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Abstract

The HIV-1 epidemic in South America is dominated by pure subtypes (mostly B and C) and more than 7 BF and BC
recombinant forms. In Argentina, circulating recombinant forms (CRFs) comprised of subtypes B and F make up more than
50% of HIV infections. For this study, 28 HIV-1 primary isolates were obtained from patients in Buenos Aires, Argentina and
initially classified into subtype B (n = 9, 32.1%), C (n = 1, 3.6%), and CRFs (n = 18, 64.3%) using partial pol and vpu-env
sequences, which proved to be inconsistent and inaccurate for these phylogenetic analyses. Near full length genome
sequences of these primary HIV-1 isolates revealed that nearly all intersubtype BF recombination sites were unique and
countered previous ‘‘CRF’’ B/F classifications. The majority of these Argentinean HIV-1 isolates were CCR5-using but 4 had a
dual/mixed tropism as predicted by both phenotypic and genotypic assays. Comparison of the replicative fitness of these BF
primary HIV-1 isolates to circulating B, F, and C HIV-1 using pairwise competitions in peripheral blood mononuclear cells
(PBMCs) indicated a similarity in fitness of these BF recombinants to subtypes B and F HIV-1 (of the same co-receptor usage)
whereas subtype C HIV-1 was significantly less fit than all as previously reported. These results suggest that the multitude of
BF HIV-1 strains present within the Argentinean population do not appear to have gained replicative fitness following
recent B and F recombination events.
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Introduction

Human immunodeficiency virus type 1 (HIV-1) evolved from

the simian immunodeficiency virus (SIVcpz) predominant in the

subspecies of chimpanzee, Pan troglodytes troglodytes (Ptt) [1–4]. The

transmission events from apes to humans occurred on at least four

separate occasions which is represented by phylogenetic distinct

groups termed M (major), O (outlier), N (non-M, non-O) and P.

HIV-1 group M is responsible for the global pandemic shown

clearly by its divergence into nine ‘‘pure’’ clades or subtypes (A-D,

F-H, J and K), 63 circulating recombinant forms (CRF) (www.hiv.

lanl.gov) and a myriad of unique recombinant forms (URF).

Globally, CRFs account for about 10–20% of all new HIV-1

infections while URFs are responsible for over 30% of infections in

regions where two or more subtypes co-circulate [2,3]. Inter-

subtype recombinants are clearly contributing to HIV-1 evolution

and may ultimately result in complete disappearance of the ‘‘pure’’

HIV-1 subtypes [5], which in fact originated from earlier SIV/

HIV recombination events [6].

The prevalence of HIV-1 subtypes and CRFs in the human

population varies by geographical region and can be influenced by

various socio-cultural factors as well as virus-host genetics (founder

effects and host restrictive factors) [7]. Although subtype B is

dominant in developed countries and is the most widely studied

clade, non-subtype B HIV-1 are responsible for .90% of HIV

infections [3,4] Subtype C dominates in prevalence (.50% of

infections worldwide) due in part to epidemics in India, China,

and southern African countries (South Africa, Zimbabwe,

Botswana, Zambia, Namibia, Malawi) [3,4]. In South America,

the HIV-1 epidemic has been well characterized with subtype B

HIV-1 found in the northern Pacific and Caribbean coastal

countries (Venezuela, Columbia, Ecuador, Peru) whereas in the

Southern cone (i.e. Argentina, Chile, Paraguay, and Uruguay) the

epidemic is more diverse with a higher HIV-1 prevalence. In

southern Brazil and Argentina [8,9] subtype B, C, and F as well as

B/C and B/F recombinants are the most prevalent (Figure 1).

Intersubtype BF recombinants were first reported as a CRF

(CRF12_BF) in Argentina and Uruguay in 2001 [10], followed by

other novel BF CRFs in Brazil, Uruguay and Chile (i.e.
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CRF17_BF, [10]; CRF28_BF, CRF29_BF [11]; CRF38_BF [12];

CRF39_BF, CRF40_BF [13], CRF44_BF; CRF46_BF [14].

CRF12_BF, CRF38_BF, and related BF recombinants appear to

have originated in the late 1970s and early 1980s, dates which

coincide with the beginning of the local epidemic [15,16]. In the

HIV-infected population of Brazil (with the exception of southern

Brazil; Figure 1), subtype B (71%) dominates over a lower

prevalence of intersubtype BF recombinants (12%), subtype C

(10%), subtype F (5%) and other subtypes/intersubtypes (2%) [17–

19]. In contrast, intersubtype BF recombinant (56.7%) are found

at high prevalence in HIV-infected Argentineans with subtype B

(34.5%), F and other subtypes/intersubtypes (,5%) observed at

low frequency [20–23] (Figure 1). About 50% of these Argenti-

nean intersubtype BF-like viruses are related to, but distinct from

CRF12_BF [10,20,22]. Notably, most BF recombinants appear

unique, but share a number of breakpoints with CRF12_BF [22].

Thus, previous or continuous super-infections involving

CRF12_BF and/or other B, F, or BF recombinant viruses results

in circulation of multiple BF recombinants which may be better

defined as unique recombinant forms (URFs) rather than CRFs.

This subtype/recombinant diversity and dynamics is quite unique

to the Argentinean epidemic. In this study, the full genome

sequences revealed that all of the 18 BF recombinant HIV-1

isolates from Buenos Aires, Argentina were URFs and not CRFs.

Based on the dominance of BFs in the Argentinean epidemic,

Sanabani et al. (2006) [24] have proposed that these recombinants

may have higher replicative fitness than ‘‘pure’’ subtypes B and F.

