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SUMMARY

TACO is a SAT-based tool for bounded verification of Java paots. One challenge many formal tools
share is to provide a practical interface for a non proficiesr. In this article we present an Eclipse plug-
in for the static verifier TACO. This plug-in allows a user t@lw a counterexample trace mimicking a
debugging session. TacoPlug (our plug-in) uses and ex#&X@® to provide a better debugging experience.
TacoPlug interface allows the user to verify an annotatévace using the TACO verifier. If TACO finds a
violation to the specification, TacoPlug presents it in teohthe annotated source code. TacoPlug features
several views of the error trace to facilitate fault undamsing. It resembles any software debugger, but
the debugging occurs statically without executing the paog Furthermore, should a dynamic analysis be
required, TacoPlug presents the user with a unit test camgaged by TACO based on the detected violation.
We show the usability of our tool by means of a motivationaraple taken from a real-life software error.
Copyright© 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Programmers no longer deal just with a few hundred lines afecbut with several hundred
million lines controlling some of the most complicated gyst ever created. As software presence
grows from desktop computers to embedded components suttoras appliances, personal
digital assistants, medical equipment, etc., an unddsiampanion arises: software defects, most
commonly known assoftware bugsSoftware failures range from those that we may consider
annoying to those with more tragic consequences.

The increasing importance of software quality in economg eneveryday life demands the
development of (a) more robust engineering techniques amecepses to build software, and (b)
more advanced tools to help programmers achieve a greaaditygn the software artefacts they
produce. Modern compilers benefit from program analysikrtepes such as type checking and
data-flow analysis to warn programmers about unintentiorisfakes. In both cases, not only the
degree of automation is extremely high, but also advancdsisi@llow programmers to easily
understand the problem.

Other approaches allow a procedure in a conventional objeieinted language to be
automatically checked against a rich interface specificatin this sense, Bounded Vericatior [
is a technique in which all executions of a procedure are @stiveely examined within (a) a finite
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space given by a bound on the size of the heap and (b) the nwhloep unrollings. The scope of
analysis is examined in search of an execution trace whhtés a given specication.

Several bounded verications tooB 4, 8, 9, 18, 22] rely on appropriately translating the original
piece of software, as well as the specification to be verified, propositional formula. The use of
a SAT-Solver L0, 25, 26] then allows one to find a valuation for the propositionaliables that
encodes a failure. If the propositional formula is satiséae.g. a valuation exists such that the
formula truth value is true), then the specification is not Imethe program. On the contrary, if the
formula is unsatisfiable (no valuation makes the formul&8able), then the specification holds
within the scope of verification provided by the user.

In the worst case, the time required to answer the satisfyahilows exponentially with respect
to the number of propositional variables. Neverthelessleano SAT-Solvers apply several heuristics
leading to significant gains in analysis time.

In theory, the task of a verification tool ends when it progideconclusive answer to the question:
is the program correct with respect to the specificatibt®vever, the programmer daunting task of
understanding the cause for such answer begins in thasprigstant.

Our work assumes that verification tools may become magstrenly if proper user interfaces
are provided. Essential requirements of any verificatiasl to become part of a programmer
toolkit are their degree of automation and their ability toypde an insightful understanding of
the verification result.

2. TACO A SAT-BASED BOUNDED VERIFIER

A wide variety of the tools that implement the bounded veatiien technique use the approach of
transforming the program and its specification into a prajmrsl formula and then passing it to a
SAT-solver to check for satisfiability. TACO falls underdtaategory.

TACO (after Translation of Annotated COdéd)j is an open source program analysis tool aimed
at the verification of sequential Java programs. Given a pevgram annotated with a JMIL§)]
or a JFSL R3] specification, TACO translates both program and specifinéhto a propositional
formula. Motivated by the complexity of this process, TACK2Zes the involved transformations
into bounded and sequential stages that perform simplesla@ons.

A schematic description of TACO's architecture that shdwnesdifferent stages in the translation
process is provided in Fig. The stages presented on such diagram can be traced backvwauad]y
to a stage in TACO's source code.

The first transformation that TACO performs is the simplifica of Java code and its
corresponding specification. The objective of this stage isormalize the kind of problems that
could appear in the first translation. This transformatioasinot involve a translation to a different
language, but only includes simplifications of Java code ntlain ones being:

e Creation of default constructor if not present.
e Mapping of looping structures intowhi | e form.
e Variable and parameter renaming to avoid hame clashing.

Taking as input the simplified version of the program to am@JyTACO performs a translation
to JDynAlloy. JDynAlloy is a relational specification larage created as an intermediate
representation for the translation from JML/JFSL spedifices. JDynAlloy is an object-oriented
language whose syntax is much simpler than other objeetiail languages such as Java or
C# which allows a more compact and elegant translation toAllgy [12] . This translation
bridges the semantic gap between an object-oriented progitag language such as Java and the
relational specification language DynAlloy. Given that dBjloy emulates structures present in
OO languages, the translation to this language is almasghtforward: classes are represented as
modulesinstance variables dgeldsand methods aprograms However, not all Java statements
have a direct correspondence in JDynAlloy. Most importamisiderations in this aspect are:

e As JDynAlloy has no exception management, it is simulatednens of a new variable to
account for the presence of an exception.
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Figure 1. Schematic description of TACO's architecture

¢ JDynAlloy does not allow several returning points. Thisalaehavior is modeled introducing
a new variable to acknowledge the execution of a returniatestent, such aset ur n or
t hr ow.

