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a b s t r a c t

A packing k-coloring of a graphG is a k-coloring such that the distance between two vertices
having color i is at least i+ 1.

To compute the packing chromatic number is NP-hard, even restricted to trees, and it is
known to be polynomial time solvable only for a few graph classes, including cographs and
split graphs.

In this work, we provide upper bounds for the packing chromatic number of lobsters
and we prove that it can be computed in polynomial time for an infinite subclass of them,
including caterpillars.

In addition, we provide superclasses of split graphs where the packing chromatic
number can be computed in polynomial time. Moreover, we prove that the packing
chromatic number can be computed in polynomial time for the class of partner limited
graphs, a superclass of cographs, including also P4-sparse and P4-tidy graphs.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A packing k-coloring of a graph G is a k-coloring using colors in {1, . . . , k} such that the distance between two vertices
having color i is at least i + 1. The packing chromatic number of G, denoted by χρ(G), is the minimum k such that G admits
a packing k-coloring. This concept was originally introduced by Goddard et al. in [5] under the name broadcast chromatic
number as one of its applications involves frequency planning in wireless networks, and renamed as packing chromatic
number by Brešar et al. [2].

In this work we consider the following decision problem:
PACKING COLORING (PackCol)

Instance: G = (V , E), k ∈ N
Question: Is there a packing k-coloring of G?

Goddard et al. [5] proved that PackCol is NP-complete for general graphs and Fiala and Golovach [3] proved that it is NP-
complete even for trees. Then, it would be worth it to determine maximal (minimal) subclasses of trees for which PackCol
is solvable in polynomial time (NP-complete).

In addition, PackCol is solvable in polynomial time for graphs whose treewidth and diameter are both bounded [3] and
for cographs and split graphs [5].

The task of this work is to enlarge the family of graphs where PackCol is polynomial.
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This paper is organized as follows: in Section 2 we state the notation, definitions and previous results we need in this
work. In Section 3, we provide an upper bound for the packing chromatic number of lobsters. This bound allows us to find
families of lobsters, including caterpillars, where PackCol is solvable in polynomial time. Finally, in Section 4 we analyze
the problem for some families of neighborhood modules graphs, including split and spider graphs, and these results allow
us to prove that PackCol is polynomial time solvable for partner limited graphs.

2. Definitions and preliminary results

All the graphs in this paper are finite and simple. Given a graph G, V (G) and E(G) denote its sets of vertices and edges,
respectively, and G denotes its complement.

For any positive integerm, we denote by Km, Sm and Pm the graphs withm vertices corresponding to the complete graph,
the complement of a complete graph and a path, respectively.

For any v ∈ V (G),N(v) is the set of its neighbors, and if U ⊆ V (G), then N(U) = ∪v∈U N(v). The degree of v in G is
deg(v). We denote by L(G) the set of nodes of degree 1 in G.

Given a graph G and U ⊆ V (G),G−U denotes the graph obtained from the deletion of the vertices in U , i.e., the subgraph
with vertex set V (G) − U and edge set E(G) − {vw : v ∈ U}. An induced subgraph of G is a graph obtained from G by the
deletion of a subset of vertices. Given R ⊆ V (G),G[R] denotes the subgraph G − (V (G) − R). We simply refer as subgraphs
for induced subgraphs and, when it is not necessary to identify the subset of deleted vertices, we simply use the notation
G′ ⊆ G.

Let v be a vertex of a graph G and let G′ be a graph such that V (G) ∩ V (G′) = ∅. The graph obtained by replacing v by G′
is the graph whose vertex set is (V (G) − {v}) ∪ V (G′) and whose edges are E(G − {v}) ∪ E(G′) together with all the edges
connecting a vertex in V (G′) with a vertex in N(v).

A complete set in a graph G is a set of pairwise adjacent vertices and a stable set in G is a set of pairwise nonadjacent
vertices. The stability number of G is the size of a maximum stable set in a graph G and it is denoted by α(G). The Stable Set
Problem (SSP) is that of finding a maximum stable set in a graph.

We denote by distG(v, u) the distance between vertices v and u in G and the diameter of G is diam(G) = max{distG(v, u) :
v, u ∈ V (G)}.

A caterpillar is a tree T in which all the vertices are at distance at most 1 of a central path P of T . A lobster is a tree T in
which all the vertices are at distance at most 2 of a central path P of T . In both cases, we assume that no node in L(T ) belongs
to P .

