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Introduction

Standard quantum computing is based on quantum systems described by finite-
dimensional Hilbert spaces, specially C

2, that is the two-dimensional space where
qubits live. A qubit (the quantum counterpart of the classical bit) is represented
by a unit vector in C

2 and, generalizing for a positive integer n, n-qubits are
represented by unit vectors in ⊗n

C
2. Similarly to the classical case, it is possible

to study the behaviour of a number of quantum logical gates (hereafter quantum
gates, for short) operating on qubits. These quantum gates are represented by unitary
operators.

In [2, 3] a quantum gate system based on Toffoli gate is studied. This system
is interesting for two main reasons: (i) it is related to continuous t-norms [15], i.e.
continuous binary operations on the interval [0, 1] that are commutative, associative,
nondecreasing and with 1 as the unit element. They are naturally proposed in
fuzzy logic as interpretations of the conjunction [13]. (ii) A generalization of the

[159]
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mentioned system to mixed states allows us to connect it with sequential effect
algebras [10], introduced to study the sequential action of quantum effects which
are unsharp versions of quantum events [11, 12].

The aim of this paper is to study a probabilistic type representation of Toffoli gate
based on Łukasiewicz negation ¬x = 1 − x, Łukasiewicz sum x ⊕ y = min x + y, 1
and product t-norms x · y in the framework of quantum computation with mixed
states. Note that the interval [0, 1] equipped with the operations 〈⊕, ·,¬〉 defines
an algebraic structure called product MV-algebra (PMV-algebra for short) [6, 19].

As an advantage of this probabilistic type representation, we can mathematically
deal with circuits made from ensemble of Toffoli gates as 〈⊕, ·,¬〉-polynomial
expressions in a PMV-algebra. In this way, PMV-algebra structure related to Toffoli
gates plays a similar role to Boolean algebras describing digital circuits.

The paper is organized as follows: In Section 1, we introduce basic notions of
quantum computation and we fix some mathematical notation. Section 2 contains
generalities about tensor product structures to describe bipartite quantum systems.
In Section 3, we provide a probabilistic-type representation for Toffoli gates based
on product and Łukasiewicz t-norms. In Section 4, we study this representation for
nonfactorized states. In Section 5, we apply the results obtained in an abstract way
to two concrete examples. Finally, Section 6 is devoted to the conclusions.

1. Basic notions

In quantum computation, information is elaborated and processed by means of
quantum systems. Pure states of a quantum system are described by unit vectors
in a Hilbert space. A quantum bit or qubit, the fundamental concept of quantum
computation, is a pure state in the Hilbert space C

2. The standard orthonormal basis
{|0〉, |1〉} of C

2 is generally called quantum computational basis. Intuitively, |1〉 is
related to the truth logical value and |0〉 to the falsity. Thus, pure states |ψ〉 in C

2

are superpositions of the basis vectors with complex coefficients |ψ〉 = c0|0〉 + c1|1〉
where |c0|2 + |c1|2 = 1.

In the usual representation of quantum computational processes, a quantum circuit
is identified with an appropriate composition of quantum gates, mathematically
represented by unitary operators acting on pure states of a convenient (n-fold tensor
product) Hilbert space ⊗n

C
2 [21]. A special basis, called the 2n-standard orthonormal

basis, is chosen for ⊗n
C

2. More precisely, it consists of the 2n-orthogonal states
|ι〉, 0 ≤ ι ≤ 2n, where ι is in binary representation and |ι〉 can be seen as the
tensor product of states |ι〉 = |ι1〉 ⊗ |ι2〉 ⊗ . . . ⊗ |ιn〉, where ιj ∈ {0, 1}. It provides
the standard quantum computational model, based on qubits and unitary operators.

In general, a quantum system is not in a pure state. This may be caused,
for example, by the noncomplete efficiency in the preparation procedure or by the
fact that systems cannot be completely isolated from the environment, undergoing
decoherence of their states. On the other hand, there are interesting processes
that cannot be encoded in unitary evolutions. For example, at the end of the
computation a nonunitary operation—a measurement—is applied, and the state
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becomes a probability distribution over pure states, or what is called a mixed state.
In view of these facts, several authors [1, 3, 4, 7–10] have paid attention to a more
general model of quantum computational processes where pure states are replaced
by mixed states. In what follows we give a short description of this mathematical
model.

To each vector of the quantum computational basis of C
2 we may associate two

density operators P0 = |0〉〈0| and P1 = |1〉〈1| that represent the standard basis in

this framework. Let P
(2n)
1 be the operator P

(2n)
1 = (⊗n−1I )⊗ P1 on ⊗n

C
2 where I

is the 2 × 2 identity matrix. Clearly, P
(2n)
1 is a 2n-square matrix. By applying the

Born rule, we consider the probability of a density operator ρ as follows,

p(ρ) = tr(P
(2n)
1 ρ).

We focus our attention on these probability values since it allows us to establish
a link between Toffoli gate and fuzzy connectives. Note that, in the particular case
in which ρ = |ψ〉〈ψ |, where |ψ〉 = c0|0〉+ c1|1〉, we obtain p(ρ) = |c1|2. Thus, this
probability value associated to ρ is the generalization, in this model, of the probability
that a measurement over |ψ〉 yields |1〉 as the output. A quantum operation [16] is
a linear operator E : L(H1) → L(H2) where L(Hi) is the space of linear operators

in the complex Hilbert space Hi (i = 1, 2), representable as E(ρ) =
∑

i AiρA
†
i ,

where Ai are operators satisfying
∑

i A
†
iAi = I (Kraus representation [16]). It can be

seen that a quantum operation maps density operators into density operators. Each
unitary operator U gives rise to a quantum operation OU such that OU (ρ) = UρU†

for any density operator ρ. The new model based on density operators and quantum
operations is called quantum computation with mixed states. It allows us to represent
irreversible processes as measurements in the middle of the computation.