Once a JDynAlloy representation is obtained, the next steples the translation to a single
DynAlloy module. DynAlloy [L2] is an extension of Alloy’s relational logic syntax and setties
with the aim of dealing with properties of executions of gems specified in Alloy. It follows that
DynAlloy extends Alloy and its relational logic. This ext&an provides a setting in which, besides
functions describing sets of states, actions are madeasigilto represent state changes (i.e., to
describe relations between input and output data). As @upts the use of predicates for this
purpose, actions have an input/output meaning reflectetkisémantics, and can be composed to
form more complex actions, using well-known constructsfimperative programming languages.
The process to complete this translation is rather stranghard. The most important action of this
process is the inclusion of a partial correctness assdftrstates that every terminating execution
of the code starting in a state satisfying the preconditiwhtae class invariant leads to a final state
that satisfies the postcondition and preserves the indarian

DynAlloy module serves as input for the translator that gens a semantically preserving
translation from the DynAlloy model to an Alloy model. Allgyt7, 16] is a formal specification
language, which belongs to the class of the so-called madetted formal methods. Alloy

Copyright© 2012 John Wiley & Sons, Ltd. Softw. Pract. Expe(2012)
Prepared usingpeauth.cls DOI: 10.1002/spe



4 M. CHICOTE, D. CIOLEK, J. P. GALEOTTI

is defined in terms of a simple relational semantics, its aynhcludes constructs ubiquitous
in object oriented notations, and it features automatedysisacapabilities 15]. The Alloy
language has been designed with the goal of making spemifisadautomatically analyzable. As
the aforementioned bounded verification tools, the Alloyalymer tool relies on off-the-shelf SAT
solvers. It automatically performs an exhaustive searcttdonterexamples within a finite scope
of analysis. In order to handle loops TACO constrains the memof iterations by performing a
user-provided number of loop unrolls (LU). Therefore, thiic) analysis will only find bugs that
could occur performing up to LU iterations at runtime.

Finally, the Alloy model is translated into a SAT formula.drder to build a finite propositional
formula a bound is provided for each domain. This represaméstriction on the precision of the
analysis. If an analysis does not find a bug, it means no bgsexithin the provided scope for data
domains. Bugs could be found repeating the analysis usiggracopes. Therefore, only a portion
of the program domain is actually analyzed. It is worth rioichat in some programs scope and
LU are not completely independent parameters. For inst@ieen a singly linked list with a scope
of N node elements, the number of loop executions for iteratireglist can not be greater then
N. This dependency is a natural situation under these camistrand similar interactions occur in
other tools.

3. MOTIVATION

In order to ilustrate the reader, let us consider the sourde of a Java method for extracting the
minimum element from a binomial heap. Binomial hedfsfre recursive data structures specially
designed for implementing priority queues. Because of #fficient insertion and minimum key
deletion are distinguishing features of this data strectur

The JForge specification language (JFSL) is an Alloy-likgleage specially aimed at addressing
some shortcoming of the Java Modeling Language (JML). Amtsgain features, JFSL allows
a user to annotate a class with two class annotati@nsvar i ant which constraints the set of
valid object states, an@pecFi el d. The@pecFi el d annotation is intended to raise the level
of abstraction adding ghost fields to the current class daoda. In the case of binomial heap, the
user can add:

e a@nvari ant annotation for enforcing the binomial heap invariant $he e field stores
the correct number of elements, each node has a key valuthbesshe rest of its children,
etc.), and

e a @pecFi el d annotation declaring a ghost field nam@y.nodes The purpose of this
declaration is to predicate over the set of all reachablerhial heap node elements.

JFSL also allows the user to annotate methods with annngéibout the functional behavior of
the method:

e The @Requi r es annotation allows a user to capture the circumstances umdieh the
method should be invoked.

e The@nsures, @bdi fi es, @hr ows and@ret ur ns annotations are used to describe
what is the expected behavior of the method (given that tkegmditions are met). More
specifically, the@bdi f i es annotation describe the frame condition of the method,evhil
the @Ret ur ns and @hrows may be used to specify postconditions for normal and
abnormal termination.

Figure2 shows a code excerpt from methert r act M n() . This source code corresponds to
an implementation of binomial heaps fro@1]. As the reader may notice, the program manipulates
the binomial heap in a non trivial way. As a matter of faett ract M n() not only accesses
fields from binomial heap nodes, but also invokes methiadsdM nNode andr ever se from
the Bi nom al HeapNode class. It also calls methodani onNodes using itself as the receiver
object. The user can specify the behavior of this method lbingdan @nsur es annotation,
stating that the extraction indeed removes the minimum f@y the initial binomial heap.
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PRACTICAL JFSL VERIFICATION USING TACO 5

class BinomialHeap {
BinomialHeapNode Nodes;// header

public BinomialHeapNode extractMin (){
if (Nodes ==null)
return null;

BinomialHeapNode temp = Nodes, prevTemp mull;
BinomialHeapNode minNode =null;

minNode = Nodes.findMinNode ();
while (temp.key != minNode.key){
prevTemp = temp;
temp = temp.sibling;