However, aside from the fitness studies of CRF02_AG versus

Figure 1. Changes in the prevalence of HIV-1 subtypes and recombinant forms during the past ten years in Buenos Aires, Argentina
(white) and Rio Grande do Sol, Brazil (gray). Rio do Sol is located in the most southern part of Brazil while Buenos Aires is in north eastern
Argentina. Both regions are located close to each other and share a common characteristic in that they harbor dominant and evolving recombinant
forms. The prevalence numbers shown were obtained by combining the subtype distribution from published reports originating in these 2 regions.
Only samples with a known sampling date were included in the analyses.
doi:10.1371/journal.pone.0092084.g001
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subtype A or G, there are no other comparisons of replicative

fitness between recombinant HIV-1 and their parental isolates.

Two studies have examined potential phenotypic differences

among BF viruses [25,26] and suggested that HIV-1 BF strains

might have a higher replicative fitness over subtypes B and F HIV-

1 isolates. In an effort to understand the high prevalence of

intersubtype BF recombinants in Argentina, we compared ex vivo

‘pathogenic’ or replicative fitness of primary HIV-1 isolates of

subtype B, F, C, and intersubtype BF recombinants derived from

chronically infected patients. Fitness of these primary HIV-1

isolates was determined by direct head-to-head virus competitions

in human peripheral blood cells (PBMCs) of HIV-negative donors.

We discovered that the BF recombinants were of equal or lower

replicative fitness compared with Argentinean B and reference F

HIV-1 isolates.

Materials and Methods

Ethics Statement
Confidential one-on-one interviews were conducted onsite by

health care workers. During these encounters, the study was

explained and subjects were invited to participate. Only those

subjects who were willing to participate were provided with a

written informed consent, enrolled, and sampled. All procedures

were approved by the Independent Research Ethics Committee,

School of Medicine, University of Buenos Aires (CIEI-FM-UBA),

Office for Human Research Protection (OHRP) reference

numbers IORG#0004063 and IRB#00004817.

Patients, Sample Collection, Viral Load Determination
and CD4 Lymphocytes Count

Patients were sampled from September 2002 to July 2004 from

two medical facilities in Buenos Aires: namely the Hospital de Agudos

José Marı́a Ramos Mejı́a, (n = 15), a voluntary counseling and testing

center where routine HIV testing is performed and the ‘‘National

Reference Center for AIDS, School of Medicine, University of

Buenos Aires’’ (n = 13) where patients are monitored routinely for

viral load and CD4 cell count as standard-of-care. Subjects

attending these centers were from the city of Buenos Aires and

nearest suburbs. Clinical records were reviewed to confirm that

these patients were antiretroviral naı̈ve.

Whole blood samples were collected and an aliquot was used for

CD4 determination. Briefly, absolute count of CD4+ T-lympho-

cytes (cells/ul) from peripheral whole blood was determined in

each HIV-1-infected patient by flow cytometry using a Coulter XL

(Beckman) instrument (Table 1). Remaining blood was separated

into plasma and buffy coat. Viral load in plasma was assessed by

the branched DNA technology [VERSANTH HIV-1 RNA 3.0

Assay (b-DNA)] with a detection range of 50–500,000 HIV-1

RNA copies/ml (Table 1).

Virus Isolation, Co-receptor Usage and Titration
PBMCs isolated from HIV infected patients were co-cultivated

with uninfected PBMCs from a healthy donor, as described

previously [27]. Briefly, patient and uninfected cells were

separately stimulated with 2 mg/ml phytohemagglutinin (PHA;

Gibco, BRL) in RMPI medium for 2 to 3 days, and further

maintained in complete RPMI medium containing 10% fetal

bovine serum, 1 ng of recombinant interleukin (IL-2 invitrogen),

100 U/ml penicillin, and 100 mg/ml streptomycin (Cellgro)].

Subsequently, 1.56106 stimulated cells from uninfected donors

were co-cultured, in 24-well tissue culture plates, with 1.56106

PBMC from HIV-1-infected patients. On day 4, 7, 11, 14 and 18,

supernatant was harvested from each well to assess radioactive

reverse transcriptase (RT) activity. On day 7 and 14, 1.56106

PHA-stimulated PBMC from the HIV-negative donor were

thawed from frozen aliquots (derived from the same donor and

blood draw) and added to each well/co-cultivation. Cell-free

supernatants were harvested at peak viremia, as measured by a

RT assay, centrifuged and stored at 280uC until subsequently

needed. Twenty eight primary HIV-1 isolates from Argentina

were obtained from this process. Two subtype F reference strains

CA20 and VI850 were kindly provided by Dr. Guido Vanham

(Institute of Tropical Medicine in Antwerp, Belgium). The other

subtype reference strains (C-97ZA003, C-96USNG58, C-

93MW959, F1-093BR020_1) were obtained from the National

Institutes of Health AIDS Research and Reference Reagent

Program (Table 1).

To determine co-receptor usage, U87 cell lines (human glioma

cell line) expressing CD4 and either CCR5 or CXCR4 chemokine

receptor (obtained from D. Littman and the AIDS Research and

Reagent Program) were maintained in Dulbecco Modified Eagle

Medium (DMEM; Cellgro) supplemented with 15% FBS, 100 U/

ml penicillin, 100 mg of streptomycin, and 300 mg/ml geneticin

(G418; Gibco-BRL) and 1 mg/ml puromycin (Life Technologies,

Inc.) to retain receptor and co-receptor expression, respectively.{-

Deng, 1996 5706/id} Co-receptor usage was then assessed by

infecting 2.56103 U87.CD4 cells expressing either CCR5 or

CXCR4, in parallel, with each viral stock, in 48-well plates, as

described previously [28]. Virus production was determined by

assaying RT activity in the cell-free supernatants at days 3, 5, 7

and 9. Finally, CXCR4-usage was confirmed by infection of the

HTLV-1-transformed MT2 cell line as described [29] (Tables 1
and 2).

The tissue culture infectious dose for 50% infectivity (TCID50)

values were determined by serially diluting each stock of HIV-1

isolate in triplicate and infecting 105 stimulated PBMCs in a 96-

well flat-bottom plate. Infectivity in each well was tested by the

radiolabeled RT assay [28], and the TCID50 assay end point was

determined on day 10. TCID50 values was calculated as infectious

units per milliliter (IU/ml) using the Reed and Muench method

[30].

