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Abstract

Oblong, a program with very low memory requirements, is presented. It is designed for parsimony analysis of data sets com-
prising many characters for moderate numbers of taxa (the order of up to a few hundred). The program can avoid using vast
amounts of RAM by temporarily saving data to disk buffers, only parts of which are periodically read back in by the program.
In this way, the entire data set is never held in RAM by the program—only small parts of it. While using disk files to store the
data slows down searches, it does so only by a relatively small factor (49 to 59), because the program minimizes the number of
times the data must be accessed (i.e. read back in) during tree searches. Thus, even if the program is not designed primarily for
speed, runtimes are within an order of magnitude of those of the fastest existing parsimony programs.
© The Willi Hennig Society 2013.

Introduction

Many phylogeny computer programs are currently
available and in wide use, but as sequencing methods
continue to improve and vast quantities of data
become available, they begin to have serious limita-
tions on regular desktop computers, especially in terms
of memory. This is, in part, a consequence of most of
the research in computational phylogenetics having
been aimed, not at minimizing memory usage, but
instead at improving the speed for larger numbers of
taxa. This is logical, as the time needed for computing
solutions increases exponentially with numbers of taxa,
but only linearly with numbers of characters. For lar-
ger numbers of taxa, even heuristic solutions can be
very time consuming, and several methods to improve
the speed of branch-swapping have been proposed (see
Goloboff, 1993, 1996, 1999; for parsimony calcula-
tions, and Guindon and Gascuel, 2003 and Stamata-
kis, 2006; for maximum-likelihood). Those speed-up

methods are based on avoiding redundant calculations,
through the use of bookkeeping and buffering differ-
ent stages of the analysis. Thus, the speed is obtained
mostly at the expense of memory. This is the approach
taken by all the main programs for phylogenetic analy-
sis, which in general prioritize speed of calculations
over memory usage. Alphabetically ordered examples
of such memory-demanding programs are FastTree
(Price et al., 2009), Garli (Zwickl, 2006), Mega
(Kumar et al., 2012), MrBayes (Huelsenbeck and
Ronquist, 2001), PAUP* (Swofford, 1998), Phylip
(Felsenstein, 2005), PhyML (Guindon et al., 2010),
RaxML (Stamatakis, 2006), and TNT (Goloboff et al.,
2003b, 2008). As some of these programs have become
more efficient at dealing with large numbers of taxa,
the size of the trees that are commonly published has
increased enormously in the last few years (e.g. Golob-
off et al., 2009, analysed a data set of 73 060 taxa and
10 145 characters).
However, given that the amount of RAM memory

needed for standard phylogenetic programs is always
several times the size of the data set on disk, the
analysis of data sets with millions of characters
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becomes prohibitive on regular computers, not because
of speed reasons, but instead because of RAM limita-
tions. Currently, genomic data sets with numbers of
characters in the order of millions comprise relatively
small sets of taxa (normally within the hundreds), as
the complete sequences required are still expensive and
have been obtained for few species. Therefore, it is iro-
nic that the extra memory used for speeding up analy-
ses for larger taxon sets ends up being rather
unnecessary—the rearrangements to complete branch
swapping are relatively few, and could be accom-
plished relatively rapidly even without the use of spe-
cial shortcuts.
This paper describes Oblong, a new program specifi-

cally designed for parsimony analysis of matrices with
very large numbers of characters using very low
amounts of RAM. The program is designed for data
sets with relatively small numbers of taxa (up to a few
hundred), but with many characters (possibly hun-
dreds of millions). The name of the program derives
from these matrices: rectangles that are much wider
than long. To avoid using vast amounts of RAM,
Oblong buffers data to disk and then uploads the data
by parts. By minimizing the number of times the data
are uploaded into the program during branch-
swapping, a tree search can be completed using only
4–5 times longer than if holding all data in memory,
yet using only a few Mb of RAM—even for data sets
that occupy several Gb on disk.
Oblong is a minimalist program, with very little

code (below 2500 lines), designed for the analysis of
data sets with up to four states (i.e. DNA data). Small
portions of the code have been taken from TNT (a
much larger, closed source program with 125 000 lines
of code; Goloboff et al., 2008); these portions include
the core bit operations for parsimony calculations (first
used in J. S. Farris’s 1994 program Jac, and subse-
quently incorporated into TNT) as well as some tree-
handling functions.

