
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper.2012;00:1–16
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe

Practical JFSL verification using TACO†

M. Chicote1∗, D. Ciolek1 and J. P. Galeotti2‡

1Departamento de Computación, FCEyN, UBA, Buenos Aires, Argentina
2Computer Science - Saarland University, Germany

SUMMARY

TACO is a SAT-based tool for bounded verification of Java programs. One challenge many formal tools
share is to provide a practical interface for a non proficientuser. In this article we present an Eclipse plug-
in for the static verifier TACO. This plug-in allows a user to walk a counterexample trace mimicking a
debugging session. TacoPlug (our plug-in) uses and extendsTACO to provide a better debugging experience.
TacoPlug interface allows the user to verify an annotated software using the TACO verifier. If TACO finds a
violation to the specification, TacoPlug presents it in terms of the annotated source code. TacoPlug features
several views of the error trace to facilitate fault understanding. It resembles any software debugger, but
the debugging occurs statically without executing the program. Furthermore, should a dynamic analysis be
required, TacoPlug presents the user with a unit test case generated by TACO based on the detected violation.
We show the usability of our tool by means of a motivational example taken from a real-life software error.
Copyright c© 2012 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Static analysis; bounded verification; Eclipse plug-in; TACO; test case generation

1. INTRODUCTION

Programmers no longer deal just with a few hundred lines of code but with several hundred
million lines controlling some of the most complicated systems ever created. As software presence
grows from desktop computers to embedded components such ashome appliances, personal
digital assistants, medical equipment, etc., an undesirable companion arises: software defects, most
commonly known assoftware bugs. Software failures range from those that we may consider
annoying to those with more tragic consequences.

The increasing importance of software quality in economy and in everyday life demands the
development of (a) more robust engineering techniques and processes to build software, and (b)
more advanced tools to help programmers achieve a greater quality in the software artefacts they
produce. Modern compilers benefit from program analysis techniques such as type checking and
data-flow analysis to warn programmers about unintentionalmistakes. In both cases, not only the
degree of automation is extremely high, but also advanced IDE’s allow programmers to easily
understand the problem.

Other approaches allow a procedure in a conventional objectoriented language to be
automatically checked against a rich interface specification. In this sense, Bounded Verication [7]
is a technique in which all executions of a procedure are exhaustively examined within (a) a finite

∗Correspondence to: Intendente Giraldes 2160 - Ciudad Universitaria - C1428EGA - Buenos Aires - Argentina. E-mail:
mchicote@dc.uba.ar
†Extended version of the article ”TacoPlug: An Eclipse Plug-In for TACO” presented on TOPI 2012
‡On leave from CONICET, Argentina

Copyright c© 2012 John Wiley & Sons, Ltd.

Prepared usingspeauth.cls [Version: 2010/05/13 v3.00]

2 M. CHICOTE, D. CIOLEK, J. P. GALEOTTI

space given by a bound on the size of the heap and (b) the numberof loop unrollings. The scope of
analysis is examined in search of an execution trace which violates a given specication.

Several bounded verications tools [3, 4, 8, 9, 18, 22] rely on appropriately translating the original
piece of software, as well as the specification to be verified,to a propositional formula. The use of
a SAT-Solver [10, 25, 26] then allows one to find a valuation for the propositional variables that
encodes a failure. If the propositional formula is satisfiable (e.g. a valuation exists such that the
formula truth value is true), then the specification is not met by the program. On the contrary, if the
formula is unsatisfiable (no valuation makes the formula satisfiable), then the specification holds
within the scope of verification provided by the user.

In the worst case, the time required to answer the satisfiability grows exponentially with respect
to the number of propositional variables. Nevertheless, modern SAT-Solvers apply several heuristics
leading to significant gains in analysis time.

In theory, the task of a verification tool ends when it provides a conclusive answer to the question:
is the program correct with respect to the specification?However, the programmer daunting task of
understanding the cause for such answer begins in that precise instant.

Our work assumes that verification tools may become mainstream only if proper user interfaces
are provided. Essential requirements of any verification tool to become part of a programmer
toolkit are their degree of automation and their ability to provide an insightful understanding of
the verification result.

2. TACO A SAT-BASED BOUNDED VERIFIER

A wide variety of the tools that implement the bounded verification technique use the approach of
transforming the program and its specification into a propositional formula and then passing it to a
SAT-solver to check for satisfiability. TACO falls under this category.

TACO (after Translation of Annotated COde) [13] is an open source program analysis tool aimed
at the verification of sequential Java programs. Given a Javaprogram annotated with a JML [19]
or a JFSL [23] specification, TACO translates both program and specification into a propositional
formula. Motivated by the complexity of this process, TACO slices the involved transformations
into bounded and sequential stages that perform simpler translations.

A schematic description of TACO’s architecture that shows the different stages in the translation
process is provided in Fig.1. The stages presented on such diagram can be traced back unequivocally
to a stage in TACO’s source code.

The first transformation that TACO performs is the simplification of Java code and its
corresponding specification. The objective of this stage isto normalize the kind of problems that
could appear in the first translation. This transformation does not involve a translation to a different
language, but only includes simplifications of Java code, the main ones being:

• Creation of default constructor if not present.
• Mapping of looping structures into awhile form.
• Variable and parameter renaming to avoid name clashing.

Taking as input the simplified version of the program to analyze, TACO performs a translation
to JDynAlloy. JDynAlloy is a relational specification language created as an intermediate
representation for the translation from JML/JFSL specifications. JDynAlloy is an object-oriented
language whose syntax is much simpler than other object-oriented languages such as Java or
C# which allows a more compact and elegant translation to DynAlloy [12] . This translation
bridges the semantic gap between an object-oriented programming language such as Java and the
relational specification language DynAlloy. Given that JDynAlloy emulates structures present in
OO languages, the translation to this language is almost straightforward: classes are represented as
modules, instance variables asfieldsand methods asprograms. However, not all Java statements
have a direct correspondence in JDynAlloy. Most important considerations in this aspect are:

• As JDynAlloy has no exception management, it is simulated bymeans of a new variable to
account for the presence of an exception.