DNA Extraction, PCR, Sequencing and Phylogentic
Analysis

DNA was extracted from PBMC of each HIV-1-infected patient

with the QIAamp DNA Blood Mini Kit (Qiagen). Nested PCR

was performed on extracted DNA to obtain several non-

contiguous fragments spanning various regions of the HIV-1

genome or the full length genome of isolates. Primers used for

these amplifications are available upon request. HIV-1 PCR

products were purified using the Qiaquick DNA purification kit

(Qiagen) and then sequenced in both directions using an ABI

PRISM 3100 Genetic Analyzer (Applied Biosystems). Chromato-

grams were manually edited for alignment by using Sequencher

4.10.1 Software (Gene Codes) and Vector NTI suite.

Nucleotide sequences were aligned using Clustal X Multiple

Alignment neighbor joining protocol version 7.0.5.3. Alignments

included a representative set of known HIV-1 subtype reference

sequences from the Los Alamos HIV Sequence Database.

Neighbor-joining (NJ) trees were constructed under the Kimura

2-parameter model with the MEGA3 program. The codon

alignment was performed using Gene Cutter tool available at

the Los Alamos National Laboratory website (www.hiv.lanl.gov/

content/sequence/GENE_CUTTER/cutter.html). Each HIV se-

quence was analyzed for recombination patterns using Simplot

version 3.5.1 [31] with a bootscan sliding window of 300

nucleotides in 20 nucleotide steps (100 bootstrap replicates 50%
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consensus) [32]. Only sequences with bootstrap values above 75%

throughout the scanned sequence and in which a fragment of .

200 bp was shown to belong to a discordant subtype were

considered recombinant forms. The Genotyping tool at the

National Center for Biotechnology Information [33] and the

jumping profile Hidden Markov Model (jpHMM) [34] were used

to confirm recombination breakpoints. pol gene sequence from

each sample (2253–3749, HXB2 numbering) was analyzed for

drug resistance mutations, using the Stanford University calibrated

population resistance tool (http://cpr.stanford.edu/cpr/), which

provides a suitable approach for general batch-analysis of HIV-1

pol gene sequences (Table S1).

Sequence Data
Sequences generated from this study have been submitted to the

GenBank under the accession numbers KJ569150–KJ569178.

Genotypic Determination of Viral Tropism
In order to predict genotypic viral tropism and confirm

phenotypic co-receptor usage, we analyzed V3-loop sequences

from each sample (HXB2 gp160 amino acids 296–334) using the

Position-Specific Scoring Matrix (PSSM) (http://indra.mullins.

microbiol.washington.edu/webpssm/) and geno2pheno [co-recep-

tor] (g2p) (http://coreceptor.bioinf.mpi-inf.mpg.de/index.php) as

well as detecting the presence of positively charge amino acids at

codons 11 and/or 25 of the V3-loop (HXB2 gp160 positions 306

and 322, respectively). PSSM analysis was performed using

subtype B X4R5 matrix whereas for g2p, significance levels were

set to the optimized cutoffs based on clinical analyses from

MOTIVATE (2% and 5.75% false positive rates) [35].

Ex vivo Growth Competition Assays
The ex vivo pathogenic fitness of each virus was determined by

performing duplicate pair wise dual infection/competitions

experiments as described previously [36]. Briefly, Argentinean

HIV-1 primary isolates were competed against each other as well

as subtype reference strains (Table 1). Virus was added alone or in

pairs to 26105 PHA/IL-2 PBMC from HIV-1-seronegative

healthy donors at an equal multiplicity of infection (MOI) of

0.0005 (IU/cell) [36,37]. All PBMCs for these fitness studies and

for TCID50 determination were obtained from one donor and one

blood draw of 500 ml. Assays were carried out in duplicates in 48-

well cell culture plates. Full pair wise competitions were performed

involving R5 vs R5-using isolates or X4 vs X4-using isolates

(Table 1). The dual tropic primary isolates were also competed

against specific R5 and X4 primary isolates. Finally, we performed

a subset of dual infections to compete X4 versus R5 HIV-1 isolates

in PBMC cultures [38,39]. Virus mixtures were incubated with

PBMC at 37uC in 5% CO2, washed with phosphate buffered

saline (PBS) 48 hours post-infection and then resuspended in

complete medium. Cell-free supernatant was collected and assayed

for RT activity 5, 7, 9, 11 and 13 days post-infection. Two aliquots

of supernatants and two aliquots of cells were harvested at day 13

post infection and stored at 280uC for subsequent analysis.

Heteroduplex Tracking Assay (HTA) and Estimation of
Viral Fitness

For all dual and mono-infected cultures, proviral DNA was

extracted from lysed PBMC using QIAamp 96 DNA Blood Kit

(Qiagen). Viral DNA was isolated from infected cells and a

fragment of env was PCR-amplified, as described previously

[39,40]. Briefly, a set of external primers EnvB and ED14, and

nested primers E80 and E125 were used to amplify the C2-V3 env
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region [53]. Nested PCR products of the env gene were analyzed

by the heteroduplex tracking assay (HTA) to determine the

amount of virus produced in the dual infection/competition

experiments [39]. The same genomic region (env C2-V3) was

PCR-amplified from different subtype-specific HIV-1 env clones

[subtype A RW020 and SF170, subtype C BR025, subtype E

TH22 and CAR7] [41] for use as DNA probes. However, in this

case, the E80 primer was radiolabeled with T4 polynucleotide

kinase and 2uCi of 59-[c32P] ATP, prior to amplification, as

described [39]. At least two DNA probes in separate HTAs were

used to determine relative virus production in each dual infection.