Material and methods

Simulated data sets

For the comparison with other programs, data sets
with different sizes were created, under the Jukes–
Cantor model, using model trees with a random topology
and branch-lengths chosen at random in the interval
0.01–0.3. The data sets were created using a TNT
script, simul.run, also found in the Oblong web site.
The RAM comparisons were done with Windows
TaskManager, recording the maximum memory usage
for each program. To make comparisons of speed and
memory more direct, the code for all parsimony pro-
grams except PAUP* and MEGA (which are not open

source) was compiled with the same compiler (Open
Watcom, available at http://www.openwatcom.org).
All the tests were carried out on a machine running
under 32-bit Windows 7, with an Intel i5 processor
(3.2 GHz). The hard drive on this machine is a 4-year
old disk (WDC WD 3200AAKX-001CA0 ATA);
newer disks, with a higher read speed, will produce
faster results than reported here.

General approach to saving memory

Oblong uses several approaches to lessen memory
requirements. The first is never holding the entire data
file on RAM; the second is storing fewer separate vari-
ables for length calculations; the third is optionally
using temporary files on disk to avoid holding all data
in RAM. The temporary files created by Oblong at
runtime are deleted on normal termination.

Identification of uninformative characters as the data set
is read

In most programs, the original data are placed in a
single array as they are read from disk; uninformative
characters (i.e. those that require the same number of
steps on all trees) are identified and packed subse-
quently. In Oblong, there is a small buffer for the
original data, and the data set is read in parts of no
more than 1000 characters at a time (Fig. 1). Oblong
thus reads the first 1000 characters for each of the
taxa (characters 0–999), then the subsequent 1000
(characters 1000–1999), and so on, by repositioning
the file buffers. For each set of 1000 characters, the
informativeness of the characters is assessed, and the
informative characters are saved to a temporary file,
oblong.tmp. For characters with four states (the maxi-
mum allowed by Oblong), four bits per taxon are
used, but Oblong eliminates uninformative states
(those occurring in fewer than two taxa) and uses
fewer bits per taxon for characters with fewer informa-
tive states (the program keeps track of the steps in
uninformative states, which is a constant for all trees,
so that it reports the same length as other programs).
Once the entire data set has been processed in this
way, the file oblong.tmp will contain all the informative
characters, without ever having held the entire data in
RAM. Subsequent program operations rely solely on
the compressed file, oblong.tmp, and the original data
file is closed.

Reading all informative characters back into RAM

When all the data are to be held in RAM (the maxi-
mum memory that Oblong will use), the temporary
data saved to oblong.tmp are read back into the pro-
gram. The characters are then placed in a matrix,
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which requires at most as many bytes as the size of
the dataset on disk. The characters are represented
with the parallel approach used by TNT (similar to
that of Goloboff, 2002; and White and Holland,
2011), so that every state is represented in a 4-bit field,
with eight fields under 32-bit int (in Windows) or 16
fields under 64-bit int (in Linux/Mac). Because twice
as many nodes as taxa are needed to optimize a tree,
but each of the characters is represented with four bits
(half a byte), then the size of this array (when every
character is a four-state informative character) is the
same as the size of the data set on disk (when many
characters/states are uninformative, as in many real
data sets, even a smaller array will suffice).
Branch-swapping consists of clipping the original

tree in two, obtaining two subtrees, and then reinsert-
ing the clipped subtree at different branches in the
main subtree. Oblong derives the length of each rear-
rangement using the method of Goloboff (1993), based
on comparing the final states for the nodes delimiting
the branches to be joined (this speeds up calculations
for T taxa by a factor of T, relative to a complete
down-pass optimization for each rearrangement).
Other shortcuts described by Goloboff (1996), to
obtain further speed-ups by deriving the final states
for the two subtrees from the separately stored down-
and up-pass states require additional memory, and are
avoided in Oblong. Thus, Oblong uses a single array,
calculating first the down-pass for internal nodes, and
then the up-pass on the same array (i.e. overwriting
down-pass values in the up-pass). As described by
Goloboff (1993, 1996), the node comparisons for
length calculation should be done between the union
of the final states for the nodes delimiting the target
branch, and the union of the states for the nodes
delimiting the branch where the clipped subtree is
rerooted (with the proviso that, for polymorphic termi-
nals, the states must be those that would be assigned
to the terminal in an up-pass). In TNT, those unions
are calculated and stored separately; Oblong instead
recalculates the up-pass for the terminals and the