2. Density operators on n-dimensional
Hilbert spaces

Due to the fact that the Pauli matrices

σ1 =
[

0 1

1 0

]

, σ2 =
[

0 −i
i 0

]

, σ3 =
[

1 0

0 −1

]

and I are a basis for the set of operators over C
2, an arbitrary density operator ρ

over C
2 may be represented as

ρ =
1

2
(I + s1σ1 + s2σ2 + s3σ3)

where s1, s2 and s3 are three real numbers such s2
1 +s2

2 +s2
3 ≤ 1. The triple (s1, s2, s3)

represents the point of the Bloch sphere that is uniquely associated to ρ. A similar
canonical representation can be obtained for any n-dimensional Hilbert space by
using the notion of generalized Pauli matrices.
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DEFINITION 2.1. Let H be an n-dimensional Hilbert space and {|ψ1〉, . . . , |ψn〉}
be the canonical othonormal basis of H. Let k and j be two natural numbers such
that 1 ≤ k < j ≤ n. Then, the generalized Pauli matrices are defined as

(n)σ
[k,j ]
1 = |ψj 〉〈ψk| + |ψk〉〈ψj |,

(n)σ
[k,j ]
2 = i(|ψj 〉〈ψk| − |ψk〉〈ψj |),

and for 1 ≤ k ≤ n− 1,

(n)σ
[k]
3 =

√

2

k(k + 1)
(|ψ1〉〈ψ1| + · · · + |ψk〉〈ψk| − k|ψk+1〉〈ψk+1|).

Let H be an n-dimensional Hilbert space and {|ψ1〉, . . . , |ψn〉} be the canonical
orthonormal basis of H. For a technical reason we introduce the following sets:

(n)P1 = {(n)σ [k,j ]
1 : 1 ≤ k < j ≤ n},

(n)P2 = {(n)σ [k,j ]
2 : 1 ≤ k < j ≤ n},

(n)P3 = {(n)σ [k]
2 : 1 ≤ k ≤ n− 1}.

One can see that (n)P1 and (n)P2 contain n(n − 1)/2 matrices, while (n)P3

contains n− 1 matrices. Thus, if we consider the set (n)P =(n) P1 ∪(n) P2 ∪(n) P3,
it contains n2 − 1 matrices. For the sake of simplicity, we consider the set (n)P
ordered as follows,

(n)P = {σ1, . . . , σ n(n−1)
2

︸ ︷︷ ︸

(n)P1

| σ n(n−1)
2

+1
, . . . , σn(n−1)

︸ ︷︷ ︸

(n)P2

| σn(n−1)+1, . . . , σn2−1
︸ ︷︷ ︸

(n)P3

}.

If H = C
2, one immediately obtains

(2)σ
[1,2]
1 = |0〉〈1| + |1〉〈0| = σ1 and (2)P1 = {σ1},

(2)σ
[1,2]
2 = i(|0〉〈1| − |1〉〈0|) = σ2 and (2)P2 = {σ2},

(2)σ
[1]
3 = |0〉〈0| − |1〉〈1| = σ3 and (2)P3 = {σ3}.

As another example, if n = 3 we obtain the well-known Gell-Mann matrices.

LEMMA 2.1. Let H be an n-dimensional Hilbert space and let {|ψj 〉}nj=1 be

an orthonormal basis of H. For any σj ∈(n) P such that 1 ≤ j ≤ n(n − 1), i.e.

σj ∈ (n)P1 ∪ (n)P2, each diagonal element of σj is 0.

Proof : It follows from the fact that, if k 6= j and |ψj 〉 = (x
j
s )1≤s≤n, |ψk〉 =

(xks )1≤s≤n then diag|ψk〉〈ψj | = (x
j
s x

k
s )1≤s≤n. �

Let ρ be a density operator of the n-dimensional Hilbert space H. For any j
where 1 ≤ j ≤ n2 − 1, let

sj (ρ) = tr(ρσj ).
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The sequence 〈s1(ρ) . . . sn2−1(ρ)〉 is called the generalized Bloch vector associated
to ρ, in view of the following well-known result.

THEOREM 2.1. Let ρ be a density operator of the n-dimensional Hilbert space
H and let σj ∈ Pn. Then ρ can be canonically represented as follows,

ρ =
1

n
I (n) +

1

2

n2−1
∑

j=1

sj (ρ)σj ,

where I (n) is the n× n identity matrix. �

A kind of converse of Theorem 2.1 reads: a matrix ρ having the form ρ =
1
n
I (n) + 1

2

∑n2−1
j=1 sjσj is a density operator iff all its eigenvalues are nonnegative.

Let us consider the Hilbert space H = Ha ⊗ Hb. For any density operator ρ
on H, we denote by ρa the partial trace of ρ with respect to the system Hb (i.e.
ρa = trHb

(ρ)) and by ρb the partial trace of ρ with respect to the system Ha

(i.e. ρb = trHa (ρ)). For the following developments it is useful to recall the next
technical result.

LEMMA 2.2. Let ρ be a density operator in a Hilbert space H = Ha ⊗ Hb,
where dim(Ha) = m and dim(Hb) = k. If we divide ρ in m×m blocks Bi,j , each
of them is a k-square matrix, then

ρa = trHb
(ρ) =















trB1,1 trB1,2 . . . trB1,m

trB2,1 trB2,2 . . . trB2,m

...
...

...
...

trBm,1 trBm,2 . . . trBm,m















,

ρb = trHa (ρ) =
m

∑

i=1

Bi,i .

Proof : Let α be a density operator in Ha and β be a density operator in Hb.
Then,

α ⊗ β =















α1,1β α1,2β . . . α1,mβ

α2,1β α2,2β . . . α2,mβ

...
...

...
...

αm,1β αm,2β . . . αm,mβ
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=















B1,1 B1,2 . . . B1,m

B2,1 B2,2 . . . B2,m

...
...

...
...

Bm,1 Bm,2 . . . Bm,m















,

where each Bi,j entry is a k-square matrix. Since tr(α) = tr(β) = 1, by definition
of partial trace, we have that

trHb
(α ⊗ β)= tr(β)α =















trB1,1 trB1,2 . . . trB1,m

trB2,1 trB2,2 . . . trB2,m

...
...