Probes and PCR products were mixed, denatured and annealed

on a 6% polyacrylamide gel. Heteroduplexes corresponding to

each virus in a given competition were quantified using a

Molecular Imager FX (Bio-Rad) imager. The final ratio of the

two viruses produced in a dual infection was estimated by

comparing the virus production in the competition to the virus

production in the monoinfection. Production of individual HIV-1

isolates in a dual infection (f0) divided by its initial proportion in

the inoculum (i0) is referred to as the relative fitness (w = f0/i0).

Thus, the ratio of the relative fitness values of each HIV-1 variant

in the competition is a measure of the fitness difference (WD)

between both HIV-1 strains (WD = WM/WL), where WM and WL

correspond to the relative fitness of the more and less fit viruses,

respectively [39].

Statistical Analysis
Statistical analyses were performed using GraphPad Prism 4

(GraphPad Software, USA). Two-tailed Student’s t tests were used

to compare patients’ mean age. Two-tailed Mann-Whitney tests

were used to compare viral load values and CD4 cell counts. Two-

sided Fisher’s exact tests were used to compare winner/loser

proportions in competitions between two groups of viral isolates.

All tests were considered significant when p,0.05.

Results

Patient Clinical Characteristics
Twenty-eight HIV isolates obtained from 28 patients at various

stages of HIV disease were used in this study. The mean age of

subjects infected with HIV-1 subtype B and BF-like recombinants

was similar (mean age 38.7 and 37.7 years, respectively,

p = 0.1669, Student’s t test, unpaired, two-tailed) while the mean

age for all 28 subjects was 38.1 (Table 1). Viral load values were

also similar for both groups; subtype B and BF strains (1.26105

and 1.46105 copies/ml respectively) (Table 1). Comparison of

CD4 cell counts between subtype B and BFs suggested all subjects

were in late stages of disease (187 and 230 cells/ml respectively,

p = 0.9399, Mann-Whitney test, two-tailed) (Table 1). Further-

more, no significant association could be established between

patient viral load values (VL) and viral tropism (VL: R5 vs. X4; see

below), nor between VL and subtype (data not shown).

Because drug resistance mutations affect replicative fitness of

viral isolates [61], all primary isolates were screened for the

presence of drug resistance mutations in the pol gene using the

Stanford Drug Resistance Database tool (http://cpr.stanford.edu/

cpr/). Two of the 28 HIV-1 isolates harbored mutations associated

with high level resistance to protease inhibitors (PIs) and to reverse

transcriptase inhibitors (RTIs). Namely, isolates B524 carried

mutations V82A, I84V, L90M in PR, and K103N, P225H in RT

while isolate BF819 had mutations D30N, N88D in PR and

E101E/K and M184V in RT (Table S1).

Figure 2. Genotypic Characterization of HIV-1 primary isolates from Argentina. Phylogenetic trees were constructed for (a) partial pol
(2253–3749, HXB2) and (b) vpu to env (5968–9092, HXB2) of Argentinean primary isolates. Sequences were aligned using Clustal X and trees
constructed by neighbor joining method under the Kimura 2-parameter model. (c) Sequences were aligned and bootscanned as described in
materials and methods to determine recombination sites. Sequences in green represent the subtype F1 regions and in blue-subtype B. Regions in the
genome that were not sequenced are represented by empty boxes. The gray shading represents those sequences used for the phylogenetic trees in
2a and b respectively.
doi:10.1371/journal.pone.0092084.g002
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Phylogenetic Characterization of Argentinean HIV-1
Isolates

Sequencing of two genomic fragments from a single virus

facilitates subtype classification, detection of recombination sites

within the HIV genome, and mapping of these recombination sites

to the common breakpoints found in the BF CRF. Neighbor-

joining (NJ) phylogenetic trees of partial pol (2253–3749, HXB2

numbering) and vpu-env (5968–9092, HXB2 numbering) sequences

of these 28 Argentinean HIV-1 isolates predicted 9 (32.1%)

subtype Bs, 18 (64.3%) intersubtype BF recombinants, and 1

(3.2%) subtype C (Fig. 2a, b and shaded regions of Fig. 2c;

Table 1). Six samples (BF329, BF549, BF559, BF640, BF714,

BF992) had discordant phylogenetic clustering patterns in the pol

compared to the vpu-env sequences suggesting that a recombination

event occurred between or within these two genes (Fig. 2a and b).

Considering earlier reports of diverse BF strains circulating in

Argentina [22,42], we performed bootscan analyses on the pol and

vpu-env sequences (see Materials and Methods). These algorithms

confirmed the initial classification into B, F, and BF subtypes/

recombinant forms as well as identified probable recombination

sites, almost all of which were unique to the known BF CRFs

(CRF12,17, 38, 39, 40, 42, 44, 46, and 47).

Near full length sequencing of 18 of these 28 samples confirmed

results from partial pol and env sequencing, i.e. the BF recombinant

patterns were different from the two main BF recombinants

CRF12_BF and 17 (Fig. 2c) as well as the other BF CRFs that

circulate in Argentina or other regions of South America (not

shown in Fig. 2c). Only one BF recombinant, BF549, had a ‘‘pure’’

subtype F sequence for the vpu to env region whereas the other BF

isolates had a mosaic rev and/or env composed of both subtype B

and F sequences (Fig. 2c).

Isolation of Primary Isolates, Co-receptor Usage and V3-
loop Properties

Twenty-eight primary HIV-1 strains were obtained by PBMC

co-cultivation using blood samples derived from HIV-1 positive

patients in Buenos Aires, Argentina (Table 1). Co-receptor usage

was assessed by infecting U87.CD4 cells expressing either CCR5

or CXCR4. Of the 28 primary HIV-1 isolates, 20 could only

replicate in U87.CD4.CCR5 cells (R5-tropic), 4 only infected

U87CD4.CXCR4 cells, and 4 were dual/mixed tropic (R5/X4)

(Table 1 and 2). Additionally, only B553, B775, BF559, BF819,

BF027, BF134, BF555, and BF640 replicated in MT-2 cells, i.e.

the same viruses designated X4 or R5/X4 using the U87.CD4 co-

receptor usage assay. The X4 and R5/X4 HIV-1 isolates were

derived from late stage disease and typically had viral loads (.105

copies/ml) and low CD4 cell counts (,200 cells/ml) (values not

available for all patients at the time of sample collection). Two X4

isolates were subtype B and two, were BF recombinants whereas

all four dual tropic viruses were BF isolates (Table 1 and 2).