Copyright c© 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

PRACTICAL JFSL VERIFICATION USING TACO 3

JML/JFSL

Java

Simplified

Java

JavaSimplifier

JDynAlloy

Compiler

JDynAlloy

DynAlloy

Compiler

DynAlloy

Model

DynAlloy Translator

Alloy Model

Alloy Analyzer

SAT Formula

Loop

Unroll

Domain

Scope

Figure 1. Schematic description of TACO’s architecture

• JDynAlloy does not allow several returning points. This Java behavior is modeled introducing
a new variable to acknowledge the execution of a returning statement, such asreturn or
throw.

Once a JDynAlloy representation is obtained, the next step involves the translation to a single
DynAlloy module. DynAlloy [12] is an extension of Alloy’s relational logic syntax and semantics
with the aim of dealing with properties of executions of operations specified in Alloy. It follows that
DynAlloy extends Alloy and its relational logic. This extension provides a setting in which, besides
functions describing sets of states, actions are made available, to represent state changes (i.e., to
describe relations between input and output data). As opposed to the use of predicates for this
purpose, actions have an input/output meaning reflected in the semantics, and can be composed to
form more complex actions, using well-known constructs from imperative programming languages.
The process to complete this translation is rather straightforward. The most important action of this
process is the inclusion of a partial correctness assertionthat states that every terminating execution
of the code starting in a state satisfying the precondition and the class invariant leads to a final state
that satisfies the postcondition and preserves the invariant.

DynAlloy module serves as input for the translator that performs a semantically preserving
translation from the DynAlloy model to an Alloy model. Alloy[17, 16] is a formal specification
language, which belongs to the class of the so-called model-oriented formal methods. Alloy

Copyright c© 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

4 M. CHICOTE, D. CIOLEK, J. P. GALEOTTI

is defined in terms of a simple relational semantics, its syntax includes constructs ubiquitous
in object oriented notations, and it features automated analysis capabilities [15]. The Alloy
language has been designed with the goal of making specifications automatically analyzable. As
the aforementioned bounded verification tools, the Alloy Analyzer tool relies on off-the-shelf SAT
solvers. It automatically performs an exhaustive search for counterexamples within a finite scope
of analysis. In order to handle loops TACO constrains the number of iterations by performing a
user-provided number of loop unrolls (LU). Therefore, the (static) analysis will only find bugs that
could occur performing up to LU iterations at runtime.

Finally, the Alloy model is translated into a SAT formula. Inorder to build a finite propositional
formula a bound is provided for each domain. This representsa restriction on the precision of the
analysis. If an analysis does not find a bug, it means no bug exists within the provided scope for data
domains. Bugs could be found repeating the analysis using larger scopes. Therefore, only a portion
of the program domain is actually analyzed. It is worth noticing that in some programs scope and
LU are not completely independent parameters. For instance, given a singly linked list with a scope
of N node elements, the number of loop executions for iterating the list can not be greater then
N . This dependency is a natural situation under these constraints, and similar interactions occur in
other tools.

3. MOTIVATION

In order to ilustrate the reader, let us consider the source code of a Java method for extracting the
minimum element from a binomial heap. Binomial heaps [5] are recursive data structures specially
designed for implementing priority queues. Because of this, efficient insertion and minimum key
deletion are distinguishing features of this data structure.

The JForge specification language (JFSL) is an Alloy-like language specially aimed at addressing
some shortcoming of the Java Modeling Language (JML). Amongits main features, JFSL allows
a user to annotate a class with two class annotations:@Invariant which constraints the set of
valid object states, and@SpecField. The@SpecField annotation is intended to raise the level
of abstraction adding ghost fields to the current class declaration. In the case of binomial heap, the
user can add:

• a@Invariant annotation for enforcing the binomial heap invariant (thesize field stores
the correct number of elements, each node has a key value lessthan the rest of its children,
etc.) , and

• a @SpecField annotation declaring a ghost field namedmy nodes. The purpose of this
declaration is to predicate over the set of all reachable binomial heap node elements.

JFSL also allows the user to annotate methods with annotations about the functional behavior of
the method:

• The @Requires annotation allows a user to capture the circumstances underwhich the
method should be invoked.

• The@Ensures, @Modifies, @Throws and@Returns annotations are used to describe
what is the expected behavior of the method (given that the preconditions are met). More
specifically, the@Modifies annotation describe the frame condition of the method, while
the @Returns and @Throws may be used to specify postconditions for normal and
abnormal termination.

Figure2 shows a code excerpt from methodextractMin(). This source code corresponds to
an implementation of binomial heaps from [21]. As the reader may notice, the program manipulates
the binomial heap in a non trivial way. As a matter of fact,extractMin() not only accesses
fields from binomial heap nodes, but also invokes methodsfindMinNode andreverse from
theBinomialHeapNode class. It also calls methodunionNodes using itself as the receiver
object. The user can specify the behavior of this method by adding an@Ensures annotation,
stating that the extraction indeed removes the minimum key from the initial binomial heap.