unions of the final states for each rearrangement, with-
out storing them separately. This, of course, has a neg-
ative effect on speed, but the main goal in Oblong is
to lessen the memory required.

Buffering data to disk

When very low memory is to be used, Oblong uses a
buffer where it can hold only a fraction of the packed
characters at a time. The entire character matrix is
then saved to disk, using a file called oblong.pts.
To enable a faster reading of these data from disk,

the memory for the buffer holding a number N of
(packed) characters for T terminal taxa is allocated
sequentially, on the same memory segment. In C code:

int * at;

int ** matrix;

…
matrix = (int **) malloc ((2 * T – 1) * sizeof (int *));

at = (int *) malloc (N * T * sizeof (int));

for (j = 0; j < T; ++j, at += N)

matrix [j] = at;

for (j = T; j < MAXNOD; ++j)

matrix [j] = (int *) malloc (N * sizeof (int));

Note that for the internal nodes (from T to MAX-
NOD), there is no need for sequential allocation—
those matrix cells are filled by the program, not read
from disk. After the matrix for the terminal taxa has
been allocated as above, for each set of N characters
loaded onto the matrix from the file oblong.tmp, the
entire two-dimensional buffer can be saved to the file
oblong.pts before the search begins, as if it was a single
one-dimensional array, using the standard C function
fwrite:

fwrite ((void *) matrix, 1, sizeof (int) * T * N, fileptr);

More importantly, the character matrix can also be
read back quickly into the program with fread, the
sister function of fwrite. By doing successive reads in
the same order as the successive writes, the entire

TAXON1 

TAXON2  

   TAXON3 

TAXON4 

TAXON5 

TAXON6 

READING
BUFFER

Fig. 1. Oblong never holds the entire data set in RAM; it reads the data in parts, and assesses informativeness of the characters as it reads each
piece (saving the informative characters only, in compressed binary form, to a temporary file).
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character matrix is reconstructed identically. Note that
the file oblong.tmp, created as the original data set is
read, could not be read in this way, because it lists the
states of each of the taxa, for each of the characters—
the appropriate sequence of data can only be written
to the file oblong.pts once all the data have been pro-
cessed. For simplicity, when using a disk-buffered
character matrix, all the characters are packed into
4-bit fields (i.e. Oblong does not distinguish in this
case between two-, three- and four-state characters).
Recall that the full tree-length calculation with all

characters held in RAM would involve visiting all tree
nodes as in the C-style pseudocode shown on the
left side of Fig. 2 (with nodes assumed to be
appropriately numbered, and tree stored as lists of
descendants for each internal node, left_desc and
right_desc; multi-character calculations are avoided for
simplicity).
The equivalent calculation for the matrix loaded in

pieces (a total of num_pieces pieces, of temp_nchar
characters each) is shown on the right side of Fig. 2.
While the states for the internal nodes are overwritten
as the different parts of the matrix are loaded and
optimized, the length calculations themselves are
correct.
Obviously, the approach described requires that the

entire matrix be loaded again for each tree to be evalu-
ated. But tree bisection and reconnection (TBR)
branch swapping requires that thousands of trees are
optimized; as the tree search is done in a sequential
manner, this order allows us to evaluate many rear-
rangements loading the entire matrix only once (as
shown on the pseudocode of the right side of Fig. 3).
For comparison, the standard procedure for TBR (i.e.
with the full character matrix stored in RAM) is also
illustrated on the left side of Fig. 3. When the entire
character matrix cannot be held in RAM, the matrix