...
...

trBm,1 trBm,2 . . . trBm,m















= α,

trHa (α ⊗ β)= tr(α)β =
m

∑

i=1

Bi,i = β.

These matrix representation of the reduced states combined with linearity, enables
one to compute in practice all partial traces. In fact, for each density operator
ρ in Ha ⊗ Hb, we have to consider the spectral decomposition of ρ given by
ρ =

∑

j,l

∑

s,n〈ψj ⊗ ϕl|ρφs ⊗ ϕn〉|ψj 〉〈ψs | ⊗ |ϕl〉〈ϕn| where {|ψj 〉} and {|ϕn〉} are

orthonormal bases for Ha and Hb, respectively. Thus, the matrix representation
for ρa and ρb follows immediately. �

DEFINITION 2.2. Let ρ be a density operator in a Hilbert space Hm ⊗Hk such
that dim(Hm) = m and dim(Hk) = k. Then ρ is said to be (m, k)-factorizable iff
ρ = ρm ⊗ ρk, where ρm is a density operator in Hm and ρk is a density operator
in Hk.

It is well known that, if ρ is (m, k)-factorizable as ρ = ρm⊗ρk, this factorization
is unique and ρm and ρk correspond to the reduced state of ρ on Hm and Hk,
respectively.

Suppose that H = Ha ⊗ Hb, where dim(Ha) = m and dim(Hb) = k. Consider
the generalized Pauli matrices σ a1 . . . σ

a

m2−1
and σ b1 . . . σ

b

k2−1
arising from Ha and

Hb, respectively. Each density operator ρ in H can be written as follows [22]

ρ =
1

mk
I (mk) +

1

2m

m2−1
∑

j=1

tr(ρ[σ aj ⊗ I (k)])(σ aj ⊗ I (k))

+
1

2k

k2−1
∑

l=1

tr(ρ[I (m) ⊗ σ bl ])(I (m) ⊗ σ bl )
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+
1

4

m2−1
∑

j=1

k2−1
∑

l=1

tr(ρ[σ aj ⊗ σ bl ])(σ aj ⊗ σ bl ).

Now, let us consider the reduced states ρa and ρb. Taking into account that
tr(ρ[σ aj ⊗ I (k)]) = tr(ρaσ

a
j ) and tr(ρ[I (m) ⊗ σ bl ]) = tr(ρbσ

b
l ), we can see that

ρa =
1

m
I (m) +

1

2

m2−1
∑

j=1

tr(ρ[σ aj ⊗ I (k)])σ aj ,

ρb =
1

k
I (k) +

1

2

k2−1
∑

l=1

tr(ρ[I (m) ⊗ σ bl ])σ bl ,

and then

ρ− (ρa⊗ρb) =
1

4

m2−1
∑

j=1

k2−1
∑

l=1

[tr(ρ[σ aj ⊗σ bl ])− tr(ρ[σ aj ⊗ I (k)])tr(ρ[I (m)⊗σ bl ])](σ aj ⊗σ bl ).

Thus we define the following coefficients:

Mj,l(ρ) = tr(ρ[σ aj ⊗ σ bl ])− tr(ρ[σ aj ⊗ I (k)])tr(ρ[I (m) ⊗ σ bl ]).
On this basis, the matrix M(ρ) defined as

M(ρ) =
1

4

m2−1
∑

j=1

k2−1
∑

l=1

Mj,l(ρ)(σ
a
j ⊗ σ bl )

represents the additional component of ρ when ρ is nonfactorized in Ha ⊗ Hb.
Thus, we can establish the following proposition.

PROPOSITION 2.1. [22] Let ρ be a density operator in H = Ha ⊗ Hb. Then,

ρ = ρa ⊗ ρb + M(ρ).

PROPOSITION 2.2. Suppose that H = Ha⊗Hb, where dim(H) = 2n, dimHa = m
and dimHb = k. Let us consider a density operator ρ in H. Then

1. tr(P
(m+k)
1 (M(ρ))) = 0,

2. if dimHb = 2 then p(ρ) = p(ρb).

Proof : 1) Let ρ be a density operator in H. If we divide ρ in m×m blocks
Bi,j of dimension k × k then by Lemma 2.2 we have that

ρa ⊗ ρb =















trB1,1

∑m
i=1 Bi,i trB1,2

∑m
i=1 Bi,i . . . trB1,m

∑m
i=1 Bi,i

trB2,1

∑m
i=1 Bi,i trB2,2

∑m
i=1 Bi,i . . . trB2,m

∑m
i=1 Bi,i

...
...

...
...

trBm,1
∑m

i=1 Bi,i trBm,2
∑m

i=1 Bi,i . . . trBm,m
∑m

i=1 Bi,i















.
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Note that

tr(P1(ρa ⊗ ρb))= trB1,1

m
∑

i=1

trP1Bi,i + · · · + trBm,m

m
∑

i=1

trP1Bi,i

= p(ρ)tr(ρ) = p(ρ).

Hence, p(ρ) = tr(P
(m+k)
1 (ρa⊗ρb+M(ρ))) = tr(P

(m+k)
1 (ρa⊗ρb))+ tr(P

(m+k)
1 M(ρ))

= p(ρ)+ tr(P
(m+k)
1 M(ρ)), and then tr(P

(m+k)
1 M(ρ)) = 0.

2) Suppose that ρ = (ri,j )1≤i,j≤2n . If dimHb = 2, by Lemma 2.2 ρb has the
form

ρ2 =





1 −
∑2m

i=1 r2i,2i b∗

b
∑2m

i=1 r2i,2i



 =





1 − p(ρ) b∗

b p(ρ)



 .

Hence, p(ρ) = p(ρb). �

3. Fuzzy representation of Toffoli gate

The Toffoli gate, introduced by Tommaso Toffoli [24], is a universal reversible
logic gate, which means that any classical reversible circuit can be built from the
Toffoli gates. This gate has three input bits (x, y, z) and three output bits. Two of
the bits, x and y, are control bits that are unaffected by the action of the gate.
The third bit z is the target bit that is flipped if and only if both control bits are
set to 1, and otherwise is left alone. The application of the Toffoli gate to a set
of three bits is dictated by

T (x, y, z) = (x, y, xŷ+z)
where ̂+ is the sum modulo 2. The Toffoli gate can be used to reproduce the
classical AND gate when z = 0 and the NAND gate when z = 1.