Copyright c© 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

PRACTICAL JFSL VERIFICATION USING TACO 5

c l a s s BinomialHeap {
BinomialHeapNode Nodes ;/ / header
. . .
publ i c BinomialHeapNode ex t rac t M i n (){

i f (Nodes == n u l l)
return n u l l ;

BinomialHeapNode temp = Nodes , prevTemp =n u l l ;
BinomialHeapNode minNode =n u l l ;

minNode = Nodes . f indMinNode () ;
whi le (temp . key != minNode . key){

prevTemp = temp ;
temp = temp . s i b l i n g ;

}

i f (prevTemp == n u l l)
Nodes = temp . s i b l i n g ;

e l s e
prevTemp . s i b l i n g = temp . s i b l i n g ;

temp = temp . c h i l d ;
BinomialHeapNode fakeNode = temp ;
whi le (temp != n u l l) {

temp . p a r e n t = n u l l ;
temp = temp . s i b l i n g ;

}

i f ((Nodes != n u l l) | | (fakeNode != n u l l)) {
i f ((Nodes == n u l l) && (fakeNode != n u l l)) {

Nodes = fakeNode . r e v e r s e (n u l l) ;
} e l s e i f ((Nodes == n u l l) | | (fakeNode != n u l l)) {

unionNodes (fakeNode . r e v e r s e (n u l l)) ;
}

}

return minNode ;
}

}

Figure 2. Excerpt fromBinomialHeap class

Figure 3 shows the@Ensures annotation written in JFSL. We refer the reader to [23]
for a complete description of JFSL syntax. We will describe only a subset of features of
JFSL for presentation purposes. Apart from the usual logical connectives (→, &&, || etc.) and
quantifiers, JFSL also provides relational operators such@+ and @− for set union and set
difference respectively, set membership (in predicate) and a function to obtain the value before
method invocation (@old). The @Ensures annotation states that every execution of method
extractMin() over a non-empty binomial heap ends with another binomial heap where:

• the return node was removed,
• the key value in the removed node is lesser or equal to any other value still stored, and
• no other keys were affected.

Once the specification is written, the user is able to try to verify the program. As we have said, the
user needs to feed TACO with a scope of verification. While in some specific cases, these values may
be derived from boundaries present in the business domain, in the general case the developer holds
the responsibility of deciding which values she wants to check. Let us assume the user selects up to
5 iterations for each loop, a singleBinomialHeap element and up to13 BinomialHeapNode
elements. Then, as previously reported in [12], TACO answers that the verification does not hold
for the given scope.

As it has been mentioned, TACO uses Alloy as backend and several intermediate representations.
Nevertheless, acquiring knowledge on how programs and specifications are encoded into these

Copyright c© 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

6 M. CHICOTE, D. CIOLEK, J. P. GALEOTTI

@Ensures(”
@old(this.Nodes)6= null ⇒ (my nodes.key @+ return.key = @old(mynodes.key))

&& return in @old(mynodes)
&& all y : BinomialHeapNode|

(y in @old(my nodes)⇒ y.key≥ return.key)
&& my nodes=@old(mynodes) @- return)”)

Figure 3. An@Ensures annotation

languages goes far beyond the expected skills of any advanced user. In this scenario, the programmer
will have to figure out by himself what prevented the verification. She will have to refer only to the
program and its specification.

She may wonder if the invariant was not preserved, or which ofthe parts of the@Ensures
annotation did not hold at the program exit. She may also wantto inspect the initial state values,
or walk through the error trace watching a given variable. Inother words, she would like to inspect
the result given by the verifier following adebuggingapproach. In the remaining of this article we
describe our proposal for coping with these requirements.

4. THE TACO PLUG-IN

Eclipse† is an industrial strength, widely adopted, multi-languageIDE. It can be used to develop
applications in mainstream programming languages such as Java, C++ or Python and is written
almost entirely in Java, just like TACO, and available for every major platform. One distinguishing
characteristic of Eclipse is its support for adding new features via a sophisticated plug-in system.
Because of this, writing an Eclipse plug-in appeared as a natural choice for inserting our bounded
verifier user interface into an existing integrated development environment (IDE).

TacoPlug is the result of an effort to make TACO more friendlyand practical to the programmer.
Once installed, it allows the user to perform a bounded verification over any method of her choice.
Furthermore, it provides a new Eclipse perspective (which includes different views) enabling
features for debugging the program under analysis.

In the current section we show how to execute an analysis of theextractMin() method and
we describe the different features of TacoPlug.

4.1. Executing the TACO Verifier

Executing an analysis has two important views associated. The first one, calledTACO Preferences,
can be accessed through the common EclipsePreferencesview onWindowsmenu and allows the
user to configure all the parameters associated with an analysis. The settings are defined globally
for a specific workspace.

Figure4 shows theTACO Preferencesview. By using this view the user can define the scope of
verification. In this case, theloopUnrollCount parameter was set to5 while the limits for the
sizes ofBinomialHeap andBinomialHeapNode domains are set to 1 and 13 respectively.

The second view includes the actual TACO launcher where the method to verify is chosen.
Figure5 shows how a verification analysis of theextractMin() method is launched. As with
Java applications or JUnit‡ test cases, the TACO verifier is launched through run configurations.
This view allows the user to create, manage and launch a givenTACO analysis.

†http://www.eclipse.org/
‡http://www.junit.org/

Copyright c© 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

http://www.eclipse.org/
http://www.junit.org/

PRACTICAL JFSL VERIFICATION USING TACO 7

Figure 4.TACO Preferencesview.

Figure 5.TACO Launcherview.

4.2. An Eclipse Perspective for TACO

When TACO analysis finishes theConsoleview shows the verification outcome. If an error trace
was found, a popup asks the user if she wants the TACO perspective to be opened, much like when
a breakpoint is hit.

This perspective, calledTACO perspective, includes several views enabling the user to statically
inspect both the method under verification and the error trace. When the perspective is shown,
different views are displayed. These views allow the user to:

• inspect which part of the specification was violated,
• navigate the error trace, and
• query program values.

Further information about all these views will be given in the following subsections.

