\B(x,t)

|f (y)|
d(x, y)N−α

dm(y)

≤ CtαMf (x) + Ct(N−(N−α)p′)/p′ ‖f ‖p

= CtαMf (x) + Ct−N/p∗‖f ‖p.

This last expression attains its minimum for t = CMf (x)−p/N‖f ‖p/N
p , and for this

value of t we obtain

|Jαf (x)| ≤ CMf (x)p/p∗‖f ‖1−p/p∗
p ,

and as p > 1, boundedness of the maximal function implies
∫

X

|Jαf |p∗
dm ≤ C‖f ‖p∗−p

p

∫

X

(Mf )pdm ≤ C‖f ‖p∗
p .

b. Let N/α = p < q < ∞, so there exists a > 1 such that

1 + 1

q
= α

N
+ 1

a
.

In particular a(N − α) < N (and also N < a(N + α), as a > 1), so by the previous
lemma ∫

X

kα(x, y)adm(y) ≤ C < ∞.
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Let now f = Jαg with g ∈ Lp , as 1
q ′ = 1

p′ + 1
a′ by Hölder’s inequality we obtain the

following Young-type inequality

|f (x)| ≤
∫

X

kα(x, y)a/q+a/p′ |g(y)|p/q+p/a′
dm(y)

≤
(∫

X

kα(x, y)a |g(y)|pdm(y)

)1/q (∫

X

|g(y)|pdm(y)

)1/a′

×
(∫

X

kα(x, y)adm(y)

)1/p′

≤ C‖g‖p/a′
p

(∫

X

kα(x, y)a |g(y)|pdm(y)

)1/q

(here we use a/q + a/p′ = 1 and p/q + p/a′ = 1) and
∫

X

|f (x)|qdm(x) ≤ C‖g‖qp/a′
p

∫

X

∫

X

kα(x, y)a |g(y)|pdm(y)dm(x)

≤ C‖g‖p(q/a′+1)
p = C‖g‖q

p.

Moreover, if α < 1, by Poincaré inequality for any ball B,
 

B

|f − fB | ≤ Cdiam(B)α
 

B

Mg ≤ Cm(B)α/N

( 
B

(Mg)N/α

)α/N

≤ C

(∫

B

(Mg)N/α

)α/N

≤ C‖g‖N/α

and we conclude

‖f ‖BMO ≤ C‖f ‖α,N/α.

c. For the first part, again by interpolation it is enough to prove Lα,p ↪→ L∞. If f = Jαg

with g ∈ Lp,

|f (x)| = |Jαg(x)| ≤
∫

X

kα(x, y)|g(y)|dm(y)

≤ ‖g‖p

(∫

X

kα(x, y)p
′
dm(y)

)1/p′

≤ C‖g‖p ≤ C‖f ‖α,p

as long as p′(N − α) < N < p′(N + α). The second inequality is trivial for p′ ≥ 1
and the first one is equivalent to pα > N .

Assume now α < 1 + N/p. Then

|f (x) − f (y)| ≤
∫

X

|kα(x, z) − kα(y, z)||g(z)|dm(z)

≤ ‖g‖p

(∫

X

|kα(x, z) − kα(y, z)|p′
dm(z)

)1/p′

≤ C‖g‖pd(x, y)
N−p′(N−α)

p′ = C‖g‖pd(x, y)α−N/p

if p′(N − α) < N < p′(N − α + 1). The first inequality is once again equivalent to
p > N/α, and the second to α < 1 + N/p.

Author's personal copy



M. A. Marcos

5 The Inverse of Jα

In this section, with the fractional derivative Dα as defined in [4], we prove conditions for
the composition (I + Dα)Jα to be inversible in Lp for 1 < p < ∞, which in turn will lead
to inversibility of Jα . We follow the techniques used in [9], proving

‖I − (I + Dα)Jα‖Lp→Lp < 1

by rewriting the operators in terms of (Qt )t>0 instead of (St )t>0, and applying the T 1
theorem for Ahlfors spaces (see [3]).

Let α > 0. Define

nα(x, y) =
∫ ∞

0
αt−αs(x, y, t)

dt

t
.

This kernel satisfies

nα(x, y) ∼ 1

d(x, y)N+α

and
|nα(x, y) − nα(x′, y)| ≤ Cd(x, x′)(d(x, y) ∧ d(x′, y))−(N+1+α).