}

if (prevTemp ==null)
Nodes = temp. sibling;
else
prevTemp.sibling = temp.sibling;

temp = temp.child;
BinomialHeapNode fakeNode = temp;
while (temp != null) {
temp.parent =null;
temp = temp.sibling;

}

if ((Nodes !=null) || (fakeNode != null)) {
if ((Nodes ==null) & (fakeNode != null)) {
Nodes = fakeNode.reversenlll);
} else if ((Nodes ==null) || (fakeNode != null)) {
unionNodes (fakeNode .reversagll));
}

}

return minNode;

}
}

Figure 2. Excerpt fronBi nom al Heap class

Figure 3 shows the@nsur es annotation written in JFSL. We refer the reader &3]
for a complete description of JFSL syntax. We will describdyoa subset of features of
JFSL for presentation purposes. Apart from the usual ldgioanectives £, &&, || etc.) and
quantifiers, JFSL also provides relational operators steh and @Q— for set union and set
difference respectively, set membership predicate) and a function to obtain the value before
method invocation @old). The @nsur es annotation states that every execution of method
extract M n() over a non-empty binomial heap ends with another binomiaptvehere:

e the return node was removed,
o the key value in the removed node is lesser or equal to any eghee still stored, and
e no other keys were affected.

Once the specification is written, the user is able to try tifyéhe program. As we have said, the
user needs to feed TACO with a scope of verification. Whileme specific cases, these values may
be derived from boundaries present in the business donmaineigeneral case the developer holds
the responsibility of deciding which values she wants tac&hket us assume the user selects up to
5 iterations for each loop, a singB nomi al Heap element and up to3 Bi nomni al HeapNode
elements. Then, as previously reported ig]] TACO answers that the verification does not hold
for the given scope.

As it has been mentioned, TACO uses Alloy as backend andalémtarmediate representations.
Nevertheless, acquiring knowledge on how programs andifgiaions are encoded into these

Copyright© 2012 John Wiley & Sons, Ltd. Softw. Pract. Expe(2012)
Prepared usingpeauth.cls DOI: 10.1002/spe



6 M. CHICOTE, D. CIOLEK, J. P. GALEOTTI

@Ensures(”
@old(this.Nodes) null = ( my_nodes.key @+ return.key = @old(nmpdes.key))
&& return in @old(my.nodes)
&& all'y : BinomialHeapNode
(y in @old(mynodes)= y.key > return.key)
&& my _nodes=@old(myodes) @- return)”)

Figure 3. An@nsur es annotation

languages goes far beyond the expected skills of any addarsee. In this scenario, the programmer
will have to figure out by himself what prevented the verificat She will have to refer only to the
program and its specification.

She may wonder if the invariant was not preserved, or whicthefparts of the@nsur es
annotation did not hold at the program exit. She may also wairispect the initial state values,
or walk through the error trace watching a given variableotirer words, she would like to inspect
the result given by the verifier following d@ebuggingapproach. In the remaining of this article we
describe our proposal for coping with these requirements.

4. THE TACO PLUG-IN

Eclips€ is an industrial strength, widely adopted, multi-langu#E. It can be used to develop
applications in mainstream programming languages suclaas C++ or Python and is written
almost entirely in Java, just like TACO, and available foegvmajor platform. One distinguishing
characteristic of Eclipse is its support for adding newdess via a sophisticated plug-in system.
Because of this, writing an Eclipse plug-in appeared as aralathoice for inserting our bounded
verifier user interface into an existing integrated develept environment (IDE).

TacoPlug is the result of an effort to make TACO more frieraitgl practical to the programmer.
Once installed, it allows the user to perform a bounded weatifin over any method of her choice.
Furthermore, it provides a new Eclipse perspective (whintiudes different views) enabling
features for debugging the program under analysis.

In the current section we show how to execute an analysisesxihr act M n() method and
we describe the different features of TacoPlug.

4.1. Executing the TACO Verifier

Executing an analysis has two important views associatee fifst one, called@ACO Preferences
can be accessed through the common Eclipsderenceview on Windowsmenu and allows the
user to configure all the parameters associated with an sisaljhe settings are defined globally
for a specific workspace.

Figure4 shows theTACO Preferencesgiew. By using this view the user can define the scope of
verification. In this case, theoopUnr ol | Count parameter was set towhile the limits for the
sizes ofBi noni al Heap andBi nom al HeapNode domains are set to 1 and 13 respectively.

The second view includes the actual TACO launcher where tbthad to verify is chosen.
Figure5 shows how a verification analysis of teat ract M n() method is launched. As with
Java applications or JUnitest cases, the TACO verifier is launched through run cordigns.
This view allows the user to create, manage and launch a G&e€0© analysis.

thttp://ww. ecl i pse. org/
thttp://ww. junit.org/
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Taco Preferences

Configure TACO parameters.

Bitwidth: [s ]
string Bitwidth: [3 ]
Object Scope: ID ]
Classes: [ ]
Loop Unroll: |4 ]
Type Scopes: [exampIes.binheap.BinomiaIHeap:1,exampIes.binheap.BinomiaIHeapNode:13 ]
@ Use max sequence length
Skolemize
Includes Simulation Program Declaration
Figure 4. TACO Preferencegiew.
Name: [Extra(tMin ]
TACO Main

Project:

[]avaProject ] “
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Method to check

[extractMin ] E

Verification Type

Tl

Figure 5.TACO Launchewiew.