The co-receptor usage of these 28 HIV-1 Argentinean isolates

was confirmed by inputting the Env V3 amino acid loop sequence

into various algorithms: the net amino acid charge, the 11/25 rule,

Position-Specific Scoring Matrix (PSSM), and geno2pheno. It is

important to note that PSSM and geno2pheno provide the highest

predictive values for co-receptor usage with subtype B HIV-1

sequences as compared with other HIV-1 subtypes. The X4 and

R5/X4 HIV-1 isolates had the highest positive net amino acid

charge in the V3 loop when compared to that of the R5 viral

isolates (mean X4 net charge = 6.75 vs. mean R5 net

charge = 4.69, p = 0.0006, Student’s t test, unpaired, two-tailed).

Three of eight CXCR4-using viruses (B775, and BF559, and

BF555) had a positively charged amino acid at position 11 or 25

(306 and 322 in HXB2 Env amino acid numbering), (Table 2). In

subtype B, over 90% of the X4 or dual tropic HIV-1 isolates have

a positively charged amino acid at positions 11 and 25.

Furthermore, the R5 isolate B563 had an Arginine at position

25, which predicts CXCR4 usage with 80–90% specificity [35].

Finally, PSSM and geno2pheno correctly predicted co-receptor

usage for 26 and 28 HIV-1 isolates. Only R5 BF992 and X4

BF819 were incorrectly predicted as X4 and R5 by PSSM

(respectively) whereas R5-B563 and X4-BF819 were wrongly

Figure 3. Comparing the relative replicative fitness difference
(WD) of HIV-1 subtype B and BF recombinants from Argentina
in direct competitions. Subtype B strains a) B271 b) B524, c) B542 d)
B563 e) B735 f) B872 g) B958 were competed against CRF-BF-like
isolates (BF116, BF118, BF119, BF303, BF329, BF333, BF456, BF461,
BF549, BF714, BF955, BF992) in PHA-stimulated, IL2-treated PBMCs. The
fitness difference represented on the Y axis ranges from 0.01 to 100.
Bars represent the fitness of the isolates shown on the Y-axis.
doi:10.1371/journal.pone.0092084.g003
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predicted as dual and X4 tropic (respectively) by geno2pheno

(Table 2). None of these ‘‘subtype B’’ algorithms were absolute in

predicting co-receptor usage as determined by phenotypic assays.

Limitations in predicting co-receptor usage may relate to the

subtype F V3 loop sequences bore by most BF isolates (Fig. 2b and

c). An antigenically distinct subtype B variant has been described

in Brazil, which has a GWGR rather than GPGR signature motif

at the tip of the V3-loop. This rare variant is found in ,50% of

Brazilian subtype B isolates and has been associated with slower

disease progression [43]. Considering the overlap between the

Argentinean and Brazilian HIV epidemics, we analyzed the

diversity of the V3-loop. Only one of the Argentinean HIV

sequence (BF134) had a GWGR motif, which was also the only BF

strain with a subtype B Env gp120 coding region. The subtype F

V3 sequences of the BF strains had either a GPGR or GPGQ

sequence, the latter being more common for subtype F but

infrequent for subtype B [44].

The N-linked glycosylation site, N301, is part of a highly

conserved NNTR sequence found in the V3 loop of CCR5 tropic

primary isolates [45]. All of the subtype B, F, and BF sequences

had NNTR sequence with the exception of two X4 isolates, which

harbored either NTIKQ (B552, with an isoleucine insertion) and

NKTQ (B775) (Table 2). Aside from N-linked sites at amino acid

position 301, no significant differences were observed in the

sequence lengths of any variable loop or in the number of N-linked

glycosylation patterns in the V1–V5 regions with the Argentinean

subtype B and BF isolates.

Relative Replicative Fitness of Primary Subtype B, C, F
and Intersubtype BF Recombinant HIV-1 Isolates of
Different Phenotypes

In order to determine the ex vivo pathogenic fitness of primary

R5 and X4 subtype B, C and intersubtype BF recombinant isolates

from Argentina, nearly 700 dual infection/competitions experi-

ments were performed in PHA stimulated human PBMCs using

the 28 primary HIV-1 isolates (described above) and 6 reference

strains of subtypes C (n = 3); F1 (n = 2), and F2 (n = 1) (Table 1).

Full pairwise competition experiments were performed with the 25

primary R5 isolates and the 9 primary X4- and X4/R5-tropic

isolates (Figures 3–7). The fitness difference, WD is defined as the

fitness of a B isolate over the fitness of BF isolate or C isolate in

PBMC competitions (Fig. 3 and 4, respectively). In Fig. 3, we show

that the replicative fitness of each R5 subtype B isolate (y axis of

panels A–G) is, on average, similar to each of the 12 BF isolates in

Figure 4. Relative fitness difference (WD) between Argentinean subtype B strains a) B271, b) B563 c) B735 d) B872, e) B958 and
Subtype C strains C674 (Argentina), C5, C8, C9 (reference strains). Competitions were performed in PHA/IL2 treated PBMCs as in Figure 3.
The fitness difference shown on the Y axis ranges from 0.01 to 100. Bars represent the fitness of the isolates shown on the Y-axis.
doi:10.1371/journal.pone.0092084.g004
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these pairwise competitions. Only one BF isolate (BF549) is

consistently more fit that all the B isolates (Fig. 3a–g) and other BF

strains (Fig. S1a). Intersubtype BF recombinants and subtype B

isolates had nearly equal number of ‘‘wins’’ in direct head-to-head

competitions (BF wins: 55.95%, n = 47 while B wins: 44.05%,

n = 37, p = 0.1647). However, as shown in Fig. 4, the subtype B

and BF isolates clearly out-compete the subtype C HIV-1 isolates

with C viruses winning only one of 22 head-to-head competitions

(p,0.0001, two-sided Fisher’s exact test) confirming previous

observations that subtype C strains are less fit than most HIV-1

group M strains [36,40,46]. The only Argentinean subtype C

isolate in our panel, C674 was the least fit compared to the other 3

C HIV-1 isolates derived from South Africa, Nigeria and Malawi

(Fig. 4).