The fractional derivative can be then defined as

Dαf (x) =
∫

X

nα(x, y)(f (x) − f (y))dm(y)

(see [4]), whenever this integral makes sense (for instance if f has sufficient regularity of
Lipschitz or Besov type).

Let us now rewrite the operators with Qt = −t d
dt

St . Assume f ∈ C
γ
c for some α < γ ≤

1, then

Jαf (x) =
∫

X

kα(x, y)f (y)dm(y) =
∫

X

∫ ∞

0

αtα−1

(1 + tα)2
s(x, y, t)f (y)dtdm(y)

=
∫ ∞

0

αtα−1

(1 + tα)2
Stf (x)dt =

∫ ∞

0

d

dt

(
1

1 + t−α

)
Stf (x)dt

= Stf (x)

1 + t−α

∣
∣∣∣

∞

0
+

∫ ∞

0

1

1 + t−α

(
−t

d

dt
Stf (x)

)
dt

t

=
∫ ∞

0

1

1 + t−α
Qtf (x)

dt

t

where we have used Stf → f when t → 0 and Stf → 0 when t → ∞.
On the other hand, we obtain

Dαf (x) =
∫

X

nα(x, y)(f (x) − f (y))dm(y)

=
∫

X

∫ ∞

0
αt−α−1s(x, y, t)(f (x) − f (y))dtdm(y)

=
∫ ∞

0
αt−α−1(f (x) − Stf (x))dt =

∫ ∞

0

d

dt

(
t−α

)
(Stf (x) − f (x))dt

= (Stf (x) − f (x))

tα

∣
∣∣∣

∞

0
+

∫ ∞

0
t−α

(
−t

d

dt
Stf (x)

)
dt

t

=
∫ ∞

0
t−αQtf (x)

dt

t
,
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where we have used that Stf → 0 when t → ∞ and that |Stf (x) − f (x)| ≤ Ctγ . Since
we also have

f (x) = −
∫ ∞

0

d

dt
Stf (x)dt =

∫ ∞

0
Qtf (x)

dt

t
,

we get

(I + Dα)f (x) =
∫ ∞

0
(1 + t−α)Qtf (x)

dt

t
.

This way,

(I + Dα)Jαf =
∫ ∞

0

∫ ∞

0

1 + s−α

1 + t−α
QsQtf

dt

t

ds

s
,

and as we also have

f =
∫ ∞

0

∫ ∞

0
QsQtf

dt

t

ds

s
,

we conclude

(I − (I + Dα)Jα)f =
∫ ∞

0

∫ ∞

0

(
1 − 1 + s−α

1 + t−α

)
QsQtf

dt

t

ds

s

=
∫ ∞

0

∫ ∞

0

t−α − s−α

1 + t−α
QsQtf

dt

t

ds

s

=
∫ ∞

0
(1 − vα)

(∫ ∞

0

1

1 + (uv)α
QuQuvf

du

u

)
dv

v
.

For each v > 0 we define

Tα,vf =
∫ ∞

0

1

1 + (uv)α
QuQuvf

du

u
,

and, following [9], if we can prove

‖Tα,vf ‖p ≤ Cα,p(v)‖f ‖p,

with ∫ ∞

0
|1 − vα|Cα,p(v)

dv

v
< 1

for α small enough, we will obtain

‖(I − (I + Dα)Jα)f ‖p ≤
∫ ∞

0
|1 − vα|‖Tv,αf ‖p

dv

v
< ‖f ‖p

and therefore (I + Dα)Jα will be inversible for those values of α.
To prove the boundedness of Tα,v , we will use the T 1 theorem as presented in 21. As a

first step, we need to show Tα,v is a singular integral operator, for which we need to find its
kernel.

Lemma 5.1 For u, v > 0, x, z ∈ X,
∣∣∣
∣

∫

X

q(x, y, u)q(y, z, uv)dm(y)

∣∣∣
∣ ≤ C

(
v ∧ 1

vN+1

)
1

uN
χ(

d(x,z)
4(v+1)

,∞
)(u).