can be loaded only once per clipping, and the evalua-
tion of all possible rerootings and targets repeated for
every matrix piece loaded (storing in the array par-
tial_length the cumulative lengths for each of the rear-
rangements). In this way, loading the entire matrix
back into RAM only once, it is then possible to evalu-
ate dozens of destinations, as shown in the pseudocode
of the right side of Fig. 3. For T taxa, the number of
rearrangements that can be evaluated with a single
matrix load ranges from ca. 2T (when a terminal is
clipped) to ca. T2 (when an internal node with half the
taxa is clipped).
By using this approach, completing branch-swapping

requires only 4–5 times longer than when the entire
character matrix is held in memory, but using truly
negligible amounts of RAM. On a Windows 32-bit
machine, for example, a simulated data set with 15
million characters for 50 taxa (about 750 Mb on disk)
required 497 Mb and 665 s for completing a random
addition sequence holding all the character matrix in
RAM, but only 6.24 Mb and 2587 s when buffering
the matrix to disk (with a –m5 switch). That is, the
program becomes about four times slower, but it uses
80 times less memory. Increasing the size of the data
set simply requires a larger number of reads from the
disk buffer, so that the larger data set can still be anal-
ysed without increasing the amount of RAM needed.
Note also that because the rearrangements are exam-
ined using the same sequence as when the full charac-
ter matrix is held in RAM, exactly the same final
results are obtained when buffering the character
matrix to disk.
The pseudocode shown in Fig. 2 avoids re-loading

the part of the character matrix that had been loaded
in the last clip (using the last_part_loaded variable);
while this saves no significant time when the matrix is
divided in many parts, it does when the RAM buffer

length = 0 ; 
for( n = 0 ; n < all nodes ; ++ n ) { 
    node_ptr = matrix [ n ] ;  
    left_ptr = matrix [  left_desc [ n ] ] ;  
    right_ptr = matrix [ right_desc [ n ] ] ;  
    for ( c = 0 ; c < num_chars ; ++ c ) { 
        if ( ( * left_ptr & * right_ptr ) == 0 ) { 
            ++ length ;  
            * node_ptr = * left_ptr | * right_ptr ; } 
        else  * node_ptr = * left_ptr & * right_ptr ;  
        ++ left_ptr ;  
        ++ right_ptr ;   
        ++ node_ptr ; }} 

length = 0 ; 
for ( k = curc = 0 ; k < num_pieces ; ++ k , curc += temp_nchar ) { 
    load_matrix ( curc ) ;  /*** load matrix starting at curc ***/ 
    for( n = 0 ; n < all nodes ; ++ n ) { 
        node_ptr = part_matrix [ n ] ;  
        left_ptr = part_matrix [  left_desc [ n ] ] ;  
        right_ptr = part_matrix [ right_desc [ n ] ] ;  
        for ( c = 0 ; c < temp_nchar ; ++ c ) { 
            if ( ( * left_ptr & * right_ptr ) == 0 ) { 
                ++ length ;  
                * node_ptr = * left_ptr | * right_ptr ; } 
            else  * node_ptr = * left_ptr & * right_ptr ;  
            ++ left_ptr ;  
            ++ right_ptr ;   
            ++ node_ptr ; }} 

Fig. 2. C-style pseudocode to compare the calculation of tree length in a down-pass holding the entire character matrix in RAM (left), and the
calculation of tree length reading the character matrix in numpieces parts of temp_nchar characters each (right). The data are stored as A = 0001,
G = 0010, C = 0100, and T = 1000 (multi-character calculations avoided here for simplicity). See text for details.
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is large enough to hold the character matrix in just a
few pieces.

Available options and usage

Oblong can read either TNT, Phylip, or Fasta format
data files. For Phylip data sets, the –p switch must be
used; for Fasta files, the –f switch instead. It is also
possible to read multiple data sets, by listing them in a
file, and then giving Oblong the name of the file
preceded by –@.
Both TBR and subtree prunning and regrafting