We generalize packings colorings in the following way:
Given a graph G,U ⊆ V (G) and two positive integers s and k with s ≤ k, a packing (k, s)-coloring of U in G is a function

f : U → {s, . . . , k} such that if u ≠ v and f (u) = f (v) = i then distG(u, v) ≥ i + 1. We define the s-packing chromatic
number of U (in G), and denote χ s

ρ(U), as the minimum k such that U admits a packing (k, s)-coloring in G. In particular, if
U = V , we denote χ s

ρ(V ) = χ s
ρ(G) and if s = 1, χ1

ρ (U) = χρ(U).
The following remarks are immediate:

Remark 2.1. For every graph G, χ s
ρ(G) ≤ |V (G)| + s− 1, with equality if diam(G) ≤ s.

Remark 2.2. Let G′ ⊆ G, then χρ(G′) ≤ χρ(G).

Remark 2.3. If U ⊂ W ⊆ V (G) and χ s
ρ(U) ≤ h, then

χ s
ρ(W ) ≤ χh+1

ρ (W − U).

The stability number and the packing chromatic number of a graph G are related, as shows the following result:

Lemma 2.4 ([5]). For every graph G, χρ(G) ≤ |V (G)| + 1− α(G), with equality if diam(G) ≤ 2. Moreover, if diam(G) ≤ 2, for
each maximum stable set S of G there is a packing χρ(G)-coloring of G where the vertices in S have color 1.

3. PackCol for caterpillar and lobsters

Let us consider the following decision problem arising from PackCol:
PACKING k-COLORING (k-PackCol)

Instance: G = (V , E)

Question: Is there a packing k-coloring of G?

Goddard et al. [5] showed that 4-PackCol is NP-complete for general graphs.
As we have mentioned before, PackCol is NP-complete for trees. However, Fiala and Golovach [3] observed that k-

PackCol is solvable in polynomial time for graphswith bounded treewidth. In particular, k-PackCol is solvable in polynomial
time for trees.
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Fig. 1. Packing (4s− 1, s)-coloring of P4s provided by f .

Then, it holds the following immediate result:

Lemma 3.1. Let F be a family of trees such that, for some integer M, χρ(T ) ≤ M, for all T ∈ F . Then, PackCol is solvable in
polynomial time on F .

In particular, Sloper proved in [7] that χρ(T ) ≤ 7 if T is a caterpillar. Hence, from Lemma 3.1, we have:

Corollary 3.2. PackCol is solvable in polynomial time for caterpillars.

It is known that there is no M such that χρ(T ) ≤ M for every lobster T [5]. Our scope is to find suitable bounds for the
packing chromatic number of lobsters that allow us to determine a subclass of lobsters where PackCol is polynomial time
solvable, by using Lemma 3.1.

Observe that if T is a lobster (caterpillar), T − L(T ) is a caterpillar (resp., path). Then, considering Remark 2.3, we study
the s-packing chromatic number of paths and caterpillars.

From Remark 2.1, ifm ≤ s+ 1, χ s
ρ(Pm) = m+ s+ 1.

Form ≥ s+ 2, Fiala et al. provided in [4] a packing (4s− 1, s)-coloring of Pm which gives the following upper bound for
its s-packing chromatic number:

Theorem 3.3 ([4]). For all m ≥ 2, χ s
ρ(Pm) ≤ 2s− 1+min


2s,

m
2


.

In particular, when m ≤ 4s the theorem above states that χ s
ρ(Pm) ≤ 2s − 1 +

m
2


. This bound can be improved by

considering an alternative packing (4s− 1, s)-coloring of P4s. We have:

Lemma 3.4. If s+ 2 ≤ m ≤ 3s, then χ s
ρ(Pm) ≤ 2s− 1+

 1
2 (m− s+ 1)


. If 3s+ 1 ≤ m ≤ 4s, then χ s

ρ(Pm) ≤ m− 1.

Proof. Consider the packing (4s− 1, s)-coloring of P4s defined by f : {1, . . . , 4s} → {s, . . . , 4s− 1} such that

f (i) =


s+ i− 1 if 1 ≤ i ≤ s+ 1,
s− 1+ k if i = s+ 2k and k ∈ {1, . . . , s},
2s+ k if i = s+ 2k+ 1 and k ∈ {1, . . . , s},
i− 1 if 3s+ 2 ≤ i ≤ 4s.

(1)

The packing (4s− 1, s)-coloring of P4s provided by f is represented in Fig. 1.
Clearly, by using the same sequence of colors in a path Pm withm ≤ 4swe obtain a packing (r, s)-coloring of Pm, for some

r ≤ 4s− 1.
It can be easily checked that if 3s + 1 ≤ m ≤ 4s, r = m − 1. Besides, if m = s + j with 2 ≤ j ≤ 2s, r = f (m) if j is odd

and r = f (m− 1) otherwise.
It only remains to prove that if j is odd (even) f (m) (f (m− 1)) is at most 2s− 1+

 1
2 (m− s+ 1)


.