4.3. JML/JFSL Annotation Explorer

The JML/JFSL Annotation Exploreris the first view that becomes useful after TACO finishes. It
displays a list of all annotations and their value in the error trace. By doing that, it allows the
programmer to isolate which part of the JML or the JFSL specification was not met. Double-clicking
on an annotation on this view will open an editor focusing thecursor on the chosen annotation.

Figure6 shows theJML/JFSL Annotation Explorerfor theextractMin() example. In this
figure, the user can appreciate that the class invariant heldtrue while the@Ensures annotation did
not hold at program exit.

4.4. Java Error Trace

When debugging a program, walking through its execution is paramount. Eclipse’s dynamic
debugging features let the user accomplish this by using theStack Traceview provided by the
debugging perspective. Similarly, TacoPlug provides the ability to walk through the symbolic
execution of a program, using theJava Error Traceview present on the TACO perspective.

Copyright c© 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

8 M. CHICOTE, D. CIOLEK, J. P. GALEOTTI

Figure 6. JML/JFSL Annotation Explorer

Figure 7.Java Error Traceview

Java Error Traceview presents the error trace in a tree form where each node represents a point
of the execution and parent nodes represent method calls. Clicking on any of the nodes will cause
focusing the cursor on the matching line in the Java source. Stepping back and forth the error trace
is easy since the user navigates the error trace without actually executing the source code.

Figure7 presents theJava Error Traceview for theBinomialHeap example. In this particular
example, the parent node represents the method call for thefindMin and it has been expanded as
an example of inner methods navigability.

4.5. The JML/JFSL Evaluator

TACO, and therefore TacoPlug, is intended to be used with JMLand JFSL specifications. Thus, the
ability to evaluate arbitrary expressions written in theselanguages on different points of the error
trace seemed like a natural feature to include. When a trace step is selected usingJava Error Trace
view, the user can add arbitrary JML and JFSL expressions in theJML/JFSL Evaluatorview. Much
like the Expressionsview of Eclipse’sDebugperspective, theJML/JFSL Evaluatorwill display
their values from the current step in the error trace.

Figure 8 shows the JML/JFSL Evaluator including expressions“degree” and “key”
corresponding to parametersdegree andkey.

4.6. Java Memory Graph

When debugging a program that includes complex and linked data structures, looking at the value of
a certain variable or expression usually is not enough. In these cases, the programmer has to inspect
several expressions before she can understand how objects are stored in the memory space.

Copyright c© 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

PRACTICAL JFSL VERIFICATION USING TACO 9

Figure 8.JML/JFSL Expression Evaluatorview.

Figure 9. (Partial)Java Memory Graphview

The Java Memory Graphview displays a graph where nodes are objects and edges are field
values at a given point of execution. Primitive values such as integers or booleans are shown as
inner attributes of objects. If the user chooses a new step inthe error trace, a new memory graph is
displayed.

Figure9 shows part of theJava Memory Graphview in the initial state of the execution. The
complete graph matches exactly with the object diagram described in [13].

4.7. JUnit Test Case Generation

Once a counterexample is found, TacoPlug also provides an automatically generated (potentially
partial) JUnit test case. This test case builds the offending initial heap configuration using the Java
reflection mechanism. If executed, this test case is expected to exhibit the same fault found by TACO
during analysis. The generation of this test case depends only upon the activation of such feature
on the configuration view presented on4.1. It is potentially partial in the sense that, if the offending
behavior does not end in an unexpected exception, the user will have to write by herself the oracle
for the test case.

This feature allows the user to easily collect each test caseoutput by TacoPlug, merging them
into a single test suite. Apart from regression testing purposes, another advantage of capturing a
counterexample as a JUnit test case is double checking the fault against a concrete execution of the
program. Skeptical users are encourage to check the fault executing the unit test case.

Figure10 shows an excerpt of the JUnit test case that TacoPlug automatically generates for the
counterexample found by TACO. Before creating the JUnit test case, the plugin checks that the
visibility of the all classes found in the counterexample w.r.t. the target class’s package. If all classes

Copyright c© 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

10 M. CHICOTE, D. CIOLEK, J. P. GALEOTTI

@Test
publ i c void t e s t E x t r a c t M i n () {

/ / Ob jec t c r e a t i o n
BinomialHeap binomia lHeap0 =new BinomialHeap () ;
BinomialHeapNode binomia lHeap0 =new BinomialHeapNode () ;
BinomialHeapNode binomia lHeap1 =new BinomialHeapNode () ;
. . .
BinomialHeapNode binomia lHeap12 =new BinomialHeapNode () ;

/ / F i e l d i n i t i a l i z a t i o n binomia lHeap0
updateVa lue (b inomia lHeap0 , ” Nodes ” , binomialHeapNode0) ;
updateVa lue (b inomia lHeap0 , ” s i z e ” , 1 3) ;
/ / F i e l d i n i t i a l i z a t i o n binomialHeapNode0
updateVa lue (binomialHeapNode0 , ” key ” , 0) ;
updateVa lue (binomialHeapNode0 , ” degree ” , 1) ;
updateVa lue (binomialHeapNode0 , ” p a r e n t ” ,n u l l) ;
upda teVa lue (binomialHeapNode0 , ” s i b l i n g ” , binomialHeapNode1) ;
updateVa lue (binomialHeapNode0 , ” c h i l d ” , binomialHeapNode2) ;
. . .
/ / Method I n v o c a t i o n
Method method = ge t A ccess i b l eM e t hod (” BinomialHeap ” , ” ext rac t M i n ” , t rue) ;
t ry {

method . i nvoke (b inomia lHeap0) ;
} ca tch (Excep t i on e) {

f a i l () ;
}

}

Figure 10. JUnit test case automatically generated by TacoPlug

are accessible from this location, the JUnit test case is generated. Observe that visibility of fields
and methods is not an issue since it is possible to change using the reflection mechanism.