HIV-1 subtype F1 is a parental subtype of BF recombinants.

However, ‘‘pure’’ subtype F HIV-1 is now rare in Argentina as

reflected by its absence in our set of Argentinean primary isolates

and recent molecular epidemiology studies [16,42] (Fig. 1). We

therefore included a CCR5-using subtype F1 primary isolate,

CA20 from Cameroon and subtype F2, VI850 from the

Democratic Republic of Congo (DRC) for competitions against

6 Argentinean subtype B (Fig. 5a and b) and 8 BF strains (Fig. 5c

and d). The sub-subtype F1 is most related to South American F

isolates and the F segments in BF recombinant genomes. The F1

isolate, CA20 was of equal or slightly greater fitness than the

subtype B and BF isolates whereas the F2 isolate, VI850 was

slightly less fit and lost the majority of competitions against the

subtype B and BF isolates from Argentina. Nonetheless, there was

no significant difference in replicative fitness between any of these

subtype B, F, or BF HIV-1 isolates.

The mean intra- and intersubtype relative values were plotted

for each of the B and BF isolates (Fig. 6) to obtain a clear

representation of relative replicative fitness in human PBMCs. In

Fig. 6, the mean intra-subtype/-recombinant relative fitness values

(y axis) represents the average fitness of each B (or BF) isolate

against each of the other B (or BF) isolates. Inter-subtype/-

recombinant (x-axis) represents the average fitness of each B (or

BF) isolate against each of the BF (or B) isolate. When comparing

the intra- and inter-group M and subtype C fitness of 29 primary

HIV-1 isolates in a previous study, we clearly showed that the

Figure 5. Comparing the relative replicative fitness difference (WD) of HIV-1 sub-subtype F1 reference strains; (a) CA20 and (b)
V1850 and Argentinean subtype B (B271, B524, B542, B563, B735 and B872) in direct competitions using PHA/IL2 PBMCs. Similarly,
subtype F (c) CA20 and (d) V1850 were competed against BFs (BF116, BF118, BF119, BF303, BF456, BF549, BF714 and BF955). Bars represent the
relative fitness of the viruses shown on the Y-axis.
doi:10.1371/journal.pone.0092084.g005
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subtype C isolates were on average less fit than any group M

isolate (e.g. subtype A, B, D, and CRF01_AE) (see insert panel A

of Fig. 6). In contrast, the replicative fitness of the subtype B and

BF isolates from the inter-subtype/-recombinant comparisons

overlapped with the intra-subtype fitness comparisons. In other

words, some isolates such as BF549 had both high intra- and inter-

Figure 6. Comparison of intra- and intersubtype fitness of R5 HIV-1 subtype B and various BF recombinants from Argentina. Mean
relative fitness values were determined for each HIV-1 isolate from pairwise competitions between isolates of the same subtype (mean intrasubtype
relative fitness) and of different subtypes (mean intersubtype relative fitness). The mean intrasubtype and intersubtype fitness values for each HIV-1
isolate were then plotted as the x and y coordinates. Subtype B viruses are shown as black filled squares while BF recombinants are indicated by a red
filled square. The mean fitness of subtype B and BF are very similar and also indicated as red and black filled squares respectively. The insert figure
represents the fitness of HIV-1 subtype C relative to group M strains as described in a previous study (Abraha et al, 2009). Subtype C strains (red
squares and triangles) have low mean relative fitness and cluster together (orange oval shade) while group M strains (green dots and tetragon) are
more fit and cluster together as well (green oval shade).
doi:10.1371/journal.pone.0092084.g006

Figure 7. Comparing the relative replicative fitness difference (WD) of syncytium inducing (SI) HIV-1 Argentinean subtype B (a)
B552, (b) B775 and (c) reference subtype F, 93BR020 against BF Argentinean recombinants (BF134; BF559; BF819, BF027, BF555
and BF640) in direct competitions using PHA/IL2 PBMCs. Bars represent the fitness of the viruses shown on the Y-axis.
doi:10.1371/journal.pone.0092084.g007
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subtype/-recombinant fitness but on average the BF isolates were

not more fit than B isolates or vice versa (see mean R5 B fitness vs

mean R5 BF fitness in Fig. 6).

A more limited set of CXCR4-using subtype B (B552, B775)

and BF (BF134, BF027, BF555, BF640) HIV-1 isolates were

available from Argentinean patients for these fitness studies. These

viruses as well as one subtype F X4 reference strain (93BR020)

were used for pairwise competitions in PBMCs (Fig. 7, Fig. S1b).

As described in Fig. 7, it appears that X4 B isolates had higher

fitness than the BF HIV-1 isolates in direct head-to-head

competitions (B wins 10 of 12 competitions, 83%, p = 0.0033).

However, the BF819 isolate is an X4 isolate carrying drug

resistance mutations D30N and N88G in PR and M184V in RT.

The lamivudine-resistant M184V mutations is associated with a

fitness cost [47]. When excluding the BF819 isolate from these

analyses, there was no statistical difference in replicative fitness

between these CXCR4-using subtype B and BF isolates. The sole

subtype F X4 isolate was more fit than all the BF recombinant and

B isolates (not shown). In summary, a total of 40 competitions

between the other two subtype F isolates, 9 subtype B isolates, and

18 BF recombinants show similar replicative fitness (p = 0.129) and

suggest that this X4 subtype F isolate, 93BR020 and the R5 BF549

isolates were outliers with high replicative fitness.