As a consequence,
∣∣∣
∣

∫ ∞

0

1

1 + (uv)α

∫

X

q(x, y, u)q(y, z, uv)dm(y)
du

u

∣∣∣
∣ ≤ C

(
v ∧ 1

v

)
1

d(x, z)N
.
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Proof The second inequality follows immediately from the first one. For this one, as

q(x, y, u) = 0 when d(x, y) ≥ 4u; q(y, z, uv) = 0 when d(y, z) ≥ 4uv,

for the product to be non zero d(x, z) < 4u(v + 1) must hold. If v ≥ 1, as we have that∫
X

q(x, y, u)q(x, z, uv)dm(y) = 0,
∣
∣
∣
∣

∫

X

q(x, y, u)q(y, z, uv)dm(y)

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

X

q(x, y, u)(q(y, z, uv) − q(x, z, uv))dm(y)

∣
∣
∣
∣

≤ C

∫

B(x,4u)

1

uN

d(x, y)

(uv)N+1
dm(y) ≤ C

1

uN

1

vN+1
;

and if v < 1, as
∫
X

q(x, z, u)q(y, z, uv)dm(y) = 0,
∣
∣
∣
∣

∫

X

q(x, y, u)q(y, z, uv)dm(y)

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

X

(q(x, y, u) − q(x, z, u))q(y, z, uv)dm(y)

∣
∣
∣
∣

≤ C

∫

B(z,4uv)

d(y, z)

uN+1

1

(uv)N
dm(y) ≤ C

1

uN
v.

Let now f, g ∈ C
β
c with disjoint supports, and let x ∈ supp(g). Then

Tα,vf (x) =
∫ ∞

0

1

1 + (uv)α
QuQuvf

du

u

=
∫ ∞

0

1

1 + (uv)α

(∫

X

q(x, y, u)

(∫

X

q(y, z, uv)f (z)dm(z)

)
dm(y)

)
du

u

and from the previous lemma we have this integral converges absolutely, so we can change
the order of integration and obtain

〈
Tα,vf, g

〉 =
∫

X

∫

X

Nα,v(x, z)f (z)g(x)dm(z)dm(x),

where

Nα,v(x, z) =
∫ ∞

0

1

1 + (uv)α

∫

X

q(x, y, u)q(y, z, uv)dm(y)
du

u
.

From the previous lemma, Nα,v(x, z) ≤ C
(
v ∧ 1

v

)
1

d(x,z)N
. To see that Tα,v is a singular

integral operator we need to check the smoothness conditions for the kernel Nα,v .

Lemma 5.2 For u, v > 0, x, x′, z ∈ X and 0 < δ < 1, it holds
∣∣
∣∣

∫

X

(q(x, y, u) − q(x′, y, u))q(y, z, uv)dm(y)

∣∣
∣∣

≤ C

(
d(x, x′)

u

)1−δ (
vδ ∧ 1

vN+1

)
1

uN
χ(

d(x,z)∧d(x′,z)
4(v+1)

,∞
)(u).

From this we obtain
∣
∣∣∣

∫ ∞

0

1

1 + (uv)α

∫

X

(q(x, y, u) − q(x′, y, u))q(y, z, uv)dm(y)
du

u

∣
∣∣∣

≤ C
d(x, x′)1−δ

(d(x, z) ∧ d(x′, z))N+1−δ

(
v ∧ 1

v

)δ

.
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Proof As in the other lemma, the second inequality follows from the first one. We consider
two cases: If v ≥ 1 y d(x, x′) ≥ u, by that same lemma,

∣
∣
∣
∣

∫

X

(q(x, y, u) − q(x′, y, u))q(y, z, uv)dm(y)

∣
∣
∣
∣

≤ C
1

vN+1

1

uN

(
χ(

d(x,z)
4(v+1)

,∞
)(u) + χ(

d(x′,z)
4(v+1)

,∞
)(u)

)

≤ C
1

vN+1

1

uN
χ(

d(x,z)∧d(x′,z)
4(v+1)

,∞
)(u)

≤ C
1

vN+1

1

uN
χ(

d(x,z)∧d(x′,z)
4(v+1)

,∞
)(u)

(
d(x, x′)

u

)1−δ

.