4.2. An Eclipse Perspective for TACO

When TACO analysis finishes ti@onsoleview shows the verification outcome. If an error trace
was found, a popup asks the user if she wants the TACO pergpézbe opened, much like when
a breakpoint is hit.

This perspective, calletlACO perspectivancludes several views enabling the user to statically
inspect both the method under verification and the erroretréi¢hen the perspective is shown,
different views are displayed. These views allow the user to

e inspect which part of the specification was violated,
e navigate the error trace, and
e query program values.

Further information about all these views will be given ie following subsections.

4.3. JML/JFSL Annotation Explorer

The JML/JFSL Annotation Exploreis the first view that becomes useful after TACO finishes. It
displays a list of all annotations and their value in the etrace. By doing that, it allows the
programmer to isolate which part of the JML or the JFSL speatidbn was not met. Double-clicking
on an annotation on this view will open an editor focusingdhesor on the chosen annotation.

Figure 6 shows theJML/JFSL Annotation Explorefor the ext ract M n() example. In this
figure, the user can appreciate that the class invariantheddvhile the@nsur es annotation did
not hold at program exit.

4.4. Java Error Trace

When debugging a program, walking through its execution dsamount. Eclipse’s dynamic
debugging features let the user accomplish this by usingStaek Traceview provided by the
debugging perspective. Similarly, TacoPlug provides thiita to walk through the symbolic
execution of a program, using tdava Error Traceview present on the TACO perspective.

Copyright© 2012 John Wiley & Sons, Ltd. Softw. Pract. Expe(2012)
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Tk TACO Annotation Explorer £2

2 items

ID Resource Location Description Validity
2 | nomialHeap.java line 151 | #** @Modifies_Everything* * @Ensures ( @old(this).@old(Nodes)==null => ( this.Nodes==null; False
1 nomialHeap.java line 22 e+ @Invariant ( all n: BinomialHeapNode | ( n in this.Nodes.*(sibling @+ child) @- null => * True

Figure 6. IML/JFSL Annotation Explorer

I TACO Java Error Trace 2 o v

| examples.binheap.BinomialHeap: 177, 29
|2 examples.binheap.BinomialHeap: 180, 56
|2 examples.binheap.BinomialHeap: 181, 41
- = examples.binheap.BinomialHeap: 183, 46
|2 examples.binheap.BinomialHeapNode: 192, 45
2 examples.binheap.BinomialHeapNode: 193, 24
2 examples.binheap.BinomialHeapNode: 195, 22
5 examples.binheap.BinomialHeapNode: 196, 34
|2 examples.binheap.BinomialHeapNode: 200, 28
= examples.binheap.BinomialHeapNode: 195, 22
5 examples.binheap.BinomialHeapNode: 196, 34
5 examples.binheap.BinomialHeapNode: 200, 28
2 examples.binheap.BinomialHeapNode: 195, 22
=l examples.binheap.BinomialHeapNode: 196, 34
5 examples.binheap.BinomialHeapNode: 197, 36
|2 examples.binheap.BinomialHeapNode: 198, 38
2 examples.binheap.BinomialHeapNode: 200, 28
2 examples.binheap.BinomialHeapNode: 195, 22
5 examples.binheap.BinomialHeapNode: 203, 23
|2 examples.binheap.BinomialHeap: 183, 26 7

Figure 7.Java Error Traceview

Java Error Traceview presents the error trace in a tree form where each ngulesents a point
of the execution and parent nodes represent method caitkir§) on any of the nodes will cause
focusing the cursor on the matching line in the Java souteppihg back and forth the error trace
is easy since the user navigates the error trace withoualcexecuting the source code.

Figure7 presents thdava Error Traceview for theBi nom al Heap example. In this particular
example, the parent node represents the method call férithdM n and it has been expanded as
an example of inner methods navigability.

4.5. The JML/JFSL Evaluator

TACO, and therefore TacoPlug, is intended to be used with aWd.JFSL specifications. Thus, the
ability to evaluate arbitrary expressions written in theEsguages on different points of the error
trace seemed like a natural feature to include. When a ttapasselected usingava Error Trace
view, the user can add arbitrary JML and JFSL expressiorsidML/JFSL Evaluatoview. Much
like the Expressionssiew of Eclipse’sDebugperspective, thdML/JFSL Evaluatomwill display
their values from the current step in the error trace.

Figure 8 shows the JML/JFSL Evaluator including expressions‘degree” and “key”
corresponding to parametetsgr ee andkey.

4.6. Java Memory Graph

When debugging a program that includes complex and link&dsieuctures, looking at the value of
a certain variable or expression usually is not enough.dedltases, the programmer has to inspect
several expressions before she can understand how ohjea®eed in the memory space.

Copyright© 2012 John Wiley & Sons, Ltd. Softw. Pract. Expe(2012)
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il TACO JML/JFSL Evaluator i3 L S

[ degree 2
[l key :

Figure 8.JML/JFSL Expression Evaluateiew.