4.8. An algorithm for automatically inferring a scope of analysis

As we previously stated, a scope of analysis is mandatory forbounded verification to work. A scope
of analysis is made of: a) a number of loop unrolls to limit thelength of the traces to examine, and
b) a limit on the size of each object domain the code handles. Choosing a scope of analysis has a
tremendous impact on the verification process, since the size and complexity of the propositional
formula will depend on the setting of these parameters.

In the context of the verification of closed systems (i.e. a main method with no arguments), it is
easy to over approximate the size of each object domains by unrolling the code under analysis and
counting the maximum number of creation sites in any programpath. Nevertheless, the task becomes
more challenging when open systems (i.e. methods with complex objects as arguments, or accessing
static complex objects) are our target. In order to assist the programmer in the task of systematically
choosing a reasonable scope of analysis, TacoPlug comes with an automatic mechanism for (given
a desired loop bound) inferring a scope for each object domain.

In Fig. 11we show the pseudocode of our loop inference algorithm. The user must provide (apart
from the desired program) a bound to the number of loop unrollsu and a bound for object domains
n. The algorithm first computes thecreationsitesstoring the maximum number of creation sites for
each type T in any path (feasible and non-feasiable) in the unrolled program. Then the algorithm
creates a graph using the class diagram information. In thisgraph an edge is materialized between
typesT1 andT2 if there is a field mapping objects ofT1 to T2. This graph is used to count the
number of paths from method arguments and static data to eachtype T and store that value in
mappinginput scope. Since the number of paths could be potentially infinite (i.e. a recursive field
or a cycle among different types) the input argumentn is used to bound this value. The final domain
size is defined by adding the number of creation sites, the bounded input scope and the domain size
of every subclass of typeT .

Copyright c© 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

PRACTICAL JFSL VERIFICATION USING TACO 11

inputs: number of loop unroll u,
bound for object domains n,
program P

output: a bound for each object domain
unrolled_p := unroll(P, u)
for each domain T

creation_sites(T) := max. number of creation sites of type T
for any path p in unrolled_p

endfor
cdg = buildClassDiagramGraph()
for each domain T

input_scope(T) := min(n , number of paths trasversing cdg)
endfor
for each domain T
domain_size(T) = creation_sites(T) + input_scope(T)
domain_size(T) += domain_size(T’) T’ subclass of T

endfor

Figure 11. Inferring domain limit algorithm

This algorithm allows the user to explore the scope of analysis by controlling only two parameters:
the number of loop unrolls and the bound to the number of inputobjects when there is a potentially
unbound heap configuration. It is easy to see that if the number of loop unrolls is kept constant,
then increasing the bound on input objects will always lead to a bigger search space. The user may
enable the scope inference mechanism and set the desired loop and domain bounds by setting the
proper checkbox in the TACO preferences window presented inFig. 4.

5. AN EVALUATION OF THE TACO PLUG-IN

In order to evaluate the usability of our plug-in, we will report on how useful TacoPlug was for
debugging and localizing a fault in theextractMin method.

After launching the analysis, TACO required 73 seconds to complete its execution. Since TACO
found an offending trace, the TACO perspective was opened. The first task was to inspect which of
the annotations did not hold. For this task, theJML/JFSL Annotation Explorerwas particularly
useful. It showed us that the@Invariant annotation held, but the@Ensures annotation
was violated by the error trace. Once we narrowed the fault location to somewhere inside the
postcondition formula, we decided to display the structureof the binomial heap after executing
methodextractMin. In order to do this, we jumped to the final state of the error trace using
theJava Error Traceview and, selecting theJava Memory Graphview, we were able to visualize
the final state of the program. At this point, we needed to exhaustively evaluate each@Ensures
sub-formula. As stated on section3, the@Ensures formula consist of three sub-formulas:

1. the return node was removed,
2. the key value in the removed node is less or equal to any other value still stored, and
3. no other keys were affected.

Checking these conditions against the final state of the program, we were able to discover that the
first two sub-formulas held. Therefore, the fault should be referred to the condition specified in the
third sub-formula, which can be written in JFSL as follows:

my_nodes=@old(my_nodes) @- return

Counting the number of nodes in the binomial heap on the final state of execution, we noticed that
the binomial heap was composed of10 nodes. Contrasting this value against the initial state of
execution was necessary. By clicking on the first step of the error trace a new memory graph was
displayed. We discovered that the initial binomial heap had13 nodes. This meant that the expected
number of nodes afterextractMin was12. This led us to conclude that2 nodes were missing at

Copyright c© 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

12 M. CHICOTE, D. CIOLEK, J. P. GALEOTTI

Figure 12. heap configuration before merging two different binomial heaps

Figure 13. heap configuration after merging when degree(temp1)>degree(temp2)

the final state. In other words, the amount of nodes after executing methodextractMin was not
correct.

Once the faulty behavior was instantiated for this error trace, the next step was to find where
the fault was located. For this, two views were crucial:Java Error TraceandJava Memory Graph.
We asked the following question:What is the point in the error trace where the number of nodes
reaches10 for the first time?In order to answer this question, we performed a binary search in the
Java error trace, checking on each step the number of nodes stored in the binomial heap. By doing
that, we were able to isolate the misbehavior to the helper methodmerge. Apparently, merging two
binomial heaps of7 and5 nodes resulted in a new binomial heap of only10 nodes.

After determining that some anomalous behavior was contained in methodmerge, we inspected
how these two binomial heaps were merged. This method mergestwo lists of nodes observing the
value of fielddegree. After inspecting the error trace going back and forth, we were able to

• understand the intended loop invariant for merging two binomial heaps, and more importantly,
• localize the fault in source code.