The Toffoli gate can also be implemented as a quantum logical gate by permuting
computational basis vectors |0〉, |1〉 as in the classical case.

DEFINITION 3.1. For any natural numbers m, n ≥ 1 and for any vectors of the
standard orthonormal basis |x〉 = |x1 . . . xm〉 ∈ ⊗m

C
2, |y〉 = |y1 . . . yn〉 ∈ ⊗k

C
2 and

|z〉 ∈ C
2, theToffoli quantum gate T (m,n,1) (from now on, shortly, Toffoli gate) on

⊗m+n+1
C

2 is defined as follows

T (m,n,1)(|x〉 ⊗ |y〉 ⊗ |z〉) = |x〉 ⊗ |y〉 ⊗ |xmyn̂+z〉.

It is well known that T (m,n,1) is a unitary operator. The following proposition
describes the matrix representation of T (m,n,1) that will be used in the next sections.

PROPOSITION 3.1. For any natural number m, n ≥ 1,

T (m,n,1) = I (2
m+n+1) + P

(2m)
1 ⊗ P

(2n)
1 ⊗ (Not − I )
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= I (2
m−1) ⊗





I (2
n+1) 0

0 I (2
n−1) ⊗ Xor





where

Not =





0 1

1 0



 and Xor =















1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0















.

Proof : Suppose that |x〉 = |x1, . . . , xm〉, |y〉 = |y1, . . . , yn〉 and |z〉 are basic
vectors in ⊗m

C
2, ⊗n

C
2 and C

2, respectively. Then

(I (2
m+n+1) + P

(2m)
1 ⊗ P

(2n)
1 ⊗ (Not − I ))|x〉 ⊗ |y〉 ⊗ |z〉

= |x〉 ⊗ |y〉 ⊗ |z〉 + (P
(2m)
1 ⊗ P

(2n)
1 ⊗ (Not − I ))|x〉 ⊗ |y〉 ⊗ |z〉

= |x〉 ⊗ |y〉 ⊗ |z〉 + P
(2m)
1 |x〉 ⊗ P

(2n)
1 |y〉 ⊗ (Not − I )|z〉.

We have to consider two possible cases:

If |x〉 = |x1 . . . xm−1, 1〉 and |y〉 = |y1 . . . yn−1, 1〉, then P
(2m)
1 |x〉 = |x〉 and

P
(2n)
1 |y〉 = |y〉. Hence,

|x〉 ⊗ |y〉 ⊗ |z〉 + P
(2m)
1 |x〉 ⊗ P

(2n)
1 |y〉 ⊗ (Not − I )|z〉 = |x〉 ⊗ |y〉 ⊗ Not|z〉

= |x〉 ⊗ |y〉 ⊗ |xmyn ⊕ z〉.

If |x〉 = |x1 . . . xm−1, 0〉 or |y〉 = |y1 . . . yn−1, 0〉, then P
(2m)
1 |x〉 = 0 or P

(2n)
1 |y〉 = 0,

respectively. Hence,

|x〉 ⊗ |y〉 ⊗ |z〉 + P
(2m)
1 |x〉 ⊗ P

(2n)
1 |y〉 ⊗ (Not − I )|z〉 = |x〉 ⊗ |y〉 ⊗ |z〉 + 0

= |x〉 ⊗ |y〉 ⊗ |xmyn ⊕ z〉.
Thus,

T (m,n,1) = I (2
m+n+1) + P

(2m)
1 ⊗ P

(2n)
1 ⊗ (Not − I ).

Note that P
(2m)
1 ⊗ P

(2n)
1 is a 2m+n-square matrix having 2m-blocks placed as

follows,

P
(2m)
1 ⊗ P

(2n)
1 =





















0(2
n)

P
(2n)
1

0(2
n)

. . .

P
(2n)
1





















.
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Hence, the matrix P
(2m)
1 ⊗P (2

n)
1 ⊗ (Not− I ) is a 2m+n+1-matrix having 2m-blocks,

placed as follows,

P
(2m)
1 ⊗ P

(2n)
1 ⊗ (Not − I ) =





















0(2
n+1)

B

0(2
n+1)

. . .

B





















,

where B is a 2n+1-matrix having 2n-blocks placed as

B =





















02

Not − I

02

. . .

Not − I





















.

Thus, it is not very hard to see that

I (m+n+1) + P
(m)
1 ⊗ P

(n)
1 ⊗ (Not − I ) = I (m−1) ⊗





I (n+1) 0

0 I (n−1) ⊗ Xor



 .

Hence, our claim follows. �

Since T (m,n,1) is a unitary self-adjoint operator, it gives rise to the following
quantum operation.

DEFINITION 3.2. For any density operator ρ in ⊗m+n+1
C

2, where m, n ≥ 1, we
define the Toffoli quantum operation T

(m,n,1) as follows,

T
(m,n,1)(ρ) = T (m,n,1)ρT (m,n,1).

For the sake of simplicity, for any 2m+n+1-matrix A in ⊗m+n+1
C

2, T
(m,n,1)
p (A)

denotes the matrix

T
(m,n,1)
p (A) = P

(2m+n+1)
1 (T (m,n,1)AT (m,n,1)).

PROPOSITION 3.2. [10] Consider the quantum operation NOT
(2m) such that for

each density operator ρ in ⊗m
C

2,

NOT
(2m)(ρ) = (I (2

m−1) ⊗ Not)ρ(I (2
m−1) ⊗ Not).
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Then:
1. p(NOT

(2m)(ρ)) = 1 − p(ρ),

2. T
(m,n,1)(ρ⊗P1) = NOT

(2m+n+1)
T
(m,n,1)(ρ⊗P0) for each density operator ρ in

⊗m+n
C

2. �

PROPOSITION 3.3. Let ρ be a density operator in ⊗m+n
C

2, where m, n ≥ 1 and
σ be a density operator in C

2. Then

p(T(m,n,1)(ρ ⊗ σ))= (1 − p(σ))p(T(m,n,1)(ρ ⊗ P0))

+p(σ)(1 − p(T(m,n,1)(ρ ⊗ P0)).