1t TACO Java Memory Graph & 0 -
class examples.binheap.BinomialHeap extractMin
temp: null
class examples.binheap.BinomialHeapNode class examples.binheap.BinomialHeapNode
E key: 8
:;?;rge: 1 de);ree: 3 class examples.binheap.BinomialHeapNode
parent: null parent: null key: 14
sibling: null d_eqree: 0
sibling: null
child: null

class examples.binheap.BinomialHeapNode

léeyA 2 ) class examples.binheap.BinomialHeapNode class examples.binheap.BinomialHeapNode
egree: 0 key: 14 key: 8
sibling: null e .ree~ 2 degree: 1
child: null Jree:
class examples.binheap.BinomialHeapNode class examples.binheap.BinomialHeapNode
key: 15 class examples.binheap.BinomialHeapNode key: 14
degree: 0 key: 15 degree: 0
sibling: null degree: 1 sibling: null
child: null child: null

Figure 9. (PartialJava Memory Grapliew

The Java Memory Graplview displays a graph where nodes are objects and edges ke fie
values at a given point of execution. Primitive values suslinéegers or booleans are shown as
inner attributes of objects. If the user chooses a new stépeierror trace, a new memory graph is
displayed.

Figure 9 shows part of thedJava Memory Graplview in the initial state of the execution. The
complete graph matches exactly with the object diagramridbestin [L3].

4.7. JUnit Test Case Generation

Once a counterexample is found, TacoPlug also provides tmatically generated (potentially
partial) JUnit test case. This test case builds the offepdiitial heap configuration using the Java
reflection mechanism. If executed, this test case is exgéaxhibit the same fault found by TACO
during analysis. The generation of this test case depergiupon the activation of such feature
on the configuration view presented 4. It is potentially partial in the sense that, if the offerglin
behavior does not end in an unexpected exception, the ulidrawé to write by herself the oracle
for the test case.

This feature allows the user to easily collect each test oagut by TacoPlug, merging them
into a single test suite. Apart from regression testing pses, another advantage of capturing a
counterexample as a JUnit test case is double checkinguhafginst a concrete execution of the
program. Skeptical users are encourage to check the fadtigrg the unit test case.

Figure 10 shows an excerpt of the JUnit test case that TacoPlug autmthaigenerates for the
counterexample found by TACO. Before creating the JUnit ¢ase, the plugin checks that the
visibility of the all classes found in the counterexampletwthe target class’s package. If all classes

Copyright© 2012 John Wiley & Sons, Ltd. Softw. Pract. Expe(2012)
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@Test
public void testExtractMin() {

// Object creation

BinomialHeap binomialHeapO =new BinomialHeap ();
BinomialHeapNode binomialHeapO mew BinomialHeapNode ();
BinomialHeapNode binomialHeapl mew BinomialHeapNode ();

BinomialHeapNode binomialHeapl2 mew BinomialHeapNode ();
// Field initialization binomialHeapO

updateValue (binomialHeap0O, "Nodes”, binomialHeapNogeO
updateValue (binomialHeap0, "size”, 13);

[/ Field initialization binomialHeapNodeO

updateValue (binomialHeapNodeO , "key”, 0);

updateValue (binomialHeapNodeO, "degree”, 1);

updateValue (binomialHeapNodeO , "parent”null);

updateValue (binomialHeapNodeO, "sibling”, binomialHeEdodel);
updateValue (binomialHeapNodeO, "child”, binomialHeapde2 );

/'/”Method Invocation
Method method = getAccessibleMethod(”"BinomialHeap”, "teactMin”, true);

try {
method . invoke (binomialHeap0);

} catch (Exception e){
fail ();

Figure 10. JUnit test case automatically generated by TagoP

are accessible from this location, the JUnit test case iemgéed. Observe that visibility of fields
and methods is not an issue since it is possible to changg tisreflection mechanism.

4.8. An algorithm for automatically inferring a scope of d&yss

As we previously stated, a scope of analysis is mandatotydonded verification to work. A scope
of analysis is made of: a) a number of loop unrolls to limit aegth of the traces to examine, and
b) a limit on the size of each object domain the code handleeo€ing a scope of analysis has a
tremendous impact on the verification process, since tleeasid complexity of the propositional
formula will depend on the setting of these parameters.

In the context of the verification of closed systems (i.e. émaethod with no arguments), it is
easy to over approximate the size of each object domains fojlimg the code under analysis and
counting the maximum number of creation sites in any prograth. Nevertheless, the task becomes
more challenging when open systems (i.e. methods with aaxgtijects as arguments, or accessing
static complex objects) are our target. In order to assisptbgrammer in the task of systematically
choosing a reasonable scope of analysis, TacoPlug comesam#automatic mechanism for (given
a desired loop bound) inferring a scope for each object domai