The fault consisted in a mishandling in how references from nodes already merged were being
updated. More specifically, when mergingx0, . . . , xn andy0, . . . , ym, if y0 is inserted beforex0, then
references of other nodes tox0 should be updated toy0. In Fig. 12 we show the heap configuration
before merging two binomial heaps (referencestemp1andtemp2). After the execution of the merge
operation (Fig.13) we can see that nodeA previous siblings are no longer reachable from the current
binomial heap.

Finally, in order to double check the error using a dynamic environment, we executed the
generated JUnit test case and proved that, when executing the extractMin method with that
particular input, some binomial heaps nodes were lost. Furthermore, we were able to trace back the
fault to the same execution point found using the TacoPlug approach, making things consistent as
expected.

Copyright c© 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

PRACTICAL JFSL VERIFICATION USING TACO 13

6. PLUG-IN DETAILS

The design and development of the plug-in consisted on a two phase project, both of which presented
several challenges. While the second phase of the project consisted on the integration of TACO to
Eclipse by means of a plug-in, the first phase involved the transformation of the batch processing
tool TACO to a interactive program to provide support for theintended functionalities of the plug-in.
These two phases, the main techniques and challenges involved will be described in this section.

The first phase involved enhancing TACO in order to provide functional support for all the
features we intended TacoPlug to support. To begin with, this meant the transformation of TACO
from a tool that process an input (annotated source code) andreturns an output (in SAT cases, a
counterexample) to a tool in which the output can be queried and analyzed. The counterexample
returned by TACO until the beginning of this project was presented in Alloy language. As the
intention was to abstract the developer from the TACO implementation and the intermediate
languages it uses, a mechanism to translate that counterexample to a Java-like language was needed.

As it has been mentioned before, TACO’s architecture consists of a pipeline that transforms the
original annotated program source code to a propositional formula. Thus, designing and developing
a new stage to build a Java counterexample seemed as the natural choice. The main responsibilities
of this stage include:

• building a Java trace for the fault,
• checking whether class invariant and method postconditionheld in the final state of execution.

For both of this tasks a mechanism presented on [27] was used. This mechanism, when applied to
an Alloy counterexample, returned a DynAlloy counterexample, which brought us a little bit closer
to the abstraction level desired. This counterexample includes a DynAlloy trace for the fault and an
entry point to evaluate DynAlloy expressions on each step ofthe trace.

Using the DynAlloy trace in combination with a reference to the original Java statements while
the analyzed program traverses the TACO pipeline, providedthe necessary tools to build a Java trace
for the fault.

In order to check the validity of the class invariant and method postcondition in the final state
of execution, a technique that provided the means to evaluate JML/JFSL expressions was required.
The main challenge in designing such technique was that in TACO’s pipeline, variable renaming is
done. Therefore, to be able to evaluate JML/JFSL expressions, the exact same variable renaming
needed to be performed in such expressions, which meant saving the original renaming dictionary
in a new object we calledTacoContext. Saving the variable renaming dictionary for the pipeline
stages that included such mechanism in the TacoContext, provided the means to do the variable
renaming in the class invariant and method postcondition. Replacing the corresponding variable
names in either formula and using the mechanisms in TACO to translate a JML/JFSL formula to a
DynAlloy formula was all that we needed in order to evaluate them in the context of the DynAlloy
counterexample.

Being able to build a Java trace of the detected fault and testwhether the class invariant and
method postcondition held in the final state of execution arethe back-ends for theJava Error Trace
andJML/JFSL Annotation Explorer.

Furthermore, the described technique is general enough to grant the user with the possibility
of querying the DynAlloy counterexample using JML/JFSL expressions, a feature needed to build
theJML/JFLS Evaluator. However, as the returning type of evaluating invariant andpostcondition
formulas is known to beBool, a way of reconstructing a Java-like-return-type object was not
developed. This enhancement was incorporated in a second stage and a full description of such
is not included here because of space restrictions. The construction of the Java-like return object
is based on the obtainment of its Java type, using propertiespresent on the Alloy object returned
upon evaluation of DynAlloy expressions; and the computation of the value of its fields, which
means building and evaluating DynAlloy expressions for each of them. In this process, the aliasing
problem was also addressed.

Finally, the development of a technique to construct the state of the heap at a specific point of
execution is based on an analysis of the scoped variables andthe evaluation mechanism described

Copyright c© 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

14 M. CHICOTE, D. CIOLEK, J. P. GALEOTTI

before. The construction of the graph representing this state provides the basis for theJava Memory
Graphview.

These functionalities were a requirement to start writing the plug-in itself. Adapting TACO added
around 1.5K LOC to the TACO project. This made TACO grow to 30KLOC, without counting any
depending project.

The second phase included the actual construction of the plug-in. During its development, we
worked mainly on usability issues. This phase included not only the development of the components
discussed on section4, but also of some computations that occur transparently to the developer
saving her of further configuration in the use of TACO. Both user interactive components and hidden
computations development will now be presented.

TacoPlug development, as every Eclipse plug-in, bases its architecture on Eclipse’s PDE§

infrastructure. PDE includes the necessary tools for the design, development, testing and
deployment of a plug-in. Components of the plug-in are defined asextensionsfor extension points
provided by PDE. Each of the components exhibited as part of TacoPlug consists of one extension.
Furthermore, some of the extensions included the use of third party plug-ins, such as Zest¶ which
provided the graph drawing functionality for theJava Memory Graphview.

Moreover, a type of editor, called TACO Editor, was includedgiving the user the possibility of
viewing different intermediate representation languagesthat TACO uses for analysis purposes. This
is not reported on section4 because, as we have already stated, it will not be useful to the majority
of plug-in users, but only to a small group of advanced users.

For the reader interested on plug-in development, an Eclipse plug-in called PDE Incubator Spy‖,
could play a major role in helping to understand the Eclipse plug-in architecture. Incubator Spy
aims to provide a simple tool to introspect Eclipse in terms of what a plug-in developer would find
useful.