If j is odd,m = s+ j = s+ (2k+ 1) for some 1 ≤ k ≤ s. Then,

f (m) = 2s+ k = 2s+
m− s− 1

2
= 2s− 1+

m− s+ 1
2

= 2s− 1+

1
2
(m− s+ 1)


.

If j is even,m = s+ j = s+ 2k for some 1 ≤ k ≤ s. Then,

f (m− 1) = 2s+
j
2
− 1 = 2s− 1+


j+ 1
2


= 2s− 1+


1
2
(m− s+ 1)


. �

Our goal now is to provide bounds for the s-packing chromatic number of caterpillars. Observe that if T is a caterpillar
with central path Pm andm ≤ s− 1, then diam(T ) ≤ s and from Remark 2.1 we have χ s

ρ(T ) = |V (T )| + s− 1. Then we are
interested in the cases wherem ≥ s.

Let us first present the following technical lemma.

Lemma 3.5. Let T be a caterpillar with central path Pm, s ≥ 3 and U ⊆ L(T ) such that |U ∩ N(v)| = 1 for all v ∈ V (Pm). Then,
χ s

ρ(U) ≤ 4s− 7.
Moreover,

(1) if s ≤ m ≤ 3s− 6,

χ s
ρ(U) ≤


1
2
(m+ 3s− 3)


,

(2) if 3s− 5 ≤ m ≤ 4s− 9, χ s
ρ(U) ≤ m+ 1.



376 G. Argiroffo et al. / Discrete Applied Mathematics 164 (2014) 373–382

Proof. For each v ∈ Pm, let {vU } = U ∩ N(v).
Let k ≥ 3 and let g be a packing (k − 2, s − 2)-coloring of Pm. We define f : U → N such that f (vU) = g(v) + 2. It is

clear that f is a packing (k, s)-coloring of U .
Then, χ s

ρ(U) ≤ χ s−2
ρ (Pm)+ 2. From Theorem 3.3, we obtain

χ s
ρ(U) ≤ 4s− 7. (2)

The bounds for the cases when s ≤ m ≤ 4s−9 can be easily derived by considering the bounds for the packing chromatic
numbers for paths given in Lemma 3.4. �

Given a caterpillar T with central path Pm, we denote

eT = max{|N(v) ∩ L(T )| : v ∈ V (Pm)}.

Theorem 3.6. Let T be a caterpillar with central path Pm. Then, χ2
ρ (T ) ≤ 7+ 4eT and if s ≥ 3,

χ s
ρ(T ) ≤ 7+ (s− 2)4eT+1. (3)

Moreover,
(1) if s ≤ m ≤ 3s− 6 then

χ s
ρ(T ) ≤


3
2
(s− 1)+


eT +

1
2


m


,

(2) if 3s− 5 ≤ m ≤ 4s− 9,

χ s
ρ(T ) ≤ (m+ 1)eT + 1.

Proof. From Remark 2.2 we can assume that |L(T ) ∩ N(v)| = eT for all v ∈ V (Pm).
If s ≥ 3 the proof is by induction on eT .
If eT = 1, considering U = L(T ) in Lemma 3.5 we have χ s

ρ(U) ≤ 4s− 7. Then, from Remark 2.3 and Theorem 3.3,

χ s
ρ(T ) ≤ χ4s−6

ρ (Pm) ≤ 16s− 25 = 7+ (s− 2)42.

Assume that the thesis holds for every caterpillar T ′ such that 1 ≤ eT ′ ≤ n and consider T , a caterpillar with eT = n+ 1.
Let U ⊆ L(T ) such that |U ∩ N(v)| = 1 for all v ∈ V (Pm). From Lemma 3.5, χ s

ρ(U) ≤ 4s− 7. Then, from Remark 2.3 we
have

χ s
ρ(T ) ≤ χ4s−6

ρ (T − U).

Since T ′ = T − U is a caterpillar with eT ′ = n, from inductive hypothesis

χ s
ρ(T ) ≤ 7+ ((4s− 6)− 2)4n+1

= 7+ (4s− 8)4n+1
= 7+ (s− 2)4n+2

and the result follows.
For the case s = 2, let us observe that, if U ⊆ L(T ) such that |U ∩ N(v)| = 1 for all v ∈ V (Pm) then χ2

ρ (U) = 2. From
Remark 2.3, we have that χ2

ρ (T ) ≤ χ3
ρ (T − U).

Then, applying (3) for T ′ = T − U and s = 3 and considering that eT ′ = eT − 1, we obtain χ2
ρ (T ) ≤ 7+ 4eT .