Regardless of subtype, X4 HIV-1 isolates usually replicate faster

and to higher levels than R5 HIV-1 isolates in PBMC cultures

[39,46]. However, as previously reported [36,39,46]), these dual-

infection experiments in PBMC cultures do not represent ‘‘true’’

competitions as R5 and X4 isolates do not compete for the same

susceptible cells. CCR5 and CXCR4 are typically expressed on

different CD4+ T-cells (predominantly on memory and naı̈ve,

respectively) [48] or at different levels in macrophages (higher

CCR5 over CXCR4 levels). In this study, two R5 subtype B and

one R5 intersubtype BF isolate were competed against three X4

primary isolates (1 subtype B and 2 intersubtype BFs isolates). All

X4 isolates out-produced R5 variants, in a subtype independent

manner, further supporting the higher pathogenic fitness of X4

isolates over the R5 HIV-1 isolates in PHA-activated, IL2-

maintained PBMC cultures (Data not shown).

Discussion

In many epidemics around the world, generation and trans-

mission of intersubtype HIV-1 recombinants appears to outpace

the expansion of the ‘‘pure’’ parental subtypes. For example, BC

recombinants are now increasing in prevalence as compared to

subtype B or C HIV-1 isolates in Rio Grande do Sol province in

Brazil [49–51] (Fig. 1). BC recombinant forms (specifically CRF07

and 08) dominate over subtype B’ or C in China [52]. Finally, the

HIV-1 epidemic in Argentina involves a complex mixture of BF

recombinants expanding faster than subtype B infections [42]

(Fig. 1). This increasing prevalence of recombinant forms might

infer greater replicative fitness over the parental HIV-1 subtype in

the epidemic. However, ‘‘fitness’’ in the HIV-1 epidemic is not

necessarily comparable to ex vivo replicative fitness in PBMCs

whereas virulence (i.e. rate of disease progression within a patient)

is a direct correlate of replicative fitness [53]. With the exception of

studies comparing the relative fitness of subtype A, G, and

CRF02_AG HIV-1 isolates [54], [55] ex vivo replicative fitness of

intersubtype HIV-1 recombinants have not been compared to

their parental HIV-1 subtypes in primary human cells.

To obtain a preliminary understanding on how HIV-1

recombination in the epidemic impacts replicative fitness (and

possibly pathogenesis), we compared the ex vivo fitness of reference

subtype F, primary isolates of subtype B, and recombinant BF

HIV-1 from Argentina where a significant emergence of BF

recombinants is recent (mid 1990s–early 2000s) and complex

[42,56], (Fig. 1). Initial V3 loop genotypic analyses of HIV-1 in

Argentina suggested that the epidemic was similar to that in North

America where subtype B was and still is highly prevalent [57].

However, we now know that subtype F HIV-1 may have a longer

history in Argentina, having been introduced between 1975–1980

[56]. Recent studies have shown that the HIV epidemic in

Argentina is dominated by pure subtype B, various BF recombi-

nant forms, and a rare occurrence of subtypes C and F.

Accordingly, we were unable to identify a ‘‘pure’’ subtype F

isolate among 28 HIV infected individuals which is consistent with

recent reports of rare subtype F HIV-1 infections in Argentina

[42,58]. Early in the Argentinean epidemic, subtype B was most

common in men who have sex with men (MSM) and subtype BF

among IDUs and the heterosexually-active population [59,60] but

differential prevalence of subtypes/recombinants in these trans-

mission groups has eroded over the past decade. Despite attempts

to classify the BFs as CRFs, our analyses of 18 full and near full

length BF genomes revealed that most BF breakpoints did not

match the recombination sites used to classify CRF12,17, 38, 39,

40, 42, 44, 46, and 47. In the past, a majority of BF recombinants

isolated from HIV-infected Argentineans have been classified as

CRF12_BF and CRF17_BF based on partial pol sequences

[17,22,42]. We are now analyzing all of the full length BF

sequences in the Los Alamos HIV-1 sequence database (n = .40)

and preliminary results suggest that the vast majority of the BF

strains classified as a CRF might instead be URFs of recent B+F or

BF+B co-infections, the latter being the most likely. We observed

little evidence of an epidemic with stable BF CRFs in Buenos

Aires. These findings are consistent with recent studies showing a

decrease in CRF12_BF prevalence (69% to 46% from 1986–93 to

2001–2008) [42] and an increased prevalence of unique BF

recombinant forms in Argentina (up to 50% infections by

URF_BF) [17,42] (summarized in Fig. 1). The later introduction

of subtype C in Argentina from Brazil has led to the identification

of BC recombinants (which may have originated in Brazil) and of a

complex B/C/F recombinant in one patient [61].

Does the predominance of BF recombinants suggest a better

fitness of these strains? Factors such as founder effects, host

restrictive factors as well as cultural/behavioral factors may affect

differential global spread of HIV variants in the human population

[3,4,62]. We are also adopting infectious disease models to

understand HIV spread in the epidemic [63]. Lower virulence

(related to reduced replicative fitness in PBMCs [64]) leads to

longer asymptomatic infection and increased opportunity for

transmission. Aside from an initial founder event(s), the other key

factor in these models is transmission efficiency related to the

amount of transferred virus (e.g. viral load in donor [65,66]) and

the ability to establish new host infections (e.g. relative replicative

capacity and transmission through mucosal/genital tissue

[36,38,40]. The dominance of BF-like recombinants over subtypes

B, C and F in Argentina may be related to some biological

advantage such as better transmission efficiency coupled with

weaker virulence over the parental ‘‘pure’’ subtypes B and F. A

second but not exclusive factor relates to the timing of founder

events into the Argentinean population, and possibly into different

transmission groups [49]. As described above, with the continuous

emergence of new BF recombinants, these different transmission

groups (e.g. IV drug users, heterosexuals, and MSMs) have now

mixed and the BF epidemic in Argentina is now driven by

heterosexual transmissions. This study only suggests that the

similar replicative fitness of B, F, or BF HIV-1 isolates may relate

to similar rates of disease progression (as determined by increasing

HIV Fitness of B and BF Strains in Argentina
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viral loads and decreasing CD4 cell counts). Thus, we propose that

the increased spread of BF isolates in the Argentinean epidemic

may be related to better transmission opportunity and/or

efficiency of BF over B or F HIV-1 isolates. We are currently

testing transmission efficiency in our ex vivo transmission models

involving infections of human penile, cervical, vaginal, and rectal

explants.