Another thing worth mentioning is that, in contrast to the command line interface of TACO, some
parameters are automatically inferred when using the plug-in. For example, TACO requires that the
user provides the set of relevant classes for the verification. Using JDT Project∗∗ we were able to
infer the set of relevant classes for the method under verification and save the user the necessity of
configuring them. Another example would be the inclusion of acompiled version of these relevant
classes in theclass loader, without which returning Java-like objects as the result ofthe evaluation
of JML/JFSL expressions would be impossible.

7. RELATED WORK

Apart from TACO, other SAT-based verification tools are CBMC[3], Saturn [22], and F-Soft [14]
for the analysis of C code, and Miniatur [9] and JForge [6] for Java code analysis. Unfortunately,
we were not able to evaluate the usability of Miniatur and F-Soft since both tools are not publicly
available. Although CBMC pinpoints the violated assertionand prints out an error trace, it does
not allow the user to dynamically inspect the error trace, nor inspect expressions along the error
trace. The current JForge distribution includes an Eclipseplug-in. As with CBMC, the JForge plug-
in highlights the violated parts of the specification. It also presents memory graph visualizations,
but restricted to the entry and exit states of the error trace. The JForge plug-in allows the user to
visualize the offending program trace, but described in a intermediate representation language.

In [20], authors generate an executable C# program that reproduces an error found by the Spec#
verifier. The purpose of this generated program is not only understand the failure, but also to detect
spurious errors. Unlike Taco, Spec# follows a modular approach for verification. In the generated
program, loops and invocations to other programs are replaced with the program specification.

§http://www.eclipse.org/pde/
¶http://www.eclipse.org/gef/zest/
‖http://www.eclipse.org/pde/incubator/spy/
∗∗http://www.eclipse.org/jdt/

Copyright c© 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

http://www.eclipse.org/pde/
http://www.eclipse.org/gef/zest/
http://www.eclipse.org/pde/incubator/spy/
http://www.eclipse.org/jdt/

PRACTICAL JFSL VERIFICATION USING TACO 15

This mimics Spec#’s modular semantics. Since the generatedprogram is actually executed, moving
backwards in the error trace is not allowed.

To the best of our knowledge, the Boogie Verification Debugger (BVD for short) is the closest
work to our approach. It features navigating an error trace forward and backward, and inspecting
several variables and access paths. Visual Studio plug-insare presented for the verification front-
ends VCC and Dafny. Both tools perform modular verification of programs (specifications of
helper methods and loops invariants have to be provided by the user). Although it features some
interesting listings such as showing the programmer all aliases to a given object, BVD offers no
graph visualization and no test input generation out of the error model produced by the decision
engine.

8. CONCLUSIONS AND FUTURE WORK

In this work we presented TacoPlug, an Eclipse plug-in that provides a proper user interface for
a verification tool, TACO. TacoPlug provides the developer the possibility of performing a deeper
analysis of the TACO result which helps in the task proposed in the introduction of this article:
finding and understanding the cause of the fault.

The means by which the plug-in enables the developer to perform this analysis include: (a) a
JML/JFSL annotation explorer, allowing the user to narrow the fault to a specific formula of the
specification; (b) an error trace explorer, which permits the user the navigation of the instructions
that result in the fault; (c) an expression evaluator, providing the possibility of evaluating JML/JFSL
expressions in any point of the trace; (d) a graph visualisation of the heap in any point of the trace,
providing a clearer picture of how memory is allocated in anypoint of the trace. Additionally,
TacoPlug provides the possibility of generating a unit testcase, which can be run using JUnit testing
framework, that exposes the same bug than the counterexample found by TACO. This is especially
useful for development processes which include unit testing development, such as TDD (Test Driven
Development), and execution as a core stage. With the inclusion of this test case generation as a part
of TacoPlug, the developer now possesses a test case available to be run as part of a regression test.
Finally, keeping in mind that verification tools will only gomainstream if a ‘push-button’ nature is
provided, TacoPlug provides the developer an heuristic mechanism to automatically calculate the
scope of the analysis she wants to perform.

This extension has proven to be useful for execution of a bounded verification and the posterior
analysis of the outcome, facilitating the user the debugging and localizing of a fault. For example,
it has been helpful in elucidating why theextractMin method was not correct. We believe that
tools like TacoPlug are necessary to move verification into the hands of a wider range of users.

Both TACO and TacoPlug source code is publicly available fordownload at
http://www.dc.uba.ar/taco.

For future work, we plan to conduct user experiments with verification of a wide range of
programmers, which might include students. From a technical point of view, improving the
efficiency of information recovery and predicate evaluation algorithms is one of the main objectives
of a future version of the plug-in.

There is extensive work on increasing the verification capabilities of TACO [2]. More recently,
a framework for test input generation using the TACO infrastructure was proposed [1]. We plan to
extend our current plugin to allow the user automatically create a test suite given a chosen criteria.

The current JUnit generated by TACO relies on the Java reflection mechanism for appropriately
building the offending heap configurations. We understand that it is much more convenient to a user
obtaining the same heap configuration by invoking a sequencebuilt of the accessible class methods.
In particular, this rules out those spurious heap configurations that are not feasible under the current
set of constructors and other class methods. In order to do so, we plan to investigate how to apply
genetic algorithms to guide the search of the desired heap configuration. More specifically, we plan
to extend the EvoSuite tool [11] by adding a custom fitness function which tailors the searchtowards
building the offending heap configuration.