In Fig. 11 we show the pseudocode of our loop inference algorithm. Bleemust provide (apart
from the desired program) a bound to the number of loop wwcdind a bound for object domains
n. The algorithm first computes tlogeationsitesstoring the maximum number of creation sites for
each type T in any path (feasible and non-feasiable) in thmelled program. Then the algorithm
creates a graph using the class diagram information. Ingtiaigh an edge is materialized between
typesT; and T if there is a field mapping objects @f, to 7,. This graph is used to count the
number of paths from method arguments and static data to tgpell” and store that value in
mappinginput.scope Since the number of paths could be potentially infinite @ eecursive field
or a cycle among different types) the input argumeig used to bound this value. The final domain
size is defined by adding the number of creation sites, thadediinput scope and the domain size
of every subclass of typg.
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i nputs: nunber of |oop unroll wu,
bound for object donmins n,

program P
output: a bound for each object domain
unrolled_p := unroll (P, u)
for each domain T
creation_sites(T) := max. nunber of creation sites of type T

for any path p in unrolled_p
endf or
cdg = buil dd assDi agr anar aph()
for each domain T
i nput _scope(T) := min(n , nunber of paths trasversing cdg)

endf or
for each domain T

donmi n_size(T) = creation_sites(T) + input_scope(T)

donmi n_si ze(T) += domain_size(T') T subclass of T
endf or

Figure 11. Inferring domain limit algorithm

This algorithm allows the user to explore the scope of amabyscontrolling only two parameters:
the number of loop unrolls and the bound to the number of inpjgcts when there is a potentially
unbound heap configuration. It is easy to see that if the numbop unrolls is kept constant,
then increasing the bound on input objects will always |leea bigger search space. The user may
enable the scope inference mechanism and set the desiggdhaodomain bounds by setting the
proper checkbox in the TACO preferences window present&agirs.

5. AN EVALUATION OF THE TACO PLUG-IN

In order to evaluate the usability of our plug-in, we will pon how useful TacoPlug was for
debugging and localizing a fault in tleext r act M n method.

After launching the analysis, TACO required 73 seconds toplete its execution. Since TACO
found an offending trace, the TACO perspective was openlee fifst task was to inspect which of
the annotations did not hold. For this task, thdL/JFSL Annotation Explorewas particularly
useful. It showed us that th@ nvari ant annotation held, but thé@nsur es annotation
was violated by the error trace. Once we narrowed the faghtion to somewhere inside the
postcondition formula, we decided to display the structir¢he binomial heap after executing
methodext ract M n. In order to do this, we jumped to the final state of the erracdrusing
theJava Error Traceview and, selecting théava Memory Graplview, we were able to visualize
the final state of the program. At this point, we needed to estiely evaluate eac@nsur es
sub-formula. As stated on sectiBnthe @nsur es formula consist of three sub-formulas:

1. the return node was removed,
2. the key value in the removed node is less or equal to any adhee still stored, and
3. no other keys were affected.

Checking these conditions against the final state of therprogwe were able to discover that the
first two sub-formulas held. Therefore, the fault shoulddfenred to the condition specified in the
third sub-formula, which can be written in JFSL as follows:

my_nodes=@I d(nmy_nodes) @ return

Counting the number of nodes in the binomial heap on the fiatd ©f execution, we noticed that
the binomial heap was composed Idf nodes. Contrasting this value against the initial state of
execution was necessary. By clicking on the first step of thar érace a new memory graph was
displayed. We discovered that the initial binomial heap tadodes. This meant that the expected
number of nodes aftexxt r act M n was12. This led us to conclude thatnodes were missing at
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temp2

¥ AsPrev.

siblings Nede B

A's Prev.
siblings

A's child

Figure 13. heap configuration after merging when degreg@(ig¢rdegree(temp?2)

the final state. In other words, the amount of nodes afterigegmethodext r act M n was not
correct.

Once the faulty behavior was instantiated for this errocdrahe next step was to find where
the fault was located. For this, two views were crucialva Error TraceandJava Memory Graph
We asked the following questiofiVhat is the point in the error trace where the number of nodes
reachesl0 for the first time?n order to answer this question, we performed a binary bearthe
Java error trace, checking on each step the number of naatesl $t the binomial heap. By doing
that, we were able to isolate the misbehavior to the help¢hoderer ge. Apparently, merging two
binomial heaps o7 and5 nodes resulted in a new binomial heap of onynodes.

After determining that some anomalous behavior was coedkiimmethodrer ge, we inspected
how these two binomial heaps were merged. This method mékgeksts of nodes observing the
value of fielddegr ee. After inspecting the error trace going back and forth, weenable to

¢ understand the intended loop invariant for merging two biradheaps, and more importantly,
e |ocalize the fault in source code.

The fault consisted in a mishandling in how references framdes already merged were being
updated. More specifically, when merging . . ., z,, andyo, . . ., ym, if yo is inserted before,, then
references of other nodes:tg should be updated t@,. In Fig. 12 we show the heap configuration
before merging two binomial heaps (referentesaplandtempd. After the execution of the merge
operation (Figl3) we can see that nodéprevious siblings are no longer reachable from the current
binomial heap.

Finally, in order to double check the error using a dynamigirenment, we executed the
generated JUnit test case and proved that, when executngxthr act M n method with that
particular input, some binomial heaps nodes were losthEuriore, we were able to trace back the
fault to the same execution point found using the TacoPlymgagzh, making things consistent as
expected.
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6. PLUG-IN DETAILS

The design and development of the plug-in consisted on alhasgproject, both of which presented
several challenges. While the second phase of the projesisted on the integration of TACO to
Eclipse by means of a plug-in, the first phase involved thesframation of the batch processing
tool TACO to a interactive program to provide support forititended functionalities of the plug-in.
These two phases, the main techniques and challengeseaaveilt be described in this section.