The bounds given in (1) and (2) can be obtained from Lemma 3.5 and observing that for any graph G and U ⊆
V (G), χ s

ρ(G) ≤ χ s
ρ(U)+ |V (G)− U|. �

The bounds for the s-packing chromatic number of a caterpillar T can be improved when eT is sufficiently large.

Lemma 3.7. Let s ≥ 3 and T be a caterpillar with central path Pm with m ≥ 4s− 8. If eT ≥

log4

m+1
4s−8


+ 1, then

χ s
ρ(T ) ≤


eT −


log4

m+ 1
4s− 8


+ 2


m+ 2.

Proof. Again, from Remark 2.2 we can assume that |L(T )∩N(v)| = eT for all v ∈ V (Pm). LetM =

log4

m+1
4s−8


and U ⊆ L(T )

such that |U ∩ N(v)| = M for all v ∈ V (Pm).
Following the same reasoning that in Theorem 3.6 we have that

χ s
ρ(U) ≤ (s− 2)4M

+ 1 ≤ m+ 2.

Then,

χ s
ρ(T ) ≤ χ s

ρ(U)+ |V (T )− U| ≤ (m+ 2)+ (eT −M + 1)m,

and the thesis holds. �
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Fig. 2. Pattern.

The previous results for the s-packing chromatic number of caterpillars can be used in order to obtain bounds for the
packing chromatic number of lobsters.

Let T be a lobster with central path P . For each v ∈ V (P), let us denote by N4(v) the set of vertices in N(v)− V (P) having
degree at least 4 and let cT = max{|N4(v)| : v ∈ V (P)}.

Theorem 3.8. Let T be a lobster with central path Pm. Then, if cT ≤ 1, χρ(T ) ≤ 15, else

χρ(T ) ≤ 7+ 22cT+1.

Moreover, when cT ≥ 2 we have:

(1) if 1 ≤ m ≤ 3,

χρ(T ) ≤ cTm+ 3,

(2) if 4 ≤ m ≤ 6,

χρ(T ) ≤


m(2cT − 1)

2


+ 4,

(3) if m = 7,

χρ(T ) ≤ 8cT + 1,

(4) if m ≥ 8 and cT ≥

log4

m+1
8


+ 2, then

χρ(T ) ≤


cT −


log4

m+ 1
8


+ 1


m+ 2.

Proof. For each v ∈ V (Pm), let N3(v) = {u ∈ N(v)− V (Pm) : deg(u) ≤ 3}.
Assign color 1 to the vertices in N3(Pm) =


v∈V (Pm) N3(v) and colors 2 and 3 to the vertices in L(T ) which are adjacent

to some vertex in N3(Pm). For the remaining vertices in L(T ), we assign color 1.
Finally, for each v such that N4(v) ≠ ∅, assign color 2 to one vertex in N4(v).
We have a packing 3-coloring of a subset X of V (T ) including L(T ),N3(Pm) and one vertex in N4(v), for each v with

N4(v) ≠ ∅ (see Fig. 2).
Let T ′ = T − X . From Remark 2.3 we have that χρ(T ) ≤ χ4

ρ (T ′).
Observe that, if cT ≤ 1, T ′ is a path. Then, from Theorem 3.3, we obtain χρ(T ) ≤ χ4

ρ (T ′) ≤ 15.
Otherwise, when cT ≥ 2, T ′ is a caterpillar with central path Pm and eT ′ = cT − 1. Then, the bounds follow from

Theorem 3.6 and Lemma 3.7. �

Although the complexity of PackCol for lobsters and trees with bounded degree is still unknown, from Lemma 3.1 and
Theorem 3.8 we obtain the main result of this section.

Theorem 3.9. Let M be a fixed positive integer. Then PackCol is solvable in polynomial time for lobsters T with cT ≤ M. In
particular, PackCol is solvable in polynomial time for lobsters with bounded maximum degree.

4. PackCol for well labelled spider and partner limited graphs

A graph G is neighborhood module if G and Ḡ are both connected. Given a family of graphs F , we denote by NM(F ) the
set of neighborhood module graphs in F .

Let us observe that, if a graph G is not connected its packing chromatic number is themaximum of the packing chromatic
numbers of its connected components. In addition, if its complement G is not connected, G has diameter at most two and
from Lemma 2.4, χρ(G) = |V (G)| + 1− α(G).

Hence, the following lemma provides a strategy to prove the polynomiality of PackCol for families of graphs for which
the stable set problem is polynomial time solvable.
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Lemma 4.1. Let F be a graph class such that the connected components of a graph in F also belong to F . If the Stable Set
problem is solvable in polynomial time for F and PackCol is solvable in polynomial time for NM(F ), then PackCol is solvable
in polynomial time for F .