Copyright c© 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

http://www.dc.uba.ar/taco

16 M. CHICOTE, D. CIOLEK, J. P. GALEOTTI

From a user perspective, we would like to add adiff visualization tool that allows the user to
isolate the differences between two memory states [24]. We are also working in providing automatic
support for improving failure understanding by slicing away those statements that are not directly
related to the violated specification. Other ideas that we have in mind include: JDynAlloy and
DynAlloy syntax highlighting; an analysis administrator,enabling the user to perform more than
one analysis at a time; partial formula evaluation, allowing the user to select a sub-formula from the
specification and automatically analyse it.

ACKNOWLEDGEMENT

Alessandra Gorla gave helpful comments on earlier revisions of this paper. This work has been
supported by the European Union Seventh Framework Programme under grant agreement no. 295261
(MEALS). Contract/grant sponsor: UBACyT-20020110200075, CONICET-PIP 11220110100596CO.

REFERENCES

1. Abad et. al.,Tight Bounds + Incremental SAT = Better Test Generation under Rich Contracts, submitted for
publication to ICST 2013, International Conference on Software Testing 2013.

2. Cuervo Parrino B., Galeotti J.P., Garbervetsky D., and Frias M.,A dataflow analysis to improve SAT-based program
verification. In SEFM 2011: Software Engineering and Formal Methods, page 138–153 - 2011

3. Clarke, E., Kroening, D., Lerda F.A Tool for Checking ANSI-C Programs. In TACAS 2004. LNCS (2988) pp. 168–
176.

4. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.SATABS: SAT-based Predicate Abstraction for ANSI-C. In TACAS
2005. LNCS (3440) pp. 570-574.

5. Cormen, T., Leiserson C., Rivest R., and Stein C.,Introduction to Algorithms (3. ed.)MIT Press, 2009.
6. Dennis G.A Relational Framework for Bounded Program Verification. MIT PhD Thesis. July 2009.
7. Dennis, G., Yessenov, K., Jackson D.,Bounded Verication of Voting Software.in VSTTE 2008. Toronto, Canada,

October 2008.
8. Dennis, G., Chang, F., Jackson, D.Modular Verication of Code with SAT. ISSTA06, pp. 109-120, 2006
9. Dolby J., Vaziri M., Tip F.,Finding Bugs Efficiently with a SAT Solver, in ESEC/FSE’07, pp. 195–204, ACM Press,

2007.
10. Een, N., Sorensson, N., An extensible SAT-solver. In LNCS. Volume 2919 (2004) pages 502–518.
11. Fraser G. and Arcuri A.,EvoSuite: automatic test suite generation for object-oriented software, in Proceedings of

the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering,
New York, NY, USA, 2011, pp. 416-419.

12. Frias, M. F., Galeotti, J. P., Lopez Pombo, C. G., Aguirre, N., DynAlloy: Upgrading Alloy with Actions, in ICSE’05,
pp. 442–450, 2005.

13. Galeotti J., Rosner N., Lopez Pombo, C., Frias M.,Analysis of Invariants for Efficient Bounded Verification, in
ISSTA 2010, Trento, Italy.

14. Ivančić, F., Yang, Z., Ganai, M.K., Gupta, A., Shlyakhter, I., Ashar, P.,F-Soft: Software Verification Platform.In
CAV’05, pp. 301–306, 2005.

15. Jackson, D.,A micromodels of software: Lightweight modelling and analysis with Alloy MIT Laboratory for
Computer Science, Cambridge, MA, 2002.

16. Jackson, D.,Software Abstractions.MIT Press, 2006.
17. Jackson, D.,Alloy: a lightweight object modelling notationACM Transactions on Software Engineering and

Methodology, 2002.
18. Jackson, D., Vaziri, M.,Finding bugs with a constraint solverin ISSTA00, pp. 14–25, 2000.
19. Leavens, G., Baker A., Ruby C.Preliminary design of JML: a behavioural interface specification language for Java.

ACM Software Engineering Notes. Volume 31 Issue 3, May 2006.
20. Müller P., and Ruskiewicz J.,Using Debuggers to Understand Failed Verification Attempts. In Formal Methods (FM)

2011, pp. 73–87, 2011.
21. Visser W., Păsăreanu C. S., Pelánek R.,Test Input Generation for Java Containers using State Matching, in ISSTA

2006, pp. 37–48, 2006.
22. Xie, Y., Aiken, A.,Saturn: A scalable framework for error detection using Boolean satisfiability. in ACM TOPLAS,

29(3): (2007).
23. Yessenov K.A Light-weight Specification Language for Bounded Program Verification. MIT MEng Thesis. May

2009.
24. Zimmermann T., Zeller A.Visualizing Memory Graphs. In Software Visualization 2001, pp. 191–204.
25. Goldberg E., Novikov Y.BerkMin: A fast and robust SAT-solver. In Proceedings of the conference on Design,

automation and test in Europe, pp. 142–149. IEEE Computer Society.
26. Moskewicz, M., Madigan, C., Zhao Y., Zhang L., and Malik S. Chaff: engineering an efcient SAT solver. In J. Rabaey

editor, Proceedings of the 38th conference on Design automation, pages 530535, Las Vegas, Nevada, United States,
2001. ACM Press.

27. P. BenderskyHacia un entorno integrado para la verificación de contratos utilizando SAT Solvers.Masters thesis,
Universidad de Buenos Aires, 2010.

Copyright c© 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

	1 Introduction
	2 TACO a SAT-based bounded verifier
	3 Motivation
	4 The TACO Plug-In
	4.1 Executing the TACO Verifier
	4.2 An Eclipse Perspective for TACO
	4.3 JML/JFSL Annotation Explorer
	4.4 Java Error Trace
	4.5 The JML/JFSL Evaluator
	4.6 Java Memory Graph
	4.7 JUnit Test Case Generation
	4.8 An algorithm for automatically inferring a scope of analysis

	5 An Evaluation of the Taco Plug-in
	6 Plug-In Details
	7 Related Work
	8 Conclusions and Future Work