The first phase involved enhancing TACO in order to providecfional support for all the
features we intended TacoPlug to support. To begin witls, teant the transformation of TACO
from a tool that process an input (annotated source codejednths an output (in SAT cases, a
counterexample) to a tool in which the output can be quenetamnalyzed. The counterexample
returned by TACO until the beginning of this project was praed in Alloy language. As the
intention was to abstract the developer from the TACO img@etation and the intermediate
languages it uses, a mechanism to translate that countepéxto a Java-like language was needed.

As it has been mentioned before, TACO's architecture ctssisa pipeline that transforms the
original annotated program source code to a propositiamaidila. Thus, designing and developing
a new stage to build a Java counterexample seemed as thalmhinice. The main responsibilities
of this stage include:

¢ building a Java trace for the fault,
e checking whether class invariant and method postconditgtehin the final state of execution.

For both of this tasks a mechanism presented@hwWas used. This mechanism, when applied to
an Alloy counterexample, returned a DynAlloy counterexmwhich brought us a little bit closer
to the abstraction level desired. This counterexampleiges a DynAlloy trace for the fault and an
entry point to evaluate DynAlloy expressions on each stap@frace.

Using the DynAlloy trace in combination with a referencelte briginal Java statements while
the analyzed program traverses the TACO pipeline, providedecessary tools to build a Java trace
for the fault.

In order to check the validity of the class invariant and mdtpostcondition in the final state
of execution, a technique that provided the means to evallMt /JFSL expressions was required.
The main challenge in designing such technique was that @8 pipeline, variable renaming is
done. Therefore, to be able to evaluate JML/JFSL expresstbe exact same variable renaming
needed to be performed in such expressions, which meamgstne original renaming dictionary
in a new object we calledacoContextSaving the variable renaming dictionary for the pipeline
stages that included such mechanism in the TacoContextideis the means to do the variable
renaming in the class invariant and method postconditi@pl&ing the corresponding variable
names in either formula and using the mechanisms in TACCatwstate a JML/JFSL formula to a
DynAlloy formula was all that we needed in order to evalu&ent in the context of the DynAlloy
counterexample.

Being able to build a Java trace of the detected fault andwhsther the class invariant and
method postcondition held in the final state of executiortleeeback-ends for théava Error Trace
andJML/JFSL Annotation Explorer

Furthermore, the described technique is general enoughattt the user with the possibility
of querying the DynAlloy counterexample using JML/JFSL eegsions, a feature needed to build
the JML/JFLS EvaluatarHowever, as the returning type of evaluating invariant postcondition
formulas is known to béBool , a way of reconstructing a Java-like-return-type objecs \wat
developed. This enhancement was incorporated in a secagd and a full description of such
is not included here because of space restrictions. Theroatien of the Java-like return object
is based on the obtainment of its Java type, using propeitiEsent on the Alloy object returned
upon evaluation of DynAlloy expressions; and the compatatf the value of its fields, which
means building and evaluating DynAlloy expressions fothezfcchem. In this process, the aliasing
problem was also addressed.

Finally, the development of a technique to construct theestdthe heap at a specific point of
execution is based on an analysis of the scoped variabletharevaluation mechanism described
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before. The construction of the graph representing thie st@vides the basis for thlava Memory
Graphview.

These functionalities were a requirement to start writhmgplug-in itself. Adapting TACO added
around 1.5K LOC to the TACO project. This made TACO grow to 30BC, without counting any
depending project.

The second phase included the actual construction of thgeipluDuring its development, we
worked mainly on usability issues. This phase included nbt the development of the components
discussed on sectiofy but also of some computations that occur transparenthheodeveloper
saving her of further configuration in the use of TACO. Bothniateractive components and hidden
computations development will now be presented.

TacoPlug development, as every Eclipse plug-in, basesritsitacture on Eclipse’s PDE
infrastructure. PDE includes the necessary tools for thsigde development, testing and
deployment of a plug-in. Components of the plug-in are defimgextensiongor extension points
provided by PDE. Each of the components exhibited as paraodRlug consists of one extension.
Furthermore, some of the extensions included the use af garty plug-ins, such as Z&sivhich
provided the graph drawing functionality for tdava Memory Graphiew.

Moreover, a type of editor, called TACO Editor, was includgdng the user the possibility of
viewing different intermediate representation languagasTACO uses for analysis purposes. This
is not reported on sectiohbecause, as we have already stated, it will not be usefuktonggority
of plug-in users, but only to a small group of advanced users.

For the reader interested on plug-in development, an Ecjhsg-in called PDE Incubator Spy
could play a major role in helping to understand the Ecliplseg4in architecture. Incubator Spy
aims to provide a simple tool to introspect Eclipse in teriwloat a plug-in developer would find
useful.

Another thing worth mentioning is that, in contrast to thenowand line interface of TACO, some
parameters are automatically inferred when using the pluger example, TACO requires that the
user provides the set of relevant classes for the verificatising JDT Project we were able to
infer the set of relevant classes for the method under vatific and save the user the necessity of
configuring them. Another example would be the inclusion obmpiled version of these relevant
classes in thelass loaderwithout which returning Java-like objects as the resuthefevaluation
of IML/JFSL expressions would be impossible.

