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Seminal plasma is not just a spermatozoa carrier. It induces the expression of inflammatory cytokines and
chemokines and a massive infiltration of neutrophils, monocytes and dendritic cells in the female genital
mucosa after coitus, enabling the innate immune system to fight against sexually transmitted pathogens.
However, exposure to seminal plasma not only turns on an inflammatory response but also induces reg-
ulatory mechanisms that allow the fetus (a semiallograft) to grow and develop in the uterus. In mouse
models it has been shown that seminal plasma induces the expansion of regulatory T cells specific to
seminal Ags in the receptive partner, thus promoting tolerance to paternal alloantigens and avoiding allo-
geneic fetal rejection. These mechanisms appear to be mainly induced by prostaglandins of the E series
(PGE) and TGF-b, which are present at huge concentrations in the seminal plasma. Moreover, we have
recently shown that exposure to seminal plasma induces the differentiation of dendritic cells into a tol-
erogenic profile through a mechanism dependent on the activation of the prostanoid receptors EP2 and
EP4 by seminal PGE.

Our hypothesis proposes that this tolerogenic response induced by seminal PGE, while promoting
fertility by inducing tolerance toward paternal alloantigens, might also compromise the development
of the adaptive immune response against sexually transmitted pathogens in the receptive partner.

� 2014 Elsevier Ltd. All rights reserved.
Background

Semen contains a large array of components such as carbohy-
drates, lipids, peptides, proteins, cytokines, and chemokines, pro-
duced from the testis, epididymis, and accessory glands. A
number of these components bear immunosuppressive activity,
like prostaglandins, TGF-b and other cytokines, polyamines, pro-
stasomes and complement-inhibiting proteins [1–4]. In particular,
huge concentrations of TGF-b and prostaglandins of the E series
(PGE) are found in normal human semen [5–7]. PGE in semen
include PGE1, PGE2 and their 19-OH-derivatives in concentrations
exceeding 700 lg/ml [5,6].

It is well known that semen deposition onto the female genital
mucosa triggers a strong inflammatory response. This inflamma-
tory response has been described in mice, pigs, rabbits and humans
[8–11]. Studies performed by Sharkey and coworkers in ectocervi-
cal epithelial cells showed that seminal plasma stimulates the pro-
duction of a variety of inflammatory cytokines and chemokines
such as IL-8, MCP-1, IL-6, and GM-CSF [12]. Seminal plasma also
induced the expression of cyclooxygenase-2, the rate-limiting
enzyme for prostanoid synthesis, in human vaginal and cervical
epithelial cells [12,13]. Moreover, Berlier and coworkers reported
that seminal plasma promotes the attraction of Langerhans cells
via the stimulation of CCL20 secretion by vaginal epithelial cells
[14]. Consistent with these observations, serial analysis of human
cervical samples revealed that semen deposition promotes the
massive infiltration of the cervix by neutrophils, monocytes, and
dendritic cells (DCs) through a mechanism dependent on TGF-b
[7,10]. What is the meaning of this inflammatory response induced
by semen? We don’t know the answer to this question. Inflamma-
tion might induce a dual action on the receptive mucosa. It might
induce the local recruitment of innate immune effectors to fight
against sexually transmitted pathogens. Moreover, it might favor
the implantation of the embryo, a process which has been shown
to require the expression of inflammatory cytokines in the pre-
implantation uterus [15].

The actions mediated by semen at the female genital mucosa
are not restricted to the induction of an acute inflammatory
response. In apparent contradiction, semen also induces a strong
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tolerogenic response. This response appears to be required for the
survival of spermatozoa in the female reproductive tract and also
to avoid allogeneic fetal rejection. In this regard, Robertson and
coworkers showed that seminal fluid delivered at coitus causes
the expansion of a CD4(+) FOXP3(+) regulatory T cell population
(Tregs), which subsequently home to the uterus, thus preventing
embryo rejection by the maternal-allospecific immune response
[16,17]. Notably, this tolerogenic response occurs even in the
absence of conception, thus suggesting a critical role for seminal
fluid as an inducer of Tregs [18]. In fact, a strict requirement of Treg
expansion during pregnancy has been clearly demonstrated in
mice, since depletion of Tregs induces resorption of the embryos
in allogeneic matings [19,20]. More importantly, maternal-fetal
tolerance is dependent on peripheral, but not thymic (natural)
Tregs [21]. Generation of peripheral Tregs requires the activation
of conventional naive CD4+ T cells by tolerogenic DCs, which
express a semimature phenotype and drive the differentiation of
Tregs in a microenvironment characterized by the absence of
inflammatory cytokines and the presence of high concentrations
of TGF-b and IL-10 [22,23]. The mechanisms underlying the ability
of semen to promote a regulatory T cell-response remain poorly
defined.