(SPR) branch-swapping are available; searches can
start from either random addition sequence Wagner
trees (Farris, 1971) or random trees. The program can

read trees in parenthetical notation as well, and use
them as starting point for searches. Nixon’s (1999)
method for improving parsimony searches, the ratchet,
is invoked with –x; Oblong only perturbs the original
data set by deactivating some characters (instead of re-
weighting); as in TNT, the original procedure
described by Nixon (1999) was modified so that the
perturbation phase (i) accepts rearrangements of equal
score, and (ii) stops when a number of moves equal to
T/2 have been accepted. When using the ratchet, the
program allocates additional memory to keep track of
temporarily active/inactive characters in each ratchet
cycle. While it would be possible to handle these in the
same manner as the matrix, by recalculating character
eliminations on the same memory space (see Material

for ( clip = 0 ; clip < all clips ; ++ clip  ) { 
     divide_tree ( clip ) ;  
     /*** find final states for all nodes ***/ 
     two_pass_optimization( ) ;  
     best_target = init_position ;  
     best_root = init_rooting ;  
     /*** Get initial value ***/  
     best_cost =   
          cost_of_joining ( clip , init_root , init_position ) ;  
     for ( root = 0 ; root < all rootings ; ++ root ) { 
          for ( target = 0 ; target < all targets ; ++ target ) {                                 
               /***  Compare branches to join ****/  
               cost = cost_of_joining ( clip , root , target ) ;  
               if ( cost < best_cost ) { 
                    best_cost = cost ;  
                    best_root = root ;  
                    best_target = target ; }} /** end targets **/ 
                   }  /** end roots  **/  
     insert ( clip , best_root , best_target ) ; } /** end clips **/ 

partial_length = ( int * ) malloc ( T * T * sizeof ( int ) ) ;   
…
curc = 0 ;  
last_part_loaded = –1 ;  
for ( clip = 0 ; clip < all clips ; ++ clip  ) { 
     divide_tree ( clip ) ;  
     num_insert = best_cost = 0 ;  
     /*** Initialize length of all rearrangements to 0 ***/  
     for ( root = 0 ; root < all rootings ; ++ root )  
          for ( target = 0 ; target < all targets ; ++ target )  
               partial_length [ num_insert ++ ] = 0 ;  
     /*** Load matrix in pieces and, for each piece,  
            do  all rootings and insertion points…   ****/  
     for ( k = 0 ; k < num_pieces ; ++ k )  { 
          if ( curc !=  last_part_loaded ) load_matrix ( curc ) ;  
          last_part_loaded = curc ;  
          curc += temp_nchar ;  
          split_two_pass_optimization( ) ;  
          best_cost +=  
               split_cost_of_joining ( clip , init_root , init_position ) ;  
          num_insert = 0 ;  
          for ( root = 0 ; root < all rootings ; ++ root ) { 
               for ( target = 0 ; target < all targets ; ++ target ) { 
                    cost = split_cost_of_joining ( clip , root , target ) ;  
                    partial_length [ num_insert ++ ] += cost ; } /** end targets */ 
                    }  /** end roots **/   
               }  /** end matrix pieces **/  
     curc = last_part_loaded ;  
     /**** Now that length calculations are complete for all  
             rearrangements, find best rooting/target        ****/  
     num_insert = 0 ;  
     for ( root = 0 ; root < all rootings ; ++ root ) { 
          for ( target = 0 ; target < all targets ; ++ target ) { 
               cost = partial_length [ num_insert ++ ] ;  
               if ( cost < best_cost ) { 
                    best_cost = cost ;  
                    best_root = root ;  
                    best_target = target ; }}} 
     insert ( clip , best_root , best_target ) ; }  /** end clips **/  

Fig. 3. C-style pseudocode to compare the process of branch-swapping when the entire character matrix is held in RAM (left), and branch-
swapping reading the character matrix in num_pieces parts of temp_nchar characters each (right). See text for details.
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and methods), the present version of Oblong does not
incorporate such an approach. The amount of memory
needed is much less than needed for the matrix—as
many bytes as half the number of informative charac-
ters in the matrix. For 100 million informative charac-
ters, this would mean using 50 Mb of RAM; if the
matrix has 50 taxa, this additional memory represents
1% of the size of the data set on disk.
For measuring group supports, Oblong can perform

jackknifing (with –j) as well as Bremer supports (with
–q). The program uses the independent deletion
probability proposed by Farris et al. (1996) to avoid
the influence of uninformative characters; the
default probability is P(del) = 0.36, but this can be
changed by the user. For each replication, jackknifing
uses the same algorithms specified for searches, and
saves the resulting tree to the output file (for subse-
quent calculation of group frequencies with TNT or
other program). The trees obtained in each replication
can optionally be collapsed (with –k) under TBR
(or SPR), as in Goloboff and Farris (2001) and
Goloboff (1999), so as to approximate the results
obtained if saving multiple trees and producing their
strict consensus for each replicate (see Goloboff et al.,
2003a).
Bremer support values are calculated by TBR (or