7. RELATED WORK

Apart from TACO, other SAT-based verification tools are CBJBJ; Saturn R2], and F-Soft [L4]

for the analysis of C code, and Miniatu#][and JForge] for Java code analysis. Unfortunately,
we were not able to evaluate the usability of Miniatur andd®Since both tools are not publicly
available. Although CBMC pinpoints the violated assertard prints out an error trace, it does
not allow the user to dynamically inspect the error trace,inspect expressions along the error
trace. The current JForge distribution includes an Eclgisg-in. As with CBMC, the JForge plug-
in highlights the violated parts of the specification. lteafgresents memory graph visualizations,
but restricted to the entry and exit states of the error tribe JForge plug-in allows the user to
visualize the offending program trace, but described inerimediate representation language.

In [20], authors generate an executable C# program that repre@uncerror found by the Spec#
verifier. The purpose of this generated program is not onflewstand the failure, but also to detect
spurious errors. Unlike Taco, Spec# follows a modular aggidor verification. In the generated
program, loops and invocations to other programs are reglagth the program specification.

Shttp: //wwmw. ecl i pse. or g/ pde/

Thttp:// ww. ecl i pse. org/ gef/ zest/

It t p: // www. ecl i pse. or g/ pde/ i ncubat or / spy/
**http: //ww. ecl i pse.org/jdt/
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This mimics Spec#’s modular semantics. Since the genepatgplam is actually executed, moving
backwards in the error trace is not allowed.

To the best of our knowledge, the Boogie Verification Debud&&/D for short) is the closest
work to our approach. It features navigating an error tracevdrd and backward, and inspecting
several variables and access paths. Visual Studio plugrmpresented for the verification front-
ends VCC and Dafny. Both tools perform modular verificatidnpoograms (specifications of
helper methods and loops invariants have to be provided dyslr). Although it features some
interesting listings such as showing the programmer &dlsak to a given object, BVD offers no
graph visualization and no test input generation out of tiherenodel produced by the decision
engine.

8. CONCLUSIONS AND FUTURE WORK

In this work we presented TacoPlug, an Eclipse plug-in thaviges a proper user interface for
a verification tool, TACO. TacoPlug provides the develoer possibility of performing a deeper
analysis of the TACO result which helps in the task proposethé introduction of this article:
finding and understanding the cause of the fault.

The means by which the plug-in enables the developer to perfthis analysis include: (a) a
JML/JFSL annotation explorer, allowing the user to narrbe fault to a specific formula of the
specification; (b) an error trace explorer, which permitsdiser the navigation of the instructions
that result in the fault; (c) an expression evaluator, piimg the possibility of evaluating JIML/JFSL
expressions in any point of the trace; (d) a graph visuédisaif the heap in any point of the trace,
providing a clearer picture of how memory is allocated in @mynt of the trace. Additionally,
TacoPlug provides the possibility of generating a unit¢ase, which can be run using JUnit testing
framework, that exposes the same bug than the counteregdoypld by TACO. This is especially
useful for development processes which include unit tgstevelopment, such as TDD (Test Driven
Development), and execution as a core stage. With the indas this test case generation as a part
of TacoPlug, the developer now possesses a test case &vaildle run as part of a regression test.
Finally, keeping in mind that verification tools will only goainstream if a ‘push-button’ nature is
provided, TacoPlug provides the developer an heuristichaugism to automatically calculate the
scope of the analysis she wants to perform.

This extension has proven to be useful for execution of a Bediverification and the posterior
analysis of the outcome, facilitating the user the debuggimd localizing of a fault. For example,
it has been helpful in elucidating why tlext r act M n method was not correct. We believe that
tools like TacoPlug are necessary to move verification inéohtands of a wider range of users.

Both TACO and TacoPlug source code is publicly available fdownload at
http://ww. dc. uba. ar/taco.

For future work, we plan to conduct user experiments withfieation of a wide range of
programmers, which might include students. From a techrpoant of view, improving the
efficiency of information recovery and predicate evaluagtgorithms is one of the main objectives
of a future version of the plug-in.

There is extensive work on increasing the verification céjpi@is of TACO [2]. More recently,

a framework for test input generation using the TACO infiacture was proposed]. We plan to
extend our current plugin to allow the user automaticalbate a test suite given a chosen criteria.

The current JUnit generated by TACO relies on the Java rafleatechanism for appropriately
building the offending heap configurations. We understaatlit is much more convenient to a user
obtaining the same heap configuration by invoking a sequiemitieof the accessible class methods.
In particular, this rules out those spurious heap configumatthat are not feasible under the current
set of constructors and other class methods. In order to dewesplan to investigate how to apply
genetic algorithms to guide the search of the desired heafmpewation. More specifically, we plan
to extend the EvoSuite todl [] by adding a custom fitness function which tailors the setoafards
building the offending heap configuration.
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From a user perspective, we would like to addifi visualization tool that allows the user to
isolate the differences between two memory ste2él We are also working in providing automatic
support for improving failure understanding by slicing gwhose statements that are not directly
related to the violated specification. Other ideas that wee hia mind include: JDynAlloy and
DynAlloy syntax highlighting; an analysis administratenabling the user to perform more than
one analysis at a time; partial formula evaluation, allaytime user to select a sub-formula from the
specification and automatically analyse it.
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