And for d(x, x′) < u, the integrand will be nonzero only if d(x, z) < 4u(v+1) or d(x′, z) <

4u(v + 1), so
∣
∣
∣
∣

∫

X

(q(x, y, u) − q(x′, y, u))q(y, z, uv)dm(y)

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

X

(q(x, y, u) − q(x′, y, u))(q(y, z, uv) − q(x, z, uv))dm(y)

∣
∣
∣
∣

≤ Cd(x, x′) 1

uN+1

1

(uv)N+1

∫

B(x,4u)∪B(x′,4u)

d(x, y)dm(y)

≤ C
1

vN+1

1

uN
χ(

d(x,z)∧d(x′,z)
4(v+1)

,∞
)(u)

(
d(x, x′)

u

)

≤ C
1

vN+1

1

uN
χ(

d(x,z)∧d(x′,z)
4(v+1)

,∞
)(u)

(
d(x, x′)

u

)1−δ

.

For the case v < 1, on one hand by the previous lemma we obtain
∣
∣∣∣

∫

X

(q(x, y, u) − q(x′, y, u))q(y, z, uv)dm(y)

∣
∣∣∣ ≤ Cv

1

uN
χ(

d(x,z)∧d(x′,z)
4(v+1)

,∞
)(u),

on the other hand
∣
∣∣∣

∫

X

(q(x, y, u) − q(x′, y, u))q(y, z, uv)dm(y)

∣
∣∣∣ ≤ C

d(x, x′)
u

1

uN
χ(

d(x,z)∧d(x′,z)
4(v+1)

,∞
)(u),

and by combining both inequalities we get
∣
∣∣∣

∫

X

(q(x, y, u)−q(x′, y, u))q(y, z, uv)dm(y)

∣
∣∣∣ ≤ Cvδ

(
d(x, x′)

u

)1−δ 1

uN
χ(

d(x,z)∧d(x′,z)
4(v+1)

,∞
)(u).

For the rest of the section, we fix 0 < δ < 1. Joining both lemmas we conclude

Theorem 5.3 Tα,v is a singular integral operator. Its kernel Nα,v satisfies

|Nα,v(x, z)| ≤ C

(
v ∧ 1

v

)δ 1

d(x, z)N
;

and for 3d(x, x′) < d(x, z),

|Nα,v(x, z) − Nα,v(x
′, z)| ≤ C

(
v ∧ 1

v

)δ
d(x, x′)1−δ

d(x, z)N+1−δ

Author's personal copy



M. A. Marcos

and

|Nα,v(z, x) − Nα,v(z, x
′)| ≤ C

(
v ∧ 1

v

)δ
d(x, x′)1−δ

d(x, z)N+1−δ
.

To prove each Tα,v is a Calderón-Zygmund operator, and thus bounded in Lp , we will
use the T 1 theorem. The next lemma proves the other conditions needed.

Lemma 5.4 Tα,v satisfies

Tα,v1 = 0,

T ∗
α,v1 = 0,

and for f, g ∈ C
β
c (B), for some ball B,

|〈Tα,vf, g〉| ≤ C

(
v ∧ 1

v

)δ

m(B)1+ 2β
N [f ]β [g]β .

Proof The first equality is immediate, the second uses the fact that q is symmetrical.

〈Tα,vf, g〉 =
∫

X

(∫

X

Nα,v(x, z)f (z)dm(z)

)
g(x)dm(x)

=
∫

X

∫

X

∫ ∞

0

∫

X

1

1 + (uv)α

×q(x, y, u)q(y, z, uv)dm(y)
du

u
f (z)dm(z)g(x)dm(x)

=
∫

X

f (z)

(∫

X

N∗
α,v(z, x)g(x)dm(x)

)
dm(z) = 〈f, T ∗

α,vg〉

so clearly T ∗
α,v1 = 0.

For the third one, as
〈
Tα,vf, g

〉

=
∞∫

0

1

1 + (uv)α

∫

X

∫

X

∫

X

q(x, y, u)q(y, z, uv)f (z)g(x)dm(y)dm(z)dm(x)
du

u

we observe that the triple integral inside may be estimated in three different ways

– Firstly,

A =
∣∣
∣∣

∫

X

∫

X

∫

X

q(x, y, u)q(y, z, uv)f (z)g(x)dm(y)dm(z)dm(x)

∣∣
∣∣

≤ C‖f ‖∞‖g‖∞
(

v ∧ 1

vN+1

)
1

uN

∫

B

∫

B

χB(x,4u(v+1))(z)dm(z)dm(x)