Dendritic cells are unique in their ability to stimulate naive T
cells, to start the adaptive immune response and to induce the dif-
ferentiation of CD4+ T cells into different profiles including Tregs
[24]. Looking for the mechanisms underlining the ability of semen
to promote a tolerogenic T cell response, we have recently ana-
lyzed whether seminal fluid influences the functional profile of
DCs. We reported that exposure to seminal plasma skews the dif-
ferentiation of DCs into a tolerogenic profile [25]. The presence of
seminal plasma during the differentiation of monocytes into DCs,
even when employed at dilutions as high as 1:105, induced the
development of DCs with a phenotype characterized by the
absence of CD1a, the presence of CD14, and their inability to
acquire a full mature phenotype upon activation by inflammatory
stimulus such as LPS, TNF-a or CD40 ligand. Moreover, upon acti-
vation by LPS, these DCs produced low amounts of the inflamma-
tory cytokines IL-1b, TNF-a, IL-6, and IL-12p70 and high amounts
of IL-10 and TGF-b. Furthermore, they showed an enhanced ability
to induce the expansion of CD25+ FOXP3+ regulatory T cells.
Importantly, we also demonstrated that seminal PGE play a major
role in determining the tolerogenic profile of DCs. In fact, the inhi-
bition of the prostanoid receptors EP2 and EP4 almost completely
prevented the tolerogenic effect induced by seminal plasma on the
phenotype and function of DCs [25]. Whether semen might be able
to induce the development of tolerogenic DCs at the receptive
mucosa in vivo, remains to be determined. Supporting this sce-
nario, however, a large body of evidence suggests that semen
might actually interact with DCs at the female genital mucosa.
Not only there is a massive postcoital recruitment of DC precursors
to the genital mucosa (i.e., inflammatory monocytes [26]), but also
the induction of microabrasions in the genital epithelium occurring
during sexual intercourse might enable semen to effectively influ-
ence the local course of DC differentiation [27,28].
Hypothesis

By inducing a tolerogenic environment at the receptive mucosa,
seminal PGE does not only suppress the host-immune response
against paternal alloantigens favoring reproduction, but also com-
promises the ability of the receptive partner to mount an effective
adaptive immune response against sexually transmitted patho-
gens. Our hypothesis suggests that the presence of PGE in human
seminal plasma may promote the spread of sexually-transmitted
pathogens by inducing the differentiation of DCs into a tolerogenic
profile, driving the activation and expansion of Tregs directed to
pathogen-associated antigens.
Hypothesis testing

In order to test this hypothesis, it should be determined
whether in vivo exposure of vaginal mucosa to PGE actually results
in the induction of tolerogenic DCs, the infiltration of the mucosa
by Tregs, and the spreading of sexually-transmitted pathogens.
The immune deviation induced by seminal PGE cannot be studied
by lowering semen PGE levels, since using cyclooxygenase inhibi-
tors has been shown to reduce PGE concentrations in semen only
partially [29]. We believe that our hypothesis could be tested
instead by determining the effect induced by PGE in an animal
model of sexually-transmitted infection, such as HSV-2 in the
mouse. This model may allow the study of the phenotype of DCs
and CD4+ T cells found at the genital mucosa, as well as the course
of the HSV-2 infection, following vaginal inoculation of HSV-2 in
the presence of mouse seminal plasma supplemented with differ-
ent amounts of PGE2.
Clinical implications

Sexually-transmitted infections are highly prevalent and repre-
sent an important cause of morbidity and mortality worldwide.
Our hypothesis proposes that PGE in semen promotes immunolog-
ical tolerance to sexually transmitted pathogens in the receptive
partner. Understanding the influence exerted by seminal PGE on
the mucosal immune response might result in the development
of innovative approaches to prevent the spreading of sexually
transmitted diseases.
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