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9 Abstract Since ischemic heart disease (IHD) is a major

10 cause of mortality and heart failure, novel therapeutic

11 strategies are expected to improve the clinical outcomes of

12 patients with acute myocardial infarction. Brief episodes of

13 ischemia/reperfusion performed at the onset of reperfusion

14 can reduce infarct size; a phenomenon termed ‘‘ischemic

15 postconditioning.’’ Extensive research has determined that

16 different autacoids (e.g., adenosine, bradykinin, opioid,

17 etc.) and cytokines, their respective receptors, kinase sig-

18 naling pathways, and mitochondrial modulation are

19 involved in ischemic conditioning. Modification of these

20 factors by pharmacological agents mimics the cardiopro-

21 tection by ischemic postconditioning. Here, the potential

22 mechanisms of ischemic postconditioning, the presence of

23 comorbidities, and the possible extrapolation to the clinical

24 setting are reviewed. In the near future, large, multicen-

25 tered, randomized, placebo-controlled, clinical trials will

26 be required to determine whether pharmacological and/or

27 ischemic postconditioning can improve the clinical out-

28 comes of patients with IHD.29

30 Keywords Myocardial infarction � Ischemia � Ischemic

31 postconditioning

32Introduction

33Ischemic heart disease is still the first cause of death and

34heart failure in the whole world population despite

35advances in its treatment [1]. In the United States alone,

36nearly 1 million of acute myocardial infarctions occur

37annually, and approximately 29 % of them are ST-segment

38elevation myocardial infarctions [2]. For this reason, the

39development of new strategies to improve the outcome of

40patients with this pathology is transcendental. Nowadays,

41the most important therapeutic strategy, and the top choice

42for patients with acute myocardial infarction, is reperfu-

43sion. Paradoxically, reperfusion injury limits the beneficial

44effects of reperfusion.

45Experimentally, several methods of myocardial protec-

46tion proven to have a beneficial effect on infarct size have

47been described. However, only a few of these were

48extrapolated to clinical setting. Among these methods

49stands ischemic postconditioning, which consists of short

50periods of ischemia/reperfusion at the onset of reperfusion

51[3]. Given that this procedure needs to be performed at the

52beginning of reperfusion, it has caught the researchers’

53attention due to the fact it could have real clinical potential.

54This review will focus on describing some of the mecha-

55nisms involved in the protection provided by ischemic

56postconditioning, its association with comorbidities, and

57the possible extrapolation from bench-to-bedside.

58Targets of ischemic postconditioning

59Effect on infarct size

60The pioneering study that showed the cardioprotective

61effects of ischemic postconditioning was performed in dogs
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62 subjected to 1 h of coronary occlusion followed by 3 h of

63 reperfusion [3]. Interestingly, in the same paper, the

64 reduction of the infarct size observed was comparable with

65 those obtained in animals subjected to an ischemic pre-

66 conditioning protocol. According to the original paper of

67 Zhao et al. [3], we have shown that ischemic postcondi-

68 tioning reduces the infarct size in isolated rabbit hearts [4].

69 This reduction was similar to the one found with ischemic

70 preconditioning (Fig. 1a). These findings were also repro-

71 duced in our laboratory with isolated rat hearts, where

72 ischemic postconditioning reduced the infarct size but in a

73 lower proportion than ischemic preconditioning (data not

74 shown). Also, other studies confirmed these findings in

75 species like mice [5] and pigs [6]. An important variable to

76 consider to obtain protection through ischemic postcondi-

77 tioning is the algorithm utilized. The postconditioning

78 algorithm depends of the delay after which the first

79 re-occlusion is established, the duration and number of

80 re-occlusions and reperfusions [7]. In a rat model, we

81 reduced the infarct size using a six-cycle algorithm of

82 reperfusion/ischemia of 10 s each. Other researchers

83 demonstrated that the beneficial effect on myocardial

84 infarction is lost if the cycles are applied 60 s after the

85 onset of reperfusion [8]. It is evident that the reduction of

86 the infarct size depends on the ‘‘strength’’ of the stimuli.

87Short or sparse cycles are not able to reduce the infarct

88size; however, the protection appears when increasing the

89number of cycles. The algorithm also varies according to

90the species studied and its heart rate. Small animals with a

91high heart rate, like a rat or a mouse, need short periods of

92reperfusion/ischemia to reach protection. Bigger species,

93with lower heart rates, like dogs or pigs, need longer

94cycles. It is not clear why those differences exist, and

95interestingly the studies performed in humans show that the

96beneficial effect was reached using algorithms similar to

97those used on large animals [7]. As we have mentioned, in

98our experience we need to use short periods of reperfusion/

99ischemia in rats (6 cycles of 10 s each) and fewer but

100longer cycles in rabbits (2 cycles of 30 s each).

101Even though it is not possible to identify an ‘‘ideal’’

102postconditioning algorithm, it is clear that different factors,

103such as length of the ischemia, the type of algorithm used,

104and others like gender, age, and temperature, contribute

105and/or modify the results of different experimental studies.

106Effect on the vascular endothelium

107The vascular endothelium is damaged in the processes that

108involve ischemia/reperfusion injury. This endothelial

109injury is characterized by the reduction of the vasodilator

Fig. 1 a Shows the similar reduction of the infarct size produced by

ischemic preconditioning and postconditioning. b, c Show the

recovery of LVDP and LVEDP at 30 min of reperfusion in hearts

subjected to an ischemic postconditioning protocol. Ischemic post-

conditioning improves the recovery of systolic ventricular function

and attenuates the increase of diastolic stiffness

Mol Cell Biochem

123
Journal : Large 11010 Dispatch : 8-3-2014 Pages : 12

Article No. : 2014
h LE h TYPESET

MS Code : MCBI-D-13-00113 h CP h DISK4 4

A
u

th
o

r
 P

r
o

o
f



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

110 response to acetylcholine, which is related with a lower

111 synthesis of nitric oxide (NO) [9]. Also, under these cir-

112 cumstances, neutrophils are more prone to adhere to the

113 vascular endothelium, in which the expression of adhesion

114 molecules (P-selectine) and the generation of reactive

115 oxygen species (ROS) are incremented. In this sense, Zhao

116 et al. [3] demonstrated that post-ischemic endothelial

117 dysfunction of coronary arteries, evaluated through the

118 vasodilator response to acetylcholine, was significantly

119 enhanced by ischemic postconditioning. Also, postcondi-

120 tioning decreases the P-selectine expression, the adhesion

121 of neutrophils, and the accumulation of these inflammatory

122 cells in the risk area [3]. These findings strongly suggest

123 that ischemic postconditioning attenuates vascular dys-

124 function. However, it is not clear if this reduction of the

125 inflammatory process is only the consequence of the lesser

126 necrosis observed.

127 Something to consider when evaluating the damage by

128 ischemia/reperfusion is the presence of the ‘‘no reflow’’

129 phenomenon. This entity defines a partial limitation to

130 blood flow at the moment of reperfusion, despite the

131 complete elimination of coronary occlusion [10]. The

132 proposed mechanism to explain this phenomenon is mul-

133 tifactorial, and histological studies have demonstrated dif-

134 ferent degrees of vasospasms of the small vessels,

135 endothelial injuries, formation of sarcolemmal bubbles in

136 the endothelial cells, and the aggregation of neutrophils in

137 capillaries [11]. In this sense, Zhao et al. [12] demonstrated

138 that ischemic postconditioning reduces the ‘‘no reflow’’

139 area and improves coronary flow. However, in hypercho-

140 lesterolemic conditions this beneficial effect is lost. The

141 mechanism by which postconditioning improves the

142 endothelial function seems to be related to an increase of

143 neuronal and endothelial NO synthase activity and as a

144 consequence an increase of NO bioavailability. Under

145 hypercholesterolemia conditions, NO metabolism is

146 severely damaged and postconditioning is incapable of

147 favoring its synthesis [12].

148 Effect on apoptosis

149 Besides reducing the area of necrosis, some studies suggest

150 that ischemic postconditioning could attenuate the apop-

151 tosis that occurs during reperfusion [13]. In this sense, Tian

152 et al. [14] demonstrated that ischemic postconditioning

153 reduces the number of TUNEL positive cells through the

154 activation of the JACK2-STAT3-Bcl-2 pathway. Similarly,

155 Kin et al. [15] showed that ischemic postconditioning

156 would reduce myocardial apoptosis, decreasing caspase-3

157 activity through the inhibition of NF-jB and TNFa [15]. In

158 relation to this concept, Sun et al. [13] demonstrated, in a

159 culture of neonatal myocytes subjected to 3 h of hypoxia

160 followed by 6 h of re-oxygenation, that postconditioning

161attenuates the apoptosis rate inhibiting the JNKs/p-38 sig-

162nals, reducing the liberation of TNFa and the caspase

163expression.

164Interestingly, Penna et al. [16] demonstrated that post-

165conditioning activates/inhibits or changes the levels of

166different kinases related to mitochondrial integrity. Post-

167conditioning increases the phosphorylation of the mito-

168chondrial isoform of GSK-3b. This effect is accompanied

169by a reduction in the release of cytochrome c from the

170mitochondria and in the activity of cytosolic caspase-3,

171suggesting an anti-apoptotic effect.

172The presence of apoptosis in the areas adjacent to the

173infarct has been described by various authors [17, 18].

174However, its contribution to the final infarct size continues

175to be controversial. Some studies indicate that this type of

176death, although present in the reperfused myocardium, only

177represents a small percentage of cellular death [19]. While

178in other studies, it has been observed that the interruption

179of the apoptotic mechanism, using caspase inhibitors, has

180contributed to attenuate the damage by ischemia/reperfu-

181sion [20]. However, given that the activity of caspases can

182also contribute to death by necrosis, these results do not

183discard the possibility that part of the reduction in the

184extension of the infarct is independent from apoptosis

185inhibition [21]. Finally, there only are a few studies that

186discriminate what type of cellular line (myocytes, fibro-

187blasts, endothelial cells, etc.) is suffering a cellular death

188by apoptosis. Consequently, even though the attenuation of

189the apoptosis rate by ischemic postconditioning is an

190interesting finding, its importance in the context of myo-

191cardial infarction has to be taken with caution.

192Effect on ventricular function

193The study of different protection mechanisms (ischemic

194preconditioning and postconditioning) on the recovery of

195post-ischemic ventricular function (stunned myocardium)

196has been studied by different authors. Cohen et al. [22]

197described that in chronically instrumented rabbits, pre-

198conditioning reduces infarct size and improves ventricular

199function during reperfusion. However, this beneficial effect

200on ventricular function is only observed in 2 or 3 weeks

201after the beginning of reperfusion. This happens because

202there are areas of myocardial stunning adjacent to the

203infarct that do not allow an accurate ventricular function

204evaluation. This concept would also be valid for ischemic

205postconditioning. Thus, Penna et al. [23] found an

206improvement in the ventricular function of isolated rat

207hearts subjected to 10–30 min of global ischemia, is related

208to the reduction of infarct size by postconditioning. Using a

209longer period of ischemia with cardioplegia (90 min),

210Shinohara et al. [24] showed that ischemic postcondition-

211ing promotes an improvement in the recovery of
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212 ventricular function in pigs. There are only a few studies

213 that evaluate the effect of ischemic postconditioning on a

214 pure model of myocardial stunning without infarction.

215 Sasaki et al. [25] showed, using an isolated rat heart sub-

216 jected to 20 min of global ischemia, that ischemic post-

217 conditioning attenuates arrhythmias that occur during

218 reperfusion but that it does not improve the recovery of

219 ventricular function. In experiments performed in our

220 laboratory (data not published) ischemic postconditioning,

221 evaluated by using a model of stunning in isolated rabbit

222 hearts, significantly improved the recovery of ventricular

223 systolic and diastolic post-ischemic function (Fig. 1b, c).

224 As a consequence, there are few studies that evaluate

225 ventricular function in a pure model of stunning without

226 irreversible injury. Since their results are not conclusive,

227 more studies would be necessary to elucidate the effects of

228 ischemic postconditioning per se, on ventricular function.

229 Mechanisms of ischemic postconditioning

230 In 2003, the Vinten-Johansen group introduced the concept

231 of ischemic postconditioning [3]. In this pioneering study,

232 the proposed mechanisms for protection were initially

233 attributed to a reduction in the deleterious effects of

234 reperfusion injury. These were particularly related to oxi-

235 dative stress, calcium overload, improvement of endothe-

236 lial function, and the reduction of the inflammatory

237 component. However, subsequent studies demonstrated

238 that the protection is mediated by the activation of intra-

239 cellular signals and, in many cases, shared with the

240 ischemic preconditioning [26]. These pathways of intra-

241 cellular signaling would include G-protein-coupled mem-

242 brane receptors and would be activated by molecules

243 liberated to the extracellular space at the beginning of

244 reperfusion (Fig. 2) [27]. Our group showed experimental

245 evidence demonstrating the participation as ‘‘triggers’’ of

246 ischemic postconditioning to A1 adenosine receptors

247 (Fig. 3) [4]. This was shown by administering a selective

248 blocker of these receptors (DPCPX). In a related research,

249 Yang et al. [28] had shown that adenosine participates in

250 the ischemic postconditioning mechanism. However, the

251 subtype of receptor involved in postconditioning mecha-

252 nisms is controversial, due to Kin et al. [29] showing the

253 participation of A2A and A3 adenosine receptors in an

254 in vivo ischemia/reperfusion model in rats. According to

255 these authors, Philipp et al. [30] demonstrated that adeno-

256 sine receptors A2b would activate the protection mecha-

257 nism of ischemic postconditioning. As we have mentioned,

258 the topic is still controversial. Thus, another type of

259 membrane receptors that could be involved in the post-

260 conditioning mechanism are the a-adrenergic receptors

261 (a1-ARs). In this sense, we have recently showed that

262ischemic postconditioning decreases infarct size by acti-

263vation of the a1-AR pathway, which could involve Akt and

264GSK-3b phosphorylation. The present results could indi-

265cate that after being phosphorylated, Akt may phosphory-

266late and inhibit GSK-3b [31].

267On the other hand, the prolonging of an acidosis state

268during reperfusion also plays an important role in the

269ischemic postconditioning mechanism [32] (Fig. 2). In this

270sense, there is experimental evidence showing that a slower

271recovery of intracellular pH (pHi) at the onset of reperfusion

272could be relevant to prevention of the emergence and spread

273of hypercontracture [33] and the activation of Ca2?-depen-

274dent proteases (calpains), among other things [32]. Both

275ischemic postconditioning and the reperfusion of the

276ischemic heart with a pH acid buffer delay the normalization

277of pHi during the first minutes of reperfusion and reduce

278cellular death [6, 8]. However, only postconditioning

279increases cGMP levels. The pharmacological inhibition of

280the cGMP/PKG signaling mechanism hastens the normali-

281zation of pHi during reperfusion and abolishes the post-

282conditioning protection. The protection conferred by the

283perfusion with the acid buffer remains unchanged. This

284demonstrates that there is a relation between the cGMP/PKG

285signaling pathway and the regulation of pHi at the onset of

286reperfusion. Therefore, the activation of this pathway, using

287NO donors or with cGMP, attenuates injury by reperfusion.

288Conversely, administration of the NO synthase enzyme

289(L-NAME) or guanylate cyclase (GC) blocks the protective

290effect of postconditioning on infarct size [34, 35], demon-

291strating that the cGMP signaling pathway is also involved in

292the postconditioning mechanism.

293Different studies have demonstrated that the PKG

294enzyme negatively modulates the Na?–H? exchanger

295(NHE) [12, 13]. In isolated myocytes, the activation of

296PKG, as well as pre-treatment with a cGMP analogous,

297inhibits NHE producing acidification of the intracellular

298environment [14]. This strongly suggests that the cGMP/

299PKG pathway inhibits NHE contributing to prolong the

300acidosis state. This fact would occur during the performing

301of a postconditioning protocol.

302On the other hand, it has been shown that the intracel-

303lular acidosis contribution to the cardioprotection conferred

304by postconditioning is also related to the activation of the

305Akt enzyme, the extracellular-regulated kinase signals

306(ERK) [36] and the prevention of the opening of the

307mitochondrial permeability transition pore (mPTP), during

308the early stage of reperfusion.

309As it has been mentioned, the activation of Akt signaling

310pathway is part of the postconditioning mechanism,

311although this has not been completely clarified. Some

312authors have shown the activation of the protein p70S6K

313and the isoform eNOS, both ‘‘downstream’’ to the phos-

314phorylation of Akt in postconditioned hearts (Fig. 2) [37].
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315As we have mentioned, other studies involve protein

316kinase G (PKG) as a potential mediator of the protective

317effect [38]. This was demonstrated by researches that

318included inhibitors of eNOS, GC, PKG, and where the

319protective effect of ischemic postconditioning on the

320infarct size was abolished, confirming the participation of

321NO through the cGMP/PKG signaling pathway. The acti-

322vation of the cGMP/PKG pathway by ischemic postcon-

323ditioning has been proposed as part of the activation of the

324PI3K/Akt cascade (Fig. 2). However, a recent study sug-

325gests that the phosphorylation of the RISK kinases during

326reperfusion is not associated with a reduction in the infarct

327size [39]. This would question it is role in the protection

328provided by ischemic postconditioning. It is also known

329that at the beginning of reperfusion an increase the ROS

330formation, including the superoxide anion (O2
-), take

331place. The formation of O2
- occurs due to a reduced bio-

332availability of NO by an increase in the production of

333peroxynitrite (ONOO-) and the oxidation of tetrahydrobi-

334opterin (BH4). This is a necessary cofactor for NOS

Fig. 2 Hypothetical scheme of the major pathways identified so far

as contributing to postconditioning. Postconditioning may promote

the accumulation or delay the washout of several autacoid mediators

(extracellular cardioprotective ligands) whose participation in the

mechanism is obligatory with obligatory participation in the mech-

anism. It is proposed that ligands such as adenosine, bradykinin, and

opioids cause the activation of multiple kinases, including PI3K/Akt.

There is also evidence that PKG activation may occur as part of the

postconditioning mechanism and this may lie downstream of the Akt/

NO/cGMP pathway. Activation of Akt also inhibits GSK-3b, thereby

inhibiting the mPTP opening. A role of the mKATP channel opening

is implied by some pharmacological studies, but how this mediates

protection at reperfusion is unknown, although it is possible that

mKATP-mediated inhibition of mPTP opening, as in the precondi-

tioning model, plays a role. It is likely that other unidentified

substrates and effector mechanisms play significant roles. Blunt

arrows stand for inhibitory effects; normal arrows for activations

Fig. 3 The effect of different interventions on the infarct size in

normocholesterolemic animal hearts. The infarct size is expressed as a

percentage of the left ventricular area of the left ventricle. Ischemic

postconditioning significantly reduces the infarct size, while the

administration of DPCPX and glibenclamide abolish this effect
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335 coupling that decreases during ischemia/reperfusion. Since

336 ischemic postconditioning prevents an abrupt reperfusion,

337 it could reduce the ‘‘bursts’’ of ROS and increase the

338 concentration of NO by the activation of the cGMP/PKG

339 pathway. In relation to this, recently Inserte et al. [40]

340 demonstrated that the activation of the PKG/cGMP path-

341 way by ischemic postconditioning is independent of the

342 PI3K/Akt cascade and dependent on a reduction in oxida-

343 tive stress during reperfusion. These authors demonstrated

344 that the attenuation in the production of O2
- and/or

345 ONOO-, at the onset of reperfusion limits the oxidation of

346 BH4 and reduces the decoupling of eNOS. Therefore, the

347 levels of NO by activation of the cGMP/PKG pathway are

348 increased (Fig. 2).

349 The ONOO- is recognized to play a key role in different

350 cardiovascular pathologies such as ischemia/reperfusion

351injury [41]. Many enzymes are inactivated and decrease

352their function such as Na?–K?-ATPase upon exposure to

353ONOO- [42]. In contrast, the latent forms of matrix

354metalloproteinases (MMPs) are known to be activated by

355oxidant species including ONOO- [42]. During reperfu-

356sion, MMP-2 is activated intracellularly and is capable of

357cleaving troponin I [43] and the light chain of myosin I

358[44]. Also, Sung et al. [45] demonstrated that ONOO-,

359through the activation of MMP-2, degrades a-actinin of the

360cytoskeleton. The relation between the MMP-2 activity and

361myocardial infarction was demonstrated by Giricz et al.

362[46]. These authors observed that the inhibition of MMP-2

363reduces the infarct size in a similar way to the ischemic

364preconditioning. We also observe a beneficial effect of

365the doxycycline (inhibitor of MMPs) on the infarct

366size (Fig. 4a) and also demonstrated that ischemic

Fig. 4 a Shows the infarct size, expressed as a percentage of the left

ventricular area of the left ventricle. The infarct area decreased

significantly in the group with ischemic postconditioning and in the

group treated with doxicycline (50 lM). b On the left we can see a

zymogram, representative of the left ventricular gelatinolytic activity.

On the right of the same, the densytometric analysis of the

gelatinolytic activity of MMP-2 in samples taken in normoxic

conditions (Nx) after 30 min of ischemic ischemia and 2 min of

reperfusion (I/R) in hearts subjected to a protocol of ischemic

postconditioning and treated with doxycycline, respectively, is plotted
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367 postconditioning is capable of inhibiting the MMP-2

368 activity at the beginning of reperfusion in isolated rabbit

369 hearts (Fig. 4c) [47]. This is in accordance with the results

370 of Inserte et al. [40] who demonstrated a lower production

371 of ONOO-, the main activator of MMP-2. As a conse-

372 quence, ischemic postconditioning could have beneficial

373 effects attenuating the activity of MMP-2 and preventing

374 the uncoupling of eNOS, increasing the levels of NO by the

375 activation of the cGMP/PKG pathway.

376 The activation of PKG could also allow the opening of

377 mitochondrial K? channels (mKATP), possibly through the

378 phosphorylation of PKC-e. In the same way as ischemic

379 preconditioning [48], it has been proposed that there is a

380 ‘‘link’’ between the opening of mKATP and the mPTP

381 [49], suggesting that mKATP could be considered media-

382 tors of the cardioprotective effect of ischemic postcondi-

383 tioning. We show that the reduction in the infarct size

384 induced by ischemic postconditioning depends on the

385 opening of KATP channels [4] (Fig. 3). Additionally,

386 Mykytenko et al. [50], using a 60-min coronary artery

387 occlusion canine model followed by 24 h of reperfusion,

388 demonstrated the participation of specific mitochondrial

389 KATP channels.

390 The opening of mPTP is considered a key event in

391 cellular death by ischemia/reperfusion [51]. This episode is

392 favored by conditions like ischemia and reperfusion,

393 including overproduction of ROS, ATP depletion, and

394 more specifically, accumulation of Ca2? in the mitochon-

395 drial matrix. After this last phenomenon, Ca2? stimulates

396 the interaction of cyclophilin D (CypD) with a mPTP

397 component, which triggers a permeability transition [52].

398 However, the opening of the mPTP during reperfusion may

399 be regulated by extramitochondrial activation/inhibition of

400 several kinases, including the glycogen synthase kinase-3b

401 (GSK3b) [53]. In this sense, Argaud et al. [54] showed that

402 postconditioning inhibits this opening, a fact that was

403 associated with the reduction in the infarct size. Gomez

404 et al. [52] demonstrated that the inhibition of GSK3b by

405 ischemic postconditioning is required in reducing the

406 infarct size and most likely acts by preventing the opening

407 of the mPTP at reperfusion independently of CypD.

408 Other authors [55] associated the closing of mPTP with

409 the activation of PI3K and the signaling pathway of the

410 RISK. However, as we have mentioned, the participation of

411 RISK or its main role in the ischemic postconditioning

412 mechanism should be re-considered [39].

413 Ischemic postconditioning and comorbidities

414 The phenotype of a patient with a high risk for myocardial

415 infarction is: male, average age of 65-year old, and with a

416 combination of comorbidities that include arterial

417hypertension, diabetes mellitus metabolic syndrome,

418hyperlipidemia and atherosclerosis, among others [56].

419However, most studies performed in laboratory used young

420and healthy animals without any comorbidities. This is

421interesting, since it has been established that some of these

422comorbidities can modify the heart response to the differ-

423ent protective mechanisms [57].

424The presence of left ventricular hypertrophy constitutes

425an independent risk factor that increases patient’s comor-

426bidity. In patients with ventricular hypertrophy, the risk of

427myocardial infarction, heart failure, sudden death, and

428other cardiovascular disorders are increased by sixfold

429[58]. However, there are only a few works that studied the

430effect of ischemic postconditioning in an animal model of

431ventricular hypertrophy. In relation to this, Penna et al. [59]

432demonstrated that the presence of hypertrophy in a model

433of rats, treated with nandrolone, increases the susceptibility

434of the heart to ischemia/reperfusion injury and abolishes

435the protective effect of ischemic postconditioning on the

436infarct size. On the contrary, Fantinelli and Mosca [60]

437have described that the presence of ventricular hypertro-

438phy, in a SHR rat model, does not abolish the beneficial

439effects of ischemic postconditioning. These authors find

440protection, even with left ventricular hypertrophy, and

441demonstrate the participation of PKC in the postcondi-

442tioning mechanism.

443Hypercholesterolemia is a common finding in patients

444with cardiovascular diseases. Some studies have shown

445evidence that both the ischemic preconditioning and post-

446conditioning are abolished in animals with hypercholes-

447terolemia. Iliodromitis et al. [61] described that

448hypercholesterolemia abolishes the ischemic postcondi-

449tioning (but not the preconditioning) protective effect.

450Kupai et al. [62] found similar results in a rat model fed

451during 12 weeks with a 2 % cholesterol enriched diet. Both

452authors used a prolonged length of time using this diet

453(12 weeks) and show the presence of atherosclerosis with

454several subintimal deposits of lipids in coronary arteries

455and a reduction of their lumen.

456Our group demonstrated that ischemic postconditioning

457reduces the infarct size in normal and hypercholesterolemic

458rabbits (4 weeks of 1 % cholesterol enriched diet), through

459the activation of adenosine A1 receptors and KATP channels

460(Fig. 5) [4]. It is important to note that in our experimental

461model, animals presented endothelial dysfunction evalu-

462ated through vasodilator response to acetylcholine, without

463atherosclerosis lesions.

464The prevalence of obesity associated to diabetes mellitus

465(DM) has significantly increased, particularly in developed

466countries. As a consequence, the presence of these

467comorbidities is associated with a worse outcome in

468patients with coronary heart disease, increasing the risk

469of complications during revascularization procedures

Mol Cell Biochem

123
Journal : Large 11010 Dispatch : 8-3-2014 Pages : 12

Article No. : 2014
h LE h TYPESET

MS Code : MCBI-D-13-00113 h CP h DISK4 4

A
u

th
o

r
 P

r
o

o
f



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

470 (angioplasty and CABG). Also, obesity and DM provoke

471 damage per se in different cellular components, particu-

472 larly at a mitochondrial level [63]. It is known that DM

473 decreased the levels of BH4 and the uncoupling of NOS by

474 increasing the ROS levels [64]. It should be mentioned that

475 mitochondrial function is an important factor that partici-

476 pates in the adaptation of myocardium to ischemia. As a

477 consequence, its alteration could modify the response to

478 postconditioning. Keeping this in mind, it would not be

479 surprising that in conditions of DM or obesity, the capacity

480 of the myocardium to be postconditioned is abolished or

481 diminished.

482 In relation to this concept, a number of studies have

483 been carried out to determine the efficacy of ischemic

484 postconditioning for protecting the myocardium in animal

485 models of DM [65, 66]. The majority of those studies

486 showed that DM interferes with the protective mechanisms

487 of cardioprotective interventions [67]. Myocardial protec-

488 tion by postconditioning is achieved by activation of

489 multiple protective signaling pathways that appear to

490 converge, inhibiting the mPTP opening upon reperfusion

491 via phosphorylation of glycogen synthase kinase-3b (GSK-

492 3b) at Ser-9. DM-induced defects in the protective sig-

493 naling may be different depending on the model and/or

494 phase of DM [27, 57, 67, 68]. Thus, Przyklenk et al. [69]

495 demonstrated a loss in efficacy of ischemic postcondi-

496 tioning in murine models of type-2 and type-1 DM, char-

497 acterized by both an apparent inability to reduce infarct

498 size and failed upregulation of ERK phosphorylation.

499 Moreover, they provide novel evidence that the loss in

500 efficacy of ischemic postconditioning does not reflect a

501 permanent DM-associated defect in cardioprotective sig-

502 naling. Rather, in the type-1 model, therapeutic control of

503insulin and blood glucose levels re-established the infarct-

504sparing effect of ischemic postconditioning. However,

505Oosterlinck et al. [65] showed that the cardioprotective

506effect of ischemic postconditioning was maintained in

507C57BL/6J mice after 10 weeks of myocardial infarction.

508Ischemic postconditioning also protected against adverse

509left ventricular remodeling in this model of type 2 DM.

510As we have mentioned, ischemic heart disease in

511humans is a complex disorder caused by or associated with

512other systemic diseases and risk factors. Therefore, in this

513article we reviewed evidence that comorbidities accom-

514panying coronary disease modify responses to ischemia/

515reperfusion and the cardioprotection conferred by post-

516conditioning. We emphasize the importance of preclinical

517studies that examine cardioprotection, specifically in rela-

518tion to complicated disease states, to maximize the likeli-

519hood of identifying rational approaches to therapeutic

520protection of the aged or diseased ischemic heart.

521Clinical application of ischemic postconditioning

522The main reason to study the intracellular mechanisms of

523different cardioprotective strategies is its application to

524humans of different ages and sex with coronary artery

525disease and concomitant risk factors. Different clinical

526studies on ischemic postconditioning have increased in

527recent years, but they were small studies with inconsistent

528results. In these studies, the authors used different end

529points to define a potential biological effect of ischemic

530postconditioning: (a) enzyme assessment of myocardial

531injury, (b) angiographic and invasive measures of coronary

532flow, (c) measures of left ventricular function, (d) measures

533of infarct size, and (e) adverse cardiac events during fol-

534low-up (Table 1).

535Thus, Laskey et al. [70] described that ischemic post-

536conditioning attenuated the elevation of the ST-segment

537and the plasmatic CPK peak, in patients undergoing to

538percutaneous angioplasty, compared with those that

539received a standard procedure. In the same way, Staat et al.

540[71] performed a study where they randomized 37 patients

541derived for primary percutaneous angioplasty. Those

542patients that achieved a TIMI grade flow 2–3 were ran-

543domized to receive a standard angioplasty procedure or an

544ischemic postconditioning protocol with four cycles of

5451-min re-inflation followed by 1 min deflation of the

546angioplasty balloon. These authors demonstrated that the

547area under the CPK-MB curve was significantly reduced in

548those patients that received the ischemic postconditioning

549protocol. In concordance with these findings, Darling et al.

550[72] studied a more heterogeneous population of patients

551diagnosed with STEMI, TIMI flow 0–1, and with the lesion

552of a single blood vessel which were subjected to primary

Fig. 5 The effect of different interventions over on the infarct size in

hypercholesterolemic animals. The infarct size is expressed as a

percentage of the left ventricular area of the left ventricle. Ischemic

postconditioning significantly reduces the infarct size, while the

administration of DPCPX and glibenclamide abolishes this effect

Mol Cell Biochem

123
Journal : Large 11010 Dispatch : 8-3-2014 Pages : 12

Article No. : 2014
h LE h TYPESET

MS Code : MCBI-D-13-00113 h CP h DISK4 4

A
u

th
o

r
 P

r
o

o
f



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

553 angioplasty. They also found a lower liberation of CPK,

554 although only in patients that received C4 cycles of

555 ‘‘inflation’’/‘‘deflation’’ during angioplasty, compared with

556 those that received between 1–3 ‘‘inflation’’/‘‘deflation.’’

557 Few studies evaluated the effect of ischemic postcon-

558 ditioning on the ‘‘no-reflow’’ phenomenon. It has been

559 questioned if repeated insufflations of the balloon in the

560 thrombotic occlusion site could not actually be responsible

561 for microemboli or increment of no reflow [73]. In this

562 sense, Mewton et al. [74] studied patients with an ST-

563 elevation higher than 0.1 mV in two continuous derivations

564 that were derived to the catheterization room for primary

565 angioplasty. Infarct and no reflow areas were measured

566 using magnetic resonance with gadolinium. This random-

567 ized study demonstrated that postconditioning with angio-

568 plasty (4 cycles of 1 min each), applied in patients with

569 STEMI, achieves a significant reduction of no reflow. This

570 protective effect was associated with a reduction on infarct

571 size.

572 Among various phase II studies performed up to this

573 date, nine have confirmed a significant reduction of crea-

574 tine-kinase or troponin release in patients subjected to

575 angioplasty plus ischemic postconditioning, in comparison

576 to those that received conventional treatment [75, 76].

577 Also, one study demonstrated a sustained benefit 6 months

578after the infarct, evidenced through an improvement of the

579ejection fraction [77].

580Wei et al. [78] performed a meta-analysis to investigate

581current evidence linking ischemic postconditioning to

582cardioprotection in patients receiving primary percutane-

583ous coronary intervention (PCI). They analyzed thirteen

584studies comparing ischemic postconditioning with usual

585care in patients undergoing PCI. The authors concluded

586that ischemic postconditioning has a potent protective

587effect on the ischemic heart, particularly in patients with

588ST-elevation myocardial infarction. In a similar meta-

589analysis including ten randomized trials with 560 patients,

590it was observed that ischemic postconditioning performed

591during angioplasty reduces the myocardial enzyme levels

592and improves the ejection fraction in patients with STEMI.

593Such protective effects were more significant in young

594female individuals or when the direct-stenting techniques

595were used [79]. The direct-stenting technique has presented

596a lower microemboli incidence [75, 76, 80] mentioned that

597the utilization of this technique could eliminate the possible

598microembolization induced by ischemic postconditioning.

599Even though the results are promising, we must be

600cautious because studies in patients present substantial

601dissimilarities regarding differences in the collateral cir-

602culation and in risk areas, given that these variables could

Table 1 Ischemic postconditioning in patients undergoing percutaneous coronary interventions or cardiac surgery

Reference Delay

(s)

Number of

cycles

Ischemia/reperfusion

duration time per cycle

(s)

Intervention Results

Laskey

et al. [70]

180 2 90/180 Percutaneous coronary

intervention

Improved extent of ST-segment resolution and

coronary flow reserve and reduced peak serum

creatine-kinase

Staat et al.

[71]

60 4 60/60 Percutaneous coronary

intervention

Reduced area under the curve of creatine-kinase

and improved blush grade

Darling

et al. [74]

30 6 25/25 Percutaneous coronary

intervention

Reduced peak creatine-kinase release

Zhao et al.

[82]

30 3 30/30 Percutaneous coronary

intervention

Reduced area under the curve of creatine-kinase

activity and increased ejection fraction

Luo et al.

[83]

30 3 30/30 Cardiac surgery under

cardioplegia

Reduced the postoperative peak creatine-kinase

MB. The required inotropes and transcardiac

release of lactate and neutrophil count during

reperfusion were reduced

Thibault

et al. [84]

60 4 60/60 Percutaneous coronary

intervention

Reduced creatine-kinase and troponin I release.

Left ventricular ejection fraction increase in

7 %

Luo et al.

[85]

30 2 30/30 Cardiac surgery under

cardioplegia

Decreased peaks of creatine-kinase MB and

troponin I and transcardiac release of lactate

Ma et al.

[86]

60 3 30/30 Percutaneous coronary

intervention

Faster CTFC and improved WMSI. Decreased

peaks of CK, CK-MB and MDA-reactive

products. Endothelium-dependent vasodilation

function was improved

Delay: time from the end of ischemia to the beginning of the posconditioning protocol

CTFC corrected TIMI frame count, WMSI wall motion score index, MDA malondialdehyde

AQ5
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603 skew the studies. As a consequence, all these findings have

604 to be corroborated with more clinical studies with a higher

605 amount of patients. Their results should answer some of the

606 following questions: (a) Does the beneficial effect of

607 ischemic postconditioning persist in patients with severe

608 coronary artery disease and risk factors (arterial hyperten-

609 sion, hypercholesterolemia, obesity, diabetes mellitus,

610 etc.)? (b) Does the postconditioning effect translate into an

611 improvement of ventricular function, remodeling, and life

612 expectancy of patients? (3) Is it a strategy that could be

613 used in all patients with acute myocardial infarction?

614 Most likely, the results of the phase III study DANAMI-

615 3 [81] ‘‘DANish Study of Optimal Acute Treatment of

616 Patients With ST-elevation Myocardial Infarction’’; (Clin-

617 icalTrials.gov Identifier: NCT01435408) that is taking

618 place could answer some of these critical questions.

619 Conclusions

620 Despite the huge progress that has been achieved in the

621 past decades regarding the knowledge of pathophysiolog-

622 ical mechanisms that lead to lethal damage by ischemia/

623 reperfusion, some results remain controversial and still a

624 lot of the factors involved remain unknown.

625 Different pharmacological and mechanical interventions

626 applied during early reperfusion have shown that it is

627 possible to reduce the infarct size. Among those, ischemic

628 postconditioning is a mechanical maneuver that, used

629 during the first times instances of reperfusion, reduces the

630 infarct size, attenuates endothelial dysfunction, and reduces

631 the apoptosis rate. This way, the treatment of reperfusion’s

632 damage with an ischemic postconditioning protocol could

633 be an opportunity to decrease cellular death, and conse-

634 quentially improve the prognosis of patients with myo-

635 cardium infarct subjected to reperfusion. However, an

636 intense translational research effort, to take the cardiopro-

637 tective treatment to clinical practice in patients with acute

638 myocardial infarction, would be necessary.
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