The above result leads us to study PackCol for some families of neighborhood module graphs. Firstly, we introduce a
graph class that includes split graphs.

Definition 4.2. A graph G is a hypersplit graph if V (G) can be partitioned into S, C and R, where S is a stable set, C is a non
empty complete set such that N(S) = C and R ⊆ N(v) for all v ∈ C .

The triple (S, C, R) is called the hypersplit partition of G. It is easy to see that the hypersplit partition of a hypersplit graph
can be found in linear time using its modular decomposition.

If R = ∅,G is a split graph and χρ(G) = |C | + 1 [5]. The following theorem generalizes this result for hypersplit graphs.

Theorem 4.3. Let G be a hypersplit graph with vertex partition (S, C, R) and R ≠ ∅. Then, χρ(G) = |C | + |R| + 1− α(G[R]).

Proof. Let G′ = G[C ∪ R]. Since diam(G′) ≤ 2, from Lemma 2.4,

χρ(G′) = |C | + |R| + 1− α(G′) = |C | + |R| + 1− α(G[R]).

Clearly, anymaximum stable set I ofG[R] is amaximum stable set ofG′. Then, from Lemma 2.4, there exists a packingχρ(G′)-
coloring of G′ where the vertices in I are at color 1. Since I ∩ S = ∅ and there are no edges between these sets, this packing
coloring can be extended to G by assigning color 1 to every vertex in S. Thus, we obtain a packing χρ(G′)-coloring of G. Then,
from Remark 2.2, χρ(G) = χρ(G′). �

Given a family F of graphs, a F -hypersplit graph is a hypersplit graph such that G[R] belongs to F or R = ∅.
Hence, from Theorem 4.3 we have the following result:

Corollary 4.4. Let F be a graph class for which the Stable Set problem is polynomial time solvable. Then PackCol is polynomial
time solvable for F -hypersplit graphs.

Spider graphs are particular cases of hypersplit graphs. Following [1] a spider graph is a hypersplit graph with partition
(S, C, R), where S = {s1, . . . , sr}, C = {c1, . . . , cr}with r ≥ 2 and one of the following conditions holds:

1. thin spider: si is adjacent to cj if and only if i = j,
2. thick spider: si is adjacent to cj if and only if i ≠ j.

Observe that the complement of a thin spider is a thick spider, and vice-versa. Edges with one endpoint in S are called
legs of the spider and R is called its head.

In [6], Roussel et al. introduced the class of well labelled spider graphs. Given a thin spider graph with partition (S, C, R),
and a vector L of |S| + |C | positive integer components, a labelled spider graph (S, C, R, L) is any graph obtained by replacing
every vertex v ∈ S ∪ C by a graph Gv such that |V (Gv)| = L(v). Given a labelled spider graph (S, C, R, L) and an edge uv of
the spider graph (S, C, R), the label of uv is L(u)+ L(v).

A well labelled spider graph is a labelled spider graph (S, C, R, L) such that L(v) ∈ {1, 2, 3} for all v and

i. either, exactly one leg has label 4 and all the other legs have label 2, or
ii. every leg has label at most 3.

Observe that thin spider graphs are well labelled spider graphs with L(v) = 1 for all v ∈ S ∪ C .
We restate the definition in [6] in terms of the following operations over a thin spider graph (S, C, R):

R1: replace one node v ∈ S ∪ C by a graph Gwith three vertices.
R2: replace both endpoints of one leg of (S, C, R) by graphs with two vertices.
R3: replace at most one endpoint of every leg of (S, C, R) by a graph with two vertices.

Observe that operations R1 and R2 correspondwith the possible substitutions verifying item i in Roussel et al.’s definition
and operation R3 corresponds with the substitutions verifying item ii.

Then, the following lemma provides an alternative definition of well labelled spider graphs.

Lemma 4.5. A graphW is a well labelled spider graph if and only if W is obtained from a thin spider (S, C, R) by performing one
of the operations R1, R2, R3 once.

Awell labelled spider graph obtained from operation R1will be called 3-well labelled spider graph and it will be identified
with its vertex partition denoted by (S ←↪ G, C, R) or (S, C ←↪ G, R) if the replaced vertex v belongs to S or C , respectively
and G is the graph replacing v.

A well labelled spider graph obtained from operation R2 will be called (2, 2)-well labelled spider graph and it will be
identified with its vertex partition denoted by (S ←↪ G1, C ←↪ G2, R), where G1 and G2 are the graphs replacing the
endpoints of one leg.
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a b c d

Fig. 3. Scheme of packing colorings for (a) (S ←↪ P3, C, R), (b) (S ←↪ P3, C,∅), (c) (S, C ←↪ P3, R) and (d) (S, C ←↪ P3,∅).