≤ C[f ]β [g]βm(B)2β/N

(
v ∧ 1

vN+1

)
m(B)(v + 1)N

≤ C

(
v ∧ 1

v

)
[f ]β [g]βm(B)1+2β/N .
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– Secondly, using the fact that
∫
X

q(x, y, u)q(y, z, uv)f (y)g(x)dm(z) = 0,

A =
∣
∣
∣
∣

∫

X

∫

X

∫

X

q(x, y, u)q(y, z, uv)(f (z) − f (y))g(x)dm(z)dm(y)dm(x)

∣
∣
∣
∣

≤ C[f ]β‖g‖∞
∫

B

 
B(x,4u)

 
B(y,4uv)

d(z, y)βdm(z)dm(y)dm(x)

≤ C[f ]β [g]βm(B)1+β/N (uv)β

≤ C

(
uv

m(B)1/N

)β

[f ]β [g]βm(B)1+2β/N .

– And lastly, it also holds

A ≤ C‖f ‖∞‖g‖∞
m(B)2

(uv)N

≤ C

(
uv

m(B)1/N

)−N

[f ]β [g]βm(B)1+2β/N .

By taking an appropriate combination of the previous three inequalities, we have

A =
∣∣
∣∣

∫

X

∫

X

∫

X

q(x, y, u)q(y, z, uv)f (z)g(x)dm(y)dm(z)dm(x)

∣∣
∣∣

≤ C

(
v ∧ 1

v

)δ
((

uv

m(B)1/N

)β

∧
(

uv

m(B)1/N

)−N
)1−δ

[f ]β [g]βm(B)1+2β/N ,

and conclude

∣∣〈Tα,vf, g
〉∣∣ ≤ C

(
v ∧ 1

v

)δ

[f ]β [g]βm(B)1+2β/N .

Thus the T 1 theorem holds for each Tα,v , and we get

Theorem 5.5 For 1 < p < ∞ and 0 < δ < 1 the following holds

‖Tα,vf ‖p ≤ Cp

(
v ∧ 1

v

)δ

‖f ‖p.

The fact that the Lp-constant of Tα,v is bounded by the constants appearing in Theo-
rem 5.3 and Lemma 5.4 follows the same ideas that the Euclidean case (see for instance
[6]).

From this result, as for α < δ we have

‖I − (I + Dα)Jα‖Lp→Lp ≤
∫ ∞

0
|1 − vα|‖Tα,v‖Lp→Lp

dv

v
≤ Cp

α

δ2 − α2

so we obtain the estimate we were looking for and we can conclude

– For any 0 < α < 1, I − (I + Dα)Jα , and thus (I + Dα)Jα , is bounded in Lp

– There exists α0 < 1 such that, for α < α0,

‖I − (I + Dα)Jα‖Lp→Lp < 1,
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and thus (I + Dα)Jα is inversible (with bounded inverse) in Lp . As Jα maps Lp onto
Lα,p ,

[(I + Dα)Jα]−1 (I + Dα)Jα = IdLp

so Jα is inversible with inverse J−1
α : Lα,p → Lp given by

J−1
α = [(I + Dα)Jα]−1 (I + Dα).

6 A Characterization of Lα,p in Terms of Dα

For 0 < α < 1 and 1 < p < ∞, we proved that, if f ∈ Lα,p, then f ∈ Lp (this holds for
any α > 0 and 1 ≤ p ≤ ∞) and (I + Dα)f ∈ Lp , so

If f ∈ Lα,p , then f, Dαf ∈ Lp,

moreover,

‖Dαf ‖p ≤ C‖f ‖α,p.

For the case α < α0, we obtain the reciprocal.

Theorem 6.1 Let 1 < p < ∞ and 0 < α < α0. Then

f ∈ Lα,p if and only if f,Dαf ∈ Lp,

Furthermore,

‖f ‖α,p ∼ ‖(I + Dα)f ‖p.

Proof We have already seen in this case Jα : Lp → Lα,p is bijective, and therefore I +Dα

is also bijective. If f, Dαf ∈ Lp , define

g = [(I + Dα)Jα]−1 (I + Dα)f,

we get g ∈ Lp and

Jαg = Jα [(I + Dα)Jα]−1 (I + Dα)f = JαJ−1
α (I + Dα)−1(I + Dα)f = f.

We also get

‖f ‖α,p = ‖f ‖p + ‖J−1
α f ‖p

≤ C‖J−1
α f ‖p = C‖ [(I + Dα)Jα]−1 (I + Dα)f ‖p

≤ C‖(I + Dα)f ‖p.