After .700 head-to-head competitions between 9 B, 18 BF, 3 F,

and 4 C HIV-1 isolates (28 from Argentina), it was clear that

subtype B and BF HIV-1 isolates had similar replicative fitness in

human PBMC cultures. Subtype C HIV-1 isolates were less fit

than all of the 27 B, BF, and F HIV-1 isolates, which remained

consistent with multiple studies showing poor replicative fitness of

subtype C HIV-1 compared to any other group M HIV-1 isolate

(derived from .2000 pairwise competitions employing over 50

primary HIV-1 isolates) [36,40,46]. Our studies and those of

others have suggested that HIV-1 subtype F isolates may be of

slightly higher replicative fitness than the majority of group M

isolates. The proposed higher replicative capacity of F and BF

HIV-1 strains is based on specific gene sequence or other genetic

factors. One study suggested that the subtype F long terminal

repeat (LTR) showed greater transcriptional activation than the

LTRs of subtype B [25], possibly leading to higher levels of virus

production. Aulicino et al (2007) [58] examined 40 Argentinean

vpu sequences of BF strains and revealed a high substitution rate

(,1161023 substitution per site per year) than that observed

among subtype B strains [67]. These studies were limited to one or

few B, BF, or F sequences and did not examine the effects of these

gene regions/sequences in the context of the entire virus isolate.

Nonetheless, both studies provide some evidence for increased

subtype F fitness over subtype B HIV-1 isolates.

Based on the cumulative data from over 5000 pairwise

competitions in PBMCs [36,40,46], we now rank replicative

fitness of subtypes and dominant CRFs as follows: B = D = F.

CFR02_AG$A = CRF01_AE..C. In addition there is a strong

correlation between relative replicative fitness in PBMCs and

virulence in humans. Interestingly, the subtypes of highest

replicative fitness (B, D, and F) are also the viruses expanding

the slowest in numerous regional pandemics resulting in apparent

shifts in the dominant subtypes, e.g. CRF01_AE or URFs over

subtype B in Thailand, subtype C-containing URF and subtype C

over subtype B in Brazil, and BF URFs over subtype B and F in

Argentina. We suspect that these subtype/CRFs/URFs of lower

virulence are expanding due to greater opportunity for transmis-

sion and retention of high transmission efficiency. Preliminary

studies suggest that all HIV-1 subtypes in group M have similar

transmission fitness when employing human genital tissue as a

model for primary infection. As with the near extinction of HIV-1

subtype F in the Argentinean HIV-1 epidemic over the past 40

years, the dominance of subtype F HIV-1 over other subtypes has

also decreased in Romania [68] and is almost absent in Cameroon

(5% in 1999); [27] despite the moderate frequency of subtype F1

(17% of all HIV infections) during the late 80’s and early 90’s [69].

Increase in prevalence and new infections by a specific subtype

may simply be due to founder events in a specific transmission

group. Nonetheless, we consistently observe that HIV-1 subtypes

(D, F, G, and CRF01_AE) that have decreased in prevalence (in

Uganda, Romania/Argentina, Cameroon, and Thailand, respec-

tively) also have the highest ex vivo replicative fitness.

Conclusion

The present study suggests that BF recombinants circulating in

Buenos Aires, Argentina have multiple recombinant structures

which most likely resulted from continuous dual/superinfection

between B and BF. Further, similar replicative fitness between

subtypes B and BF HIV-1 isolates implies that recombination of

the parental HIV-1 isolates does not necessarily increase

replicative fitness. Initial dual infection or superinfection may

result in higher fitness based on immune escape, host adaptation,

and/or increase replicative fitness. Subsequent transmission of the

recombinant form (e.g. BF) may select for factors associated with

high transmission efficiency, which appear to be different than

those factors governing replicative fitness in PBMCs. It is worth

noting that CRF02_AG, another dominant recombinant was

found to be more fit than its parental subtypes A and G, [54,55]

suggesting that this higher replicative fitness may be associated

with its dominance in the African HIV epidemic. However, the

origin of CRF02_AG (or sub-subtype A3) dates back to the start of

the HIV-1 pandemic in the Congo basin whereas our BF strains

may have originated from very recent dual or super infections in

Argentina [15]. Following approximately 50 years of evolution, the

replicative fitness of CRF02_AG may reflect the changes derived

from the original recombination as well as the accumulation of

stable substitutions within the genome. With the analyses of the BF

recombinants, evolution may be limited to just one or few

transmission events.

Supporting Information

Figure S1 Fitness difference for pairwise competition
with R5 and X4 HIV-1 isolates. Fitness differences (WD) for

pairwise competition with A) R5 and B) X4 HIV-1 isolates are

shown as the relative fitness of the ‘‘column’’ isolate over the

‘‘row’’ isolate. Gray boxes represent intra-subtype fitness differ-

ences while unshaded boxes represent inter-subtype fitness

differences among HIV-1 patient’s isolates and reference strains

from subtype B (bold italic), intersubtype BF recombinants (bold),

subtype C (italic) and subtype F (normal).

(XLSX)

Table S1 Drug resistance mutations: calibrated popu-
lation resistance tool from Stanford University was used
to evaluate the presence of drug resistance mutations in
pol gene sequence from each viral isolate (2253–3749,
HXB2 numbering).
(XLSX)
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