For those obtained fromoperation R3,wewill say thatwe have amultiple well labelled spider graph and itwill be identified
with its vertex partition denoted by (Sσ ,κ , Cγ ,η, R), where σ , κ, γ and η denote the number of vertices in S replaced by S2, the
number of vertices in S replaced by K2, the number of vertices in C replaced by S2 and the number of vertices in C replaced
by K2, respectively.

In addition, the vertex partition of a well labelled spider graph and the replaces performed can be obtained in linear time
(see [6]).

Observe that (S ←↪ S3, C, R), (S, C ←↪ K3, R), (S ←↪ S2, C ←↪ K2, R) and (Sσ ,0, C0,η, R) are hypersplit graphs and their
packing chromatic number is given by Theorem 4.3.

For the remaining cases, we have the following results:

Lemma 4.6. Let W be a 3-well labelled spider graph. Then, W has a subgraph H of diameter two which can be obtained in linear
time and such that χρ(W ) = χρ(H).

Proof. Let W be a 3-well labelled spider graph obtained from the thin spider graph (S, C, R). Observe that (S ←↪ S3, C, R)
and (S, C ←↪ K3, R) are hypersplit graphs. Then, the proof of the claim can be found in the proof of Theorem 4.3.

If W = (S ←↪ G, C, R) with G ≠ S3, let H be the subgraph of W induced by V (G) ∪ C ∪ R. Clearly, H has diameter two
and it can be obtained in linear time.

If R ≠ ∅, it is not hard to see that the union of amaximum stable set ofW [R] and amaximum stable set ofG is amaximum
stable set I of H such that I ∩ C = ∅. From Lemma 2.4 there is a packing χρ(H)-coloring of H that assigns color 1 to the
vertices in I . Then, this packing coloring can be extended to a χρ(H)-coloring of W by assigning color 1 to the vertices in
V (W )− V (H) (see the case (S ←↪ P3, C, R) in Fig. 3(a)).

If R = ∅, we can consider I as the union of a maximum stable set of G and one vertex v ∈ C − N(V (G)). Then, a packing
χρ(H)-coloring of H that assigns color 1 to the vertices in I and color 2 to one vertex u ∈ V (G) − I can be extended to a
χρ(H)-coloring of W by assigning color 2 to the neighbour of v in S and 1 to the remaining vertices in V (W ) − V (H) (see
the case (S ←↪ P3, C,∅) in Fig. 3(b)).

Now, letW = (S, C ←↪ G, R) with G ≠ K3 and let s′ be the neighbor of G in S.
Consider H = W − (S − {s′}). Observe that H has diameter two and it can be obtained in linear time.
If α(W [R]) ≥ 2, we can follow the same strategy as in the previous cases by identifying a maximum stable set I of H

such that I ∩ C = ∅ and extending a packing χρ(H)-coloring of H assigning color 1 to the remaining vertices of W . It is not
hard to see that the union of a maximum stable set of W [R] and s′ is the required maximum stable set of H (see the case
(S, C ←↪ P3, R) in Fig. 3(c)).

When R is a complete set (probably empty, as it is shown in the case (S, C ←↪ P3,∅) in Fig. 3(d)), we consider a packing
χρ(H)-coloring of H where the vertices in a maximum stable set I of G have color 1 and s′ has color 2. Clearly, this packing
coloring can be extended to a χρ(H)-coloring ofW by assigning color 2 to the vertices in S − {s′}. �

Lemma 4.7. Let W = (S ←↪ G1, C ←↪ G2, R) be a (2, 2)-well labelled spider graph obtained from a thin spider (S, C, R).
If W ≠ (S ←↪ S2, C ←↪ S2,∅) then W has a subgraph H of diameter two which can be obtain in linear time and such that
χρ(W ) = χρ(H).

Proof. If G1 = S2 and G2 = K2,W is an hypersplit graph and the result follows from the proof of Theorem 4.3. Hence, we
assume that G1 = K2 or G2 = S2. In both cases we consider H = W − (S ←↪ G1 − V (G1)). Clearly, H has diameter two and
can be obtained in linear time.

If R ≠ ∅, let I be the union of a maximum stable set of G1 and a maximum stable set of W [R]. Clearly, I is a maximum
stable set of H . From an optimal packing coloring of H such that the class of color 1 is I , we obtain a packing χρ(H)-coloring
ofW by assigning 1 to the remaining vertices in S (see cases (S ←↪ S2, C ←↪ S2, R) in Fig. 4(a), and (S ←↪ K2, C ←↪ S2, R) in
Fig. 4(b)).

If R = ∅ and G1 = K2, let I be the maximum stable set of H containing one vertex of G1 and one vertex v ∈ C ←↪ G2 such
that v is non adjacent to any vertex of G1. We consider an optimal packing coloring ofH for which I is the class of color 1 and
the vertex in V (G1)− I has color 2. Then, assigning color 2 to the remaining vertices in S we have a packing χρ(H)-coloring
ofW (see case (S ←↪ K2, C ←↪ S2,∅) in Fig. 4(c)). �
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a b c

Fig. 4. Scheme of packing colorings for (a) (S ←↪ S2, C ←↪ S2, R), (b) (S ←↪ K2, C ←↪ S2, R) and (c) (S ←↪ K2, C ←↪ S2,∅).

Fig. 5. Scheme of packing colorings for (S ←↪ S2; C ←↪ S2; ∅).

The (2, 2)-well labelled spider graphs (S ←↪ S2; C ←↪ S2; ∅) do not have the property stated in the lemma above.
However, we can prove the following result:

Lemma 4.8. Let W be a (2, 2)-well labelled spider (S ←↪ S2; C ←↪ S2; ∅). Then, χρ(W ) = |C | + 2.

Proof. Firstly, let us prove that χρ(W ) ≥ |C | + 2. Observe that if at least one vertex v ∈ C ←↪ S2 has color 1 in a packing
k-coloring, every neighbor of v must have different colors, greater than 1. Then, since deg(v) ≥ |C |+1, we have k ≥ |C |+2.
Moreover, ifW admits a packing (|C |+1)-coloring ofW , at least one vertex v ∈ C ←↪ S2 must have color 1, a contradiction.
Then, χρ(W ) ≥ |C | + 2.

To prove that χρ(W ) ≤ |C | + 2, we consider the packing (|C | + 2)-coloring ofW obtained by assigning color 1 to every
vertex in S ←↪ S2 and the remaining colors to the vertices in C ←↪ S2 (see Fig. 5). �

For multiple well labelled spiders we have similar results.

Lemma 4.9. Let W = (Sσ ,κ , Cγ ,η, R) be a multiple well labelled spider graph such that

• if R is a complete set then γ ≤ 1,
• W ≠ (Sσ ,|S|−σ , Cγ ,η,∅).

Then W has a subgraph of diameter two which can be obtained in linear time and such that χρ(W ) = χρ(H).

Proof. Recall that multiple well labelled spider graphs with κ = γ = 0 are hypersplit graphs and the result follows from
Theorem 4.3. Then, let us assume that κ + γ ≥ 1.
Case 1: R is a complete set and γ = 1.

Let V2 be the vertex set of a graph S2 in Cγ ,η and let s be the vertex of Sσ ,κ adjacent to V2. Let H be the subgraph of W
induced by {s} ∪ Cγ ,η ∪ R. Clearly, H has diameter two and can be obtained in linear time.

Consider I = V2 and an optimal packing coloring of H where the class of color 1 is I and s receives color 2. It is clear that
any vertex in V (W )− V (H) = Sσ ,κ − {s} is at distance 3 from s and it is not adjacent to a vertex in V2. Then we can assign
color 1 and 2 to these vertices (see Fig. 6) and we obtain χρ(W ) = χρ(H).
Case 2: R is a non complete set and γ , κ ≥ 1, or R ≠ ∅ and γ = 0.

Let V2 be the set of vertices of a K2 in Sσ ,κ . We define H as the subgraph induced by V2 ∪ Cγ ,η ∪ R. It is clear that the
diameter of H is two and it can be obtained in linear time. Now consider the maximum stable set I of H , obtained by adding
one vertex s ∈ V2 to a maximum stable set of W [R]. We obtain an optimal packing coloring of H such that I is the class at
color 1 and {v} = V2 \ I is the class at color 2. Hence, we have a packing χρ(H)-coloring of W assigning colors 1 and 2 to
Sσ ,κ (see Fig. 6). Then, χρ(W ) = χρ(H).
Case 3: R is not a complete set and κ = 0.

We define H as the subgraph induced by {s} ∪ Cγ ,η ∪ R with s ∈ Sσ ,κ and the maximum stable set I = {s} ∪ IR, where
IR a maximum stable set of W [R]. Considering an optimal packing coloring of H where I is the class at color 1, we obtain a
packing χρ(H)-coloring ofW assigning color 1 to Sσ ,κ (see Fig. 6).
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Fig. 6. Scheme of packing colorings for Cases 1–4.

a b

Fig. 7. Scheme of packing colorings for Lemmas 4.10 and 4.11.

Case 4: R = ∅, γ = 0 and κ + σ ≤ |S| − 1.
Let H be the subgraph with diameter two ofW induced by the subset V2 ∪ Cγ ,η , with V2 the set of vertices of a K2 in Sσ ,κ .

Consider I = {c, s} a maximum stable set of H , where c ∈ Cγ ,η has only one neighbor in Sσ ,κ and s belongs to V2. We can
obtain an optimal packing coloring of H such that I is the class at color 1 and the vertex in V2 different to s has color 2.

Now, we can assign color 2 to the neighbor of c in Sσ ,κ and colors 1 and 2 to the remaining vertices in Sσ ,κ and obtain a
packing |Cγ ,η| + 1-coloring ofW (see Fig. 6). �

For the remaining multiple labelled spider graphs we have the following results:

Lemma 4.10. Let W = (Sσ ,κ , Cγ ,η, R) be a multiple well labelled spider graph such that R is a complete set and γ ≥ 2. Then,
χρ(W ) = |R| + |Cγ ,η|.

Proof. Let v ∈ R. Since deg(v) = |R| − 1+ |Cγ ,η|, if we assign color 1 to v we need at least |R| + |Cγ ,η| colors. Analogously
if v ∈ Cγ ,η, deg(v) ≥ |R| + |Cγ ,η| − 1, then we need at least |C | + 2 colors.

Suppose now that color 1 is not used in R ∪ Cγ ,η . If v ∈ R ∪ Cγ ,η is at color 2, we need at least |R| + |Cγ ,η| colors, since
the diameter of W [R ∪ Cγ ,η] is 2. Obviously if color 1 and 2 are not used in R ∪ Cγ ,η we need more than |R| + |Cγ ,η| colors.
Therefore χρ(W ) ≥ |R| + |Cγ ,η|.

Let V2 be the vertices of one S2 in Cγ ,η . Then we consider the packing coloring that assigns color 1 to V2, colors 1 and 2
to the vertices in Sσ ,κ and the remaining colors for the vertices in R ∪ Cγ ,η as it is shown in Fig. 7(a), then we obtain that
χρ(W ) = |R| + |Cγ ,η|. �

Lemma 4.11. Let W = (Sσ ,κ , Cγ ,η,∅) be a multiple well labelled spider graph with κ + σ = |S|. Then, χρ(W ) = |C | + 2.

Proof. Let v ∈ C . If we assign color 1 to v, since deg(v) = |C | + 1, we need at least |C | + 2 colors.
Suppose now that v is at color 2, we need at least |C | colors (color 1 is not used in Cγ ,η) and since there exists at least one

substitution in S for K2, then two more colors are necessary.
Now, if colors 1 and 2 are not used for the vertices in C , it holds that χρ(W ) ≥ |C | + 2.
Then we consider the packing coloring that assigns colors 1 and 2 to the vertices in V (W )− C and the remaining colors

for the vertices in C , as we show in Fig. 7(b), then we obtain that χρ(W ) = |C | + 2. �

From Lemmas 4.6–4.11 and 2.4, we obtain the following general result.

Theorem 4.12. Let W be a well labelled spider graph obtained from a thin spider graph (S, C, R). Then, χρ(W ) = c(W ) −
α(W [R]), where c(W ) can be computed in linear time.

It is not hard to see that if a graphG is the complement of awell labelled spider graph obtained from a thin spider different
from P4,G has diameter 2. Moreover, if the thin spider graph is P4,G is also a well labelled spider obtained from P4.

Given a family of graphs F , an F -well labelled spider graph is a well labelled spider graph whose head belongs to F . As
a consequence of the theorem above we have:
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Theorem 4.13. Let F be a self complementary family of graphs where the Stable Set problem is solvable in polynomial time.
Then, PackCol is solvable in polynomial time for F -well labelled spider graphs and their complements.

4.1. PackCol for partner limited graphs

Let U be a subset of vertices inducing a P4 in G. A partner of U is a vertex v ∈ G − U such that U ∪ {v} induces at least
two P4 in G. In [6], Roussel et al. called partner limited graph (PL graphs for short) the graphs G for which any P4 in G has at
most two partners. PL graphs generalize cographs and P4-tidy graphs, and constitute a hereditary and self complementary
family of graphs for which the Stable Set problem is solvable in linear time [6].

From Theorem 1 in [6] it can be showed that non trivial graphs in NM(PL) are one of the graphs in a self complementary
class of graphs called ZOO, consisting of paths and cycles with at least 5 vertices, their complements and a set of graphs with
at most nine vertices, a subclass of PL-hypersplit graphs, PL-well labelled spiders and their complements.

Since the packing chromatic number can be linearly obtained for paths, cycles and their complements [5] and the
remaining graphs in ZOO form a finite set, using Lemma 4.1 and Theorem 4.13 we obtain the main result of this section:

Theorem 4.14. PackCol is solvable in linear time for partner limited graphs.
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