We can also characterize functions in Lα,p in terms of the Riesz potential Iα as follows.
In [3, 4], it is proven there exists 0 < α̃0 such that, for α < α̃0, the operator DαIα is
inversible in Lp , 1 < p < ∞. Thus we obtain

Corollary 6.2 For α > 0 satisfying α < α0 ∧ α̃0 and 1 < p < ∞, we get

f ∈ Lα,p if and only if f ∈ Lp and there exists γ ∈ Lp with f = Iαγ.

As another corolary, the following embeddings hold.
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– If 0 < α < α0 and ε > 0 satisfies 0 < α + ε < 1, for 1 < p < ∞ we have

Mα+ε,p ↪→ Lα,p ↪→ Mα,p.

Proof Lα,p ↪→ Mα,p is Corollary 4.4, and the other embedding follows from the fact that
Dαf ∈ Lp for f ∈ Mα+ε,p , so Theorem 6.1 applies.

– If 0 < α < α0 and 0 < ε < α satisfies 0 < α + ε < 1, for 1 < p < ∞ we have

Bα+ε
p,p ↪→ Lα,p ↪→ Bα−ε

p,p .

Proof Lα,p ↪→ Bα−ε
p,p is Corollary 4.10, the other follows from the fact that Bα+ε

p,p ↪→
Mα+ε,p (see Section 2.6) and the previous item.

– If 0 < α < α0 and β > 0 satisfies α < β < 1, for 1 < p < ∞ we have

Lβ,p ↪→ Lα,p.

Proof Under those conditions there exists an ε > 0 such that B
β−ε
p,p ↪→ Bα+ε

p,p , and we can
use the embeddings we have just proven.

As a final result, we show that in R
n, for α < α0, the space Lα,p coincides with the

classical Lα,p .
Let (St )t>0 be an approximation of the identity as constructed in the introduction, from

a function h. Let H(x) = h(|x|) and Ht(x) = t−nH(x/t). Then

– Ttf (x) = 1
tn

∫
h

( |x−y|
t

)
f (y)dy = ∫

Ht(x − y)f (y)dy = Ht ∗ f (x);

– Tt1 ≡ ∫
Ht = ∫

H = cH for every t > 0 and x ∈ R
n, then ϕ ≡ 1

cH
and ψ ≡ 1.

– Stf = 1
c2
H

Ht ∗ Ht ∗ f = ∫ (
1

c2
H

Ht ∗ Ht

)
(x − y)f (y)dy.

– s(x, y, t) =
(

1
c2
H

Ht ∗ Ht

)
(x − y).

We will see that

s(x, y, t) = φt (x − y)

where φ is radial. Observe

Ht ∗ Ht(x) = 1

t2n

∫
H

(
x − y

t

)
H

(y

t

)
dy = 1

tn

∫
H

(x

t
− z

)
H(z)dz

= 1

tn
(H ∗ H)(x/t) = (H ∗ H)t (x).

Besides, if ρ is a rotation, as H is radial, we get

H ∗ H(ρx) =
∫

H(ρx − y)H(y)dy =
∫

H(ρ(x − ρ−1y))H(ρρ−1y)dy

=
∫

H(x − ρ−1y)H(ρ−1y)dy = H ∗ H(x).
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This way, if φ = 1
c2
H

H ∗ H , we will have

1

c2
H

Ht ∗ Ht = φt .

With this expression for s, we obtain

nα(x, y) =
∫ ∞

0
αt−αs(x, y, t)

dt

t
=

∫ ∞

0
αt−α 1

tn
φ

(
x − y

t

)
dt

t

= 1

|x − y|n+α

∫ ∞

0
αun+αφ(ue1)

du

u
= cn,α,φ

|x − y|n+α

and the last integral converges because φ is bounded and compactly supported.
Now, recall that for 0 < α < 2,

Dαf (x) = p.v. cα,n

∫
f (y) − f (x)

|x − y|n+α
dy

and that for those values of α,

f ∈ Lα,p if and only if f,Dαf ∈ Lp.

From the previous result, we get

Dαf = Cn,α,hDαf,

and thus

f ∈ Lα,p if and only if f, Dαf ∈ Lp.

In conclusion, for 0 < α < α0, by the characterization theorem the spaces Lα,p(Rn) are
independent from the choice of h in the aproximation of the identity (St ), and they coincide
with the classical space

Lα,p = Lα,p.
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