Proof : Suppose that σ =
(

1 − α b∗

b α

)

. Then p(σ) = tr(P1σ) = α. Note that

σ = (1 − p(σ))P0 + p(σ)P1 + B where B =
(

0 b∗

b 0

)

. Thus, by Proposition 3.2-2,

we have that

p(T(m,n,1)(ρ ⊗ σ))= (1 − p(σ))p(T(m,n,1)(ρ ⊗ P0))

+ p(σ)p(NOT
(2m+n+1)

T
(m,n,1)(ρ ⊗ P0))

+ tr(T(m,n,1)p (ρ ⊗ B)).

Note that diag(T(m,n,1)(ρ ⊗ B)) = {0, 0, . . . , 0}. Then tr(T(m,n,1)p (ρ ⊗ B)) = 0. By

Proposition 3.2-1, p(NOT
(2m+n+1)

T
(m,n,1)(ρ ⊗ P0)) = 1 − p(T(m,n,1)(ρ ⊗ P0)). Hence,

the proposition is proved. �

The connection between Toffoli gates and continuous t-norms is given by
the generic probability values p(T(m,n,1)(· ⊗ · ⊗ ·)). In fact, we shall see that
p(T(m,n,1)(·⊗ ·⊗ ·)) can be described in terms of the operations 〈⊕, ·,¬〉. This idea
is formalized as follows.

The term 〈⊕, ·,¬〉n-polynomial expression denotes a function f : [0, 1]n → [0, 1]
built only using the three operations 〈⊕, ·,¬〉 and n variables.

DEFINITION 3.3. Let E : L(⊗m
C

2) → L(⊗r
C

2) be a quantum operation. Then
E is said to be 〈⊕, ·,¬〉n-representable if and only if there exists a 〈⊕, ·,¬〉n-
polynomial expression f : [0, 1]n → [0, 1] and natural numbers k1, . . . , kn satisfying
k1 + · · · + kn = m, such that

p(E(ρ1 ⊗ . . .⊗ ρn)) = f (p(ρ1), . . . , p(ρn)),

where ρi is a density operator in (⊗kiC
2).

THEOREM 3.1. Let ρm be a density operator in ⊗m
C

2, ρn be a density operator
in ⊗n

C
2 and σ be a density operator in C

2. Then

p(T(m,n,1)(ρm ⊗ ρn ⊗ σ)) = (1 − p(σ))p(ρm)p(ρn)⊕ p(σ)(1 − p(ρm)p(ρn))

and T
(m,n,1) is 〈⊕, ·,¬〉3-representable by ¬z · x · y ⊕ z · ¬(x · y).
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Proof : We first prove that p(T(m,n,1)(ρm⊗ρn⊗P0)) = p(ρm)p(ρn). By Proposition
3.1 we have

p(T(m,n,1)(ρm ⊗ ρn ⊗ P0))= tr(P
(2m+n+1)
1 T

(m,n,1)(ρm ⊗ ρn ⊗ P0))

= tr(P
(2m+n+1)
1 (I (2

m+n+1)(ρm ⊗ ρn ⊗ P0)I
(2m+n+1)))

+ tr[P (2
m+n+1)

1 (P
(2m)
1 ⊗ P

(2n)
1 ⊗ (Not − I ))

(ρm ⊗ ρn ⊗ P0)(P
(2m)
1 ⊗ P

(2n)
1 ⊗ (Not − I ))].

On the one hand, it is not very hard to see that

tr(P
(2m+n+1)
1 (I (2

m+n+1)(ρm ⊗ ρn ⊗ P0)I
(2m+n+1))) = 0.

On the other hand,

tr[P (2
m+n+1)

1 (P
(2m)
1 ⊗ P

(2n)
1 ⊗ (Not − I ))(ρm ⊗ ρn ⊗ P0)(P

(2m)
1 ⊗ P

(2n)
1 ⊗ (Not − I ))]

= tr[(I (2m) ⊗ I (2
n) ⊗ P1)(P

(2m)
1 ρmP

(2m)
1 ⊗ P

(2n)
1 ρnP

(2n)
1 ⊗ ((Not − I )P0(Not − I )))]

= tr(P
(2m)
1 ρmP

(2m)
1 ) · tr(P

(2n)
1 ρnP

(2n)
1 ) · tr(P1(NotP0Not − P0)) = p(ρm) · p(ρn) · 1.

Thus, by Proposition 3.3,

p(T(m,n,1)(ρm ⊗ ρn ⊗ σ)) = (1 − p(σ))p(ρm)p(ρn)+ p(σ)(1 − p(ρm)p(ρn)).

Since 0 ≤ p(T(m,n,1)(ρm ⊗ ρn ⊗ σ)) ≤ 1, the sum (1 − p(σ))p(ρm)p(ρn)
+ p(σ)(1 − p(ρm)p(ρn)) is a Łukasiewicz sum. Therefore, we can write

p(T(m,n,1)(ρm ⊗ ρn ⊗ σ)) = ¬p(σ)p(ρm)p(ρn)⊕ p(σ)¬(p(ρm)p(ρn))

and T
(m,n,1) is 〈⊕, ·,¬〉3-representable by ¬z · x · y ⊕ z · ¬(x · y). �

REMARK 3.1. An immediate consequence of the above theorem is the fact
that T

(m,n,1)(− ⊗ − ⊗ P0) (as quantum operation L(⊗m+n
C

2) → L(⊗m+n+1
C

2)) is
〈⊕, ·,¬〉2-representable by the product t-norm x · y.

4. Toffoli gate and nonfactorized states

In the definition of Toffoli gate T (m,n,1), the ideal case in which inputs are in
a product of pure states |x〉 ⊗ |y〉 ⊗ |z〉 was considered. In this case, by Theorem
3.1, T

(m,n,1) can be described only using the language of PMV-algebras. However,
quantum systems continuously interact with environment, building up correlations.
Then, for a more realistic approach, we intend to consider the more general case
where the input of T

(m,n,1) could also be a mixed state ρ in ⊗m+n+1
C

2. In this way,
the 〈⊕, ·,¬〉3-representation of T

(m,n,1) given in Theorem 3.1 undergoes changes. In
this section we will study the 〈⊕, ·,¬〉3-representation of T

(m,n,1) in this general
case.
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PROPOSITION 4.1. Let ρ be a density operator in ⊗m+n
C

2 and let us consider
the representation ρ = ρm ⊗ ρn + M(ρ) given in Proposition 2.1. Then,

tr(T(m,n,1)p (M(ρ)⊗ P1)) = −tr(T(m,n,1)p (M(ρ)⊗ P0)).

Proof : By Proposition 2.1 and Theorem 3.1, we have

p(T(m,n,1)(ρ ⊗ P0) = p(ρm)p(ρn)+ tr(T(m,n,1)p (M(ρ)⊗ P0)),

p(T(m,n,1)(ρ ⊗ P1) = (1 − p(ρm)p(ρn))+ tr(T(m,n,1)p (M(ρ)⊗ P1)).

By Proposition 3.2, p(T(m,n,1)(ρ ⊗ P1)) = 1 − p(T(m,n,1)(ρ ⊗ P0)). Therefore,

−tr(T(m,n,1)p (M(ρ)⊗ P1)) = 1 − p(T(m,n,1)(ρ ⊗ P1))− p(ρm)p(ρn))

= p(T(m,n,1)(ρ ⊗ P0))− p(ρm)p(ρn))

= tr(T(m,n,1)p (M(ρ)⊗ P0)). �

PROPOSITION 4.2. Let ρ be a density operator in ⊗m+n+1
C

2. Let ρm+n and ρ2

be the reduced states of ρ on ⊗m+n
C

2 and C
2, respectively. Then

p(T(m,n,1)(ρ)) = p(T(m,n,1)(ρm+n ⊗ ρ2)).

Proof : By Proposition 2.1, let us consider the representation ρ = ρm+n ⊗ ρ2

+ M(ρ). We first prove that tr(T(m,n,1)p (M(ρ))) = 0. By Proposition 3.1 we have
that

T
(m,n,1)(M(ρ))= M(ρ)+ P

(2m)
1 ⊗ P

(2n)
1 ⊗ (Not − I )M(ρ)P

(2m)
1 ⊗ P

(2n)
1 ⊗ (Not − I ).

Then, by Proposition 2.2,

tr(T(m,n,1)p (M(ρ)))

= tr(P 2m+n+1

1 (P
(2m)
1 ⊗ P

(2n)
1 ⊗ (Not − I )M(ρ)P

(2m)
1 ⊗ P

(2n)
1 ⊗ (Not − I ))).

Note that

M(ρ) =
1

4

(m+n)2−1
∑

j=1

3
∑

k=1

Mj,k(ρ)(σ
a
j ⊗ σk),

where σk are the usual Pauli matrices. If k 6= 3, then diag(σ aj ⊗ σk) has the form

(0, 0 . . . , 0). Thus,

tr(P 2m+n+1

1 (P
(2m)
1 ⊗ P

(2n)
1 ⊗ (Not − I )σ aj ⊗ σkP

(2m)
1 ⊗ P

(2n)
1 ⊗ (Not − I ))) = 0.

Note that (Not − I )σ3(Not − I ) = 0. Then

0 = (P
(2m)
1 ⊗ P

(2n)
1 σ aj P

(2m)
1 ⊗ P

(2n)
1 )⊗ ((Not − I )σ3(Not − I ))

= (P
(2m)
1 ⊗ P

(2n)
1 ⊗ (Not − I ))(σ aj ⊗ σ3)(P

(2m)
1 ⊗ P

(2n)
1 ⊗ (Not − I )).
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Therefore,

tr(P 2m+n+1

1 (P
(2m)
1 ⊗ P

(2n)
1 ⊗ (Not − I )σ aj ⊗ σ3P

(2m)
1 ⊗ P

(2n)
1 ⊗ (Not − I ))) = 0.

It proves that

tr(T(m,n,1)p (M(ρ))) = 0.

Hence,

p(T(m,n,1)(ρ)) = p(T(m,n,1)(ρm+n ⊗ ρ2))+ tr(T(m,n,1)p (M(ρ))

= p(T(m,n,1)(ρm+n ⊗ ρ2))+ 0. �

The above proposition says that, if we want to calculate a probability value
p(T(m,n,1)(·)), then we can assume that the argument of T

(m,n,1) has the form
ρm+n⊗σ , where ρm+n is a density operator in ⊗m+n

C
2 and σ is a density operator

in C
2.

THEOREM 4.1. Let ρ be a density operator in ⊗m+n
C

2, ρm be the reduced state
of ρ on ⊗m

C
2 and ρn be the reduced state of ρ on ⊗n

C
2, respectively. Then

p(T(m,n,1)(ρ ⊗ σ))= p(T(m,n,1)(ρm ⊗ ρn ⊗ σ))

+ (1 − 2p(σ))tr(T(m,n,1)p (M(ρ)⊗ P0)).

Proof : By Proposition 2.1 we have

p(T(m,n,1)(ρ ⊗ σ)) = p(T(m,n,1)(ρm ⊗ ρn ⊗ σ))+ tr(T(m,n,1)p (M(ρ)⊗ σ).

By the same argument as used in the proof of Proposition 3.3 and taking into
account Proposition 4.1, we can see that

tr(T(m,n,1)p (M(ρ)⊗ σ)= (1 − p(σ))tr(T(m,n,1)p (M(ρ)⊗ P0))

+p(σ)tr(T(m,n,1)p (M(ρ)⊗ P1))

= (1 − p(σ))tr(T(m,n,1)p (M(ρ)⊗ P0))

−p(σ)tr(T(m,n,1)p (M(ρ)⊗ P0))

= (1 − 2p(σ))tr(T(m,n,1)p (M(ρ)⊗ P0)).

Hence, the theorem is proved. �

By Theorem 3.1, we have

p(T(m,n,1)(ρm ⊗ ρn ⊗ σ)) = (1 − p(σ))p(ρm)p(ρn)⊕ p(σ)(1 − p(ρm)p(ρn)).

Hence, the last theorem say that, if the input of T (m,n,1) has the form ρ ⊗ σ ,
then T

(m,n,1) preserves 〈⊕, ·,¬〉3-representation in terms of reduced states of ρ,
and further adds the term depending on tr(T(m,n,1)p (M(ρ)⊗ P0)). We shall refer to

p(T(m,n,1)(ρm ⊗ ρn ⊗ σ)) as the fuzzy component of T
(m,n,1)(ρ ⊗ σ). It is clear that,
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if σ is of the form σ =
[ 1

2
b∗

b 1
2

]

, then the term (1 − 2p(σ))tr(T(m,n,1)p (M(ρ)⊗P0))

does not fall into the fuzzy component of T
(m,n,1)(ρ ⊗ σ).

REMARK 4.1. Suppose that the input of T
(m,n,1) is a general density operator ρ

in ⊗m+n+1
C

2. Then p(T(m,n,1)(ρ)) can be easily described as follows.

Let us consider the reduced states of ρ, ρm+n on ⊗m+n
C

2 and ρ2 in C
2. By

Proposition 2.2-2, ρ2 has the form

ρ2 =





1 − p(ρ) b∗

b p(ρ)



 .

Hence, by Proposition 4.2 and Theorem 4.1,

p(T(m,n,1)(ρ)= p(T(m,n,1)(ρm+n ⊗ ρ2))

+ (1 − 2p(ρ))tr(T(m,n,1)p (M(ρm+n)⊗ P0))

= (1 − p(ρ))p(ρm)p(ρn)⊕ p(ρ)(1 − p(ρm)p(ρn))

+ (1 − 2p(ρ))tr(T(m,n,1)p (M(ρm+n)⊗ P0)),

where ρm and ρn are the reduced states of ρm+n on ⊗m
C

2 and ⊗n
C

2, respectively.

The rest of the section is devoted to the estimation of the terms that appear in
the expression of p(T(m,n,1)(−)).

DEFINITION 4.1. Let ρ = (ri,j )1≤i,j≤2m+n+1 be a density operator in ⊗m+n
C

2

divided in 2m× 2m blocks Ti,j where each of them is a 2n-square matrix. Then, the
(m, n)-Toffoli blocks of ρ are the diagonal blocks (Ti = Ti,i)1≤i≤2m of ρ. Moreover,
we introduce the following parameters:

βm,n(ρ) =
∑2m−1

j=1

∑2n−1−1
i=0 r(2i+1)+j2n , i.e. the sum of the odd diagonal elements

of the even (m, n)-Toffoli blocks T2i of ρ,

γm,n(ρ) =
∑2m−2

j=0

∑2n−1

i=1 r2i+j2n , the sum of the even diagonal elements of the

odd (m, n)-Toffoli blocks T2i+1 of ρ,

δm,n(ρ) =
∑2m−1

j=1

∑2n−1

i=1 r2i+j2n , the sum of the odd diagonal elements of the

odd (m, n)-Toffoli blocks T2i+1 of ρ.

PROPOSITION 4.3. Let us consider a density operator ρ in ⊗m+n
C

2 with m, n ≥ 1
and let ri be the i-th diagonal element of ρ. Then, we have that

p(T(m,n,1)(ρ ⊗ P0)) =
2m−1
∑

j=1

2n−1
∑

i=1

r(2j−1)2n+2i,

i.e. p(T(m,n,1)(ρ ⊗ P0)) is the sum of the even diagonal elements of the even
(m, n)-Toffoli blocks T2i of ρ.
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Proof : We first note that diag(ρ ⊗ P0) has the form

{|r1, 0, r2, 0, . . . r2n, 0
︸ ︷︷ ︸

A1

| . . . | r(α−1)2n+1, 0, . . . rα2n, 0
︸ ︷︷ ︸

Aα

| . . . | r(2m−1)2n+1, 0, . . . r2m+n, 0
︸ ︷︷ ︸

A2m

|}.

By Proposition 3.1, we have that the diagonal of T
(m,n,1)(ρ ⊗ P0) has the form

{|Ã1| . . . |Ãα| . . . |Ã2m |}, where Ãα = Aα if α is odd and, if α is even, then each

block Ãα takes the form

Ãα = r(α−1)2n+1, 0
︸ ︷︷ ︸

, 0, r(α−1)2n+2
︸ ︷︷ ︸

, r(α−1)2n+3, 0
︸ ︷︷ ︸

, . . . , r(α−1)2n+2n−1, 0
︸ ︷︷ ︸

, 0, rα2n
︸ ︷︷ ︸

.

Thus,

p(T(m,n,1)(ρ ⊗ P0))= tr(P
(2m+n+1)
1 (T(m,n,1)(ρ ⊗ P0)))

=
2m−1−1
∑

j=0

tr(P
(2n+1)
1 Ã2j+1)+

2m−1
∑

j=1

tr(P
(2n+1)
1 Ã2j )

= 0 +
2m−1
∑

j=1

tr(P
(2n+1)
1 Ã2j ).

If α is an even number, taking into account the form of Ãα, we have

that tr(P
(2n+1)
1 Ãα) =

∑2n−1

i=1 r(α−1)2n+2i . Hence, we have that p(T(m,n,1)(ρ ⊗ P0)) =
∑2m−1

j=1

∑2n−1

i=1 r(2j−1)2n+2i . �

PROPOSITION 4.4. Let ρ be a density operator in ⊗m+n
C

2. Let ρm be the
reduced state of ρ on ⊗m

C
2 and let ρn be the reduced state of ρ on ⊗n

C
2. Then,

1. p(ρm) = p(T(m,n,1)(ρ ⊗ P0))+ βm,n(ρ),
2. p(ρn) = p(T(m,n,1)(ρ ⊗ P0))+ γm,n(ρ),
3. tr(T(m,n,1)p (M(ρ)⊗ P0)) = p(T(m,n,1)(ρ ⊗ P0))δ

m,n(ρ)− βm,n(ρ)γm,n(ρ).

Proof : Let us consider the (m, n)−Toffoli blocks (Ti)1≤i≤2m of ρ.

1) By Lemma 2.2, we have that p(ρm) =
∑2m−1

i=1 tr(T2i). Note that this sum can
be seen as the sum of the even and odd elements of even Toffoli blocks. Then, by
Proposition 4.3 and Definition βm,n(ρ), follows our claim.

2) Follows by analogous arguments as used in 1).
3) Immediately follows from the items 1) and 2). �

5. Fuzzy component and nonfactorized states: two examples

By Proposition 4.4, we can see that, if the input of T
(m,n,1) is nonfactorized

then
1. the terms p(σ), p(ρm) and p(ρn) in the fuzzy component (1−p(σ))p(ρm)p(ρn)

⊕ p(σ)(1 − p(ρm)p(ρn)) are dependent one an another;
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2. the term tr(T(m,n,1)p (M(ρ)⊗ P0)) is in addition to the fuzzy component.
In this section we study these cases in two concrete examples.

5.1. Dependent variables in the fuzzy component of T
(1,1,1)

In this subsection we study the fuzzy component of T
(1,1,1) in the particular

case in which tr(T(1,1,1)p (M(−)⊗P0)) = 0. Let us consider the case T
(1,1,1)(ρ ⊗P0)

where ρ is a density operator in C
2 ⊗C

2. The (1, 1)-Toffoli blocks of ρ have the
general form

ρ =





T1

T2



 =











d

c

b

a











.

By Proposition 4.3, we have that p(T(1,1,1)(ρ ⊗ P0)) = a and, by Proposition 4.4,
tr(T(1,1,1)p (M(ρ)⊗ P0)) = ad − bc. Thus, if ad = bc, the quantity tr(T(1,1,1)p (M(ρ)⊗
P0)) = 0 and it has not any incidence in the fuzzy component of T

(1,1,1)(ρ ⊗ P0).
Let us assume that ad = bc. Then

p(T(1,1,1)(ρ ⊗ P0)) = p(ρα) · p(ρβ),
where ρα and ρβ are the reduced states of ρ. By Proposition 2.2, p(ρα) = b + a
and p(ρβ) = c + a. Therefore,

p(T(1,1,1)(ρ ⊗ P0)) = a = (a + b)(a + c). (1)

Note that Eq. (1) is equivalent to the two following conditions,

a + b + c + d = 1, ad = bc. (2)

It is not hard to see that

p(T(1,1,1)(ρ ⊗ P0)) = a =
(1 − b − c)±

√

(1 − b − c)2 − 4bc

2

where the two possible values of a depend on the choice of d in Eq. (2). More
precisely,

d = 1 −
(1 − b − c)±

√

(1 − b − c)2 − 4bc

2
− b − c.

Although the term tr(T(1,1,1)p (M(ρ)⊗ P0)) = 0, the fuzzy component of T
(m,n,1)

is

p(ρα)p(ρβ) =
(1 − b − c)±

√

(1 − b − c)2 − 4bc

2
.

Let us notice that, because of the nonfactorizablity of the imput state ρ, the quantities
p(ρα) and p(ρβ) dependent each other, and then the fuzzy component does not
faithfully correspond to the product t-norm.
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5.2. Constant fuzzy component: Werner states

The Werner states provide an interesting example because they maintain a constant

value of the fuzzy component of T
(2n,2n,1)(− ⊗ P0), regardless of the dimension of

the state and of the degree of entanglement (see Proposition 5.3-2). In this way, it
is possible to see the incidence of tr(T(m,n,1)p (M(−)⊗P0)) in the fuzzy component.

The Werner states, originally introduced in [25] for two particles to distinguish
between the classical correlation and the fullfilment of Bell inequality are interesting
for applications in quantum information theory. Examples of this are the entanglement
teleportation via Werner states [17], the study of deterministic purification [23], etc.

DEFINITION 5.1. Let us consider a Hilbert space H ⊗ H such that dimH = n.
A Werner state in H⊗H is a density operator ρ such that, for any n-dimensional
unitary operator U ,

ρ = (U ⊗ U)ρ(U † ⊗ U †).

We can express Werner states as a linear combination of the identity and SWAP
operators [14, § 6.4.3],

ρ = ρ(n
2)

w =
n+ 1 − 2w

n(n2 − 1)
I (n

2) −
n+ 1 − 2wn

n(n2 − 1)
SWAP(n

2), (3)

where w ∈ [0, 1] and SWAP(n
2) =

∑

i,j |ψi〉〈ψj | ⊗ |ψj 〉〈ψi | with |ψi〉 and |ψj 〉
vectors of the n-dimensional computational basis.

We first need to study some properties about the matrix representation of Werner
states.

PROPOSITION 5.1. Let us consider the Hilbert space H⊗H such that dim(H) = n.

Then SWAP(n
2) = (sk,l)1≤k,l≤n2 where

sk,l =
{

1, k = (j − 1)n+ i, l = (i − 1)n+ j, 1 ≤ j, i ≤ n,

0, otherwise.
.

Proof : Let |ψi〉1≤i≤n be vectors of the n-dimensional basis of H. Note that

SWAP(n
2)(|ψi〉 ⊗ |ψj 〉) = |ψj 〉 ⊗ |ψi〉. (4)

In fact,

SWAP(n
2)(|ψi〉 ⊗ |ψj 〉)=

(

∑

k,l

|ψk〉〈ψl| ⊗ |ψl〉〈ψk|
)

|ψi〉 ⊗ |ψj 〉

=
∑

k,l

|ψk〉〈ψl|ψi〉 ⊗ |ψl〉〈ψk|ψj 〉

= |ψj 〉 ⊗ |ψi〉.
Suppose that |ψi〉 and |ψj 〉 are the basis vectors in H such that their i-th and

the j -th entries are equal to 1, respectively. Note that the vector |ψi〉 