SPR) swapping the best (optionally, all) of the trees
found, and recording the score difference for each
move (as done in the TNT command bsupport !). Both
the absolute Bremer support (Bremer, 1994) and the
relative Bremer support (Goloboff and Farris, 2001;
Farris and Goloboff, 2008) are available, as well as a
new measure, the combined Bremer support. The latter
combines the absolute and relative Bremer supports,
approximating the results of jackknifing for simple
cases. The formula used to combine the Bremer sup-
ports is (Q.R)1/A, where Q equals 1 – P(del), R the rela-
tive Bremer support, and A the absolute Bremer
support. As Q.R is always smaller than unity, elevating
it to 1/A will produce a number which approaches
unity as the absolute Bremer support is larger. For
conflicting characters, this measure strictly tends to
zero as the support tends to zero (since it is based on
comparisons of tree scores, and thus on optimality; see
discussion in Wheeler, 2010). The correlation between
resampling values and this combined measure is much
better than the correlation between resampling values
and either the absolute or the relative Bremer support,
especially for groups with resampling frequencies
above 0.50. A perfect correlation, however, seems nei-
ther possible nor desirable, as some actually supported
groups can have a resampling frequency below 0.50
(see Goloboff et al., 2003a, for examples), thus having
lower frequencies than unsupported groups (for which
the frequency may approach 0.50, as in the case of
groups supported and contradicted by the same

numbers of characters, or exceed 0.50, in the case of
more complex patterns). In addition to providing an
evaluation of supports which is sometimes more sensi-
ble than that produced by resampling, the combined
Bremer supports can be obtained much more quickly
than jackknifing values, as they do not require repeat-
ing numerous searches.
The program does not draw trees, but relies instead

on other programs to view the results. Oblong outputs
(with –o) its results to a file that contains no character
matrix, only the tree, in a format that is ready to be
input to TNT. A publication-quality tree (with sup-
ports indicated on the branches) that can be viewed on
most web browsers can be obtained (say, in the file
tree.svg), with the following TNT commands after exe-
cution of Oblong:

oblong –idataset –ooutfile –q <enter> [for com-
bined Bremer supports]
tnt; p outfile; ttag “&” tree.svg; zzz <enter>
oblong –idataset –ooutfile –j –r100<enter> [for
jackknifing]
tnt; p outfile; ttag=; majority; ttag “&” tree.svg;
zzz <enter>

Note that in Linux or Mac the TNT commands
would have to be given once inside the program, or
the semicolons would have to be substituted by com-
mas (see the online help of TNT on the ttag command
for other options in plotting the tree). Optionally (with
–N) the data can be saved in Nexus format, for read-
ing and plotting with other tree-drawing programs
[such as TreeView (Page, 1996) or Dendroscope
(Huson et al., 2007)].
For memory usage, the –m switch determines (in

Mb) the amount of memory to be used for temporary
matrix buffers (the default is holding the entire charac-
ter matrix in RAM). The number of characters to
store in each piece (see Material and methods) is
obtained by calculating (from the required amount of
memory) the number of characters that can be held
for the current number of taxa.

Comparison with other programs

Comparison with parsimony programs. The speed
comparisons are shown on Table 1. TNT was the
fastest program in all cases. SSE-optimized versions of
Parsimonator (Stamatakis, 2011) are faster than the
version used here, and could conceivably run faster
than TNT for small numbers of taxa. Parsimonator,
announced as the “fastest open-source parsimony
function implementation”, does in fact perform a
simplified SPR, examining trees within a restricted SPR
neighbourhood, moving the clipped clade no further
than 20 nodes away from the original position. As a
result, part of the “speed” of Parsimonator for larger
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numbers of taxa comes from doing a more superficial
search—it tries only a fraction of the SPR
rearrangements, and the trees it delivers may perfectly
well lead to better trees if subjected to true SPR in TNT
or PAUP*. The simplified SPR used by Parsimonator
probably did not have a strong effect on the data sets
examined here (which consist of relatively low numbers
of taxa, so that any move within 20 nodes of the
original position can span the entire tree). A further
complication for comparing TNT and Parsimonator
runtimes is that what is highly optimized in TNT is not
the SPR swapper, but instead the TBR swapper (to the
point that completing TBR for large numbers of taxa
takes even less than SPR).
Surprisingly, of the programs/versions tested, the

second fastest branch swapper is that of Oblong with
default settings—although the emphasis of the

program is on memory usage, not speed, it still per-
forms at very reasonable speeds. When using restricted
amounts of memory (with the –m2 switch), Oblong is
slowed down only by a factor of about 4—runs take
longer than in the fastest programs, but still in the
same order of magnitude, and faster than the widely
used Phylip and MEGA.
The memory usage of parsimony programs is shown

on Table 2. Even with default settings (i.e. holding the
entire character matrix in RAM), Oblong has the low-
est RAM requirements of all programs (using on aver-
age about as many bytes as the size of the data set on
disk). The closest competitor is Parsimonator, which
on average uses twice that much memory. PAUP* and
TNT are far more demanding in terms of memory,
requiring 8–12 times more memory than Oblong under
defaults. The most memory-demanding programs are

Table 1
Running times (in seconds) for different parsimony programs and different numbers of characters and taxa

Program

Data set size

105 9 30 105 9 40 105 9 50 2.5 9 105 9 50 5 9 105 9 50 106 9 50

TNT 2.29 3.51 5.96 17.13 35.88 69.56
1.53 2.45 4.35 11.84 22.21 55.68

Oblong 1.39 3.31 7.05 18.19 36.13 73.23
0.89 2.17 4.31 11.40 23.79 46.11

Oblong –m2 6.66 17.32 30.87 67.13 158.50 338.26
2.62 9.92 9.92 26.24 56.99 110.17

PAUP* 2.40 4.79 9.81 25.83 50.29 112.50
2.17 3.81 7.44 18.83 38.22 86.20

MEGA 70 145 110 825 ?? ??
15 25 25 205 ?? ??

Parsimonator – – – – – –
2.81 6.35 15.94 24.07 54.96 105.55

Phylip – – – – – –
770 2310 3865 9400 ?? ??

For most of the programs, two rows are given; the first corresponds to the time needed for completing five random addition sequences plus
TBR; the second row corresponds to the time for five random addition sequences plus SPR. Two of the programs (Phylip, Parsimonator) cannot
perform TBR. In the case of MEGA, an “MP search level” of 5 was used (which presumably does full SPR and TBR). Cases that were not run
with some programs (due to memory constraints) are indicated with "??"

Table 2
Memory consumption (in thousands of kb) of different parsimony programs and different numbers of characters and taxa

Program

Data set size

105 9 30 105 9 40 105 9 50 2.5 9 105 9 50 5 9 105 9 50 106 9 50 Ratio

TNT 43.30 47.91 54.34 123.05 244.29 486.39 11.39
Oblong 3.52 4.29 6.12 10.04 19.62 38.24 0.999
Oblong –m2 2.96 3.57 3.36 3.82 3.80 3.84 1.01–0.089
PAUP* 31.60 46.06 52.99 104.20 236.68 465.89 10.29
MEGA 115.0 149.9 192.6 447.17 ?? ?? 389
Parsimonator 6.22 9.62 11.86 25.48 51.48 101.56 2.29
Phylip 261.3 440.9 641.7 1553 ?? ?? 619

The rightmost column corresponds to the average proportion of data set size on disk that the program uses as RAM (except for Oblong –
m2, where the range is indicated—the smaller proportion corresponds to the larger data sets). For all programs that can use both algorithms,
the memory required to run SPR and TBR is the same, except for MEGA (the table shows the memory needed for TBR). In the case of TNT,
the options “cost <” (to avoid allocating memory to be used for step-matrix characters) and “nstates dna” were used.
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Phylip and MEGA, requiring 35–60 times as much as
Oblong with default settings. Note that with the –m2
switch, the amount of RAM used by Oblong remains
almost constant as the number of characters increases,
so that the difference between Oblong –m2 and the
other programs widens as there are more characters;
for the largest data set that could be analysed with
other programs on the present machine, Oblong used
26 times less memory than Parsimonator, the closest
competitor. For the largest data set tested (30 million
characters and 50 taxa, or 1500 Mb on disk), the
memory used by Oblong –m5 was 6388 kb—about
0.0049 the size of the data set on disk (550 times less
than expected for Parsimonator, 2500 times less than
for TNT).

Model-based programs. Maximum-likelihood, Baye-
sian, or distance-based programs cannot be strictly
compared with parsimony programs, as their search
techniques are often very different, and the memory
and CPU requirements of maximum-likelihood are
bound to be much more intense than for equal weights
parsimony. Although direct comparisons are difficult
to make, the amounts of memory used by those
programs are shown in Table 3. The program with the
most modest memory requirements is RAxML (as
already shown by Stamatakis et al., 2008), but even in
that case, it is clear that phylogenomic data sets
cannot be analysed on standard computers, as they
would require very long processing times and
extremely large amounts of memory.

Conclusions

Oblong is the first program for phylogenetic analysis
designed to reduce to a minimum the amount of RAM
needed for running data sets with very large numbers
of characters. Important efforts at lessening the mem-
ory requirements have been done by some program-
mers, but clearly not as the primary goal of the
program, and not to the degree that millions of char-
acters can be analysed on normal computers. For
example, Stamatakis et al. (2012) used in RAxML-
light a “subtree equality vector technique” which
reduced the RAM required to calculate the likelihood
of a tree from 66 Gb to 26 Gb, and a “recomputation
technique” that does not store all ancestral probability
vectors and allowed the RAM requirement to be
reduced from 1 Tb to “only” 256 Gb.
All the ideas used in Oblong to reduce the need for

RAM are simple, although it is not clear whether they
can be adapted for methods of phylogenetic analysis
other than parsimony. The main reason why periodi-
cally reloading the matrix from disk does not exces-
sively slow down calculations in Oblong is because
many rearrangements can be derived for each load—
and this is most easily achieved under TBR or full
SPR. Programs that use other methods (such as the
“local” SPR moves of RAxML, with a tree-neighbor-
hood size increasing linearly with T as in NNI, not
with T2 as in full SPR or T3 as in TBR) may perhaps
suffer a more serious decrease in performance.
Although Oblong is not designed primarily for

speed, it is nonetheless relatively fast, and it should
greatly facilitate analyses with large numbers of char-
acters on inexpensive computers. The program and
code (open under GPL) are available at http://www.
zmuc.dk/public/phylogeny/oblong; precompiled bina-
ries for 32-bit Windows, and 64-bit Linux and Mac,
are also included in the package.
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Table 3
Memory consumption (in thousands of kb) of several model-based
programs, for a data set of 100 000 characters and 50 taxa, and ratio
of RAM used to the data set size on disk (in parentheses)

Garli RAxML PhyML FastTree MrBayes MEGA

457.76 171.54 1247.71 505.64 416.07 1466.59

(939) (359) (2559) (1039) (859) (2999)

In the case of Garli vers. 2.0 the JC69 model and the genthresh-
fortopoterm = 100 option were used. In the case of RAxML vers.
7.2.6 (the most recent available Windows version) the analysis (a sin-
gle replication) was done with –f d, with the GTRCAT model (the
least memory-consuming option, according to the program docu-
mentation). In the case of PhyML vers. 3.1 the JC69 model with a
single rate was used, starting from a BioNJ tree and swapping with
SPR. Fasttree vers. 2.1.7 was run with the default settings. For
MrBayes vers. 3.2.1 all the settings were default, except “lset nst=1”
and the number of generations was set to just 1000 (as the goal was
only measuring memory consumption, not the time for a full analy-
sis). For MEGA vers. 5.1 the model was set to JC69 with uniform
rates, SPR level 3, starting from an MP tree, and a “very strong
branch swap filter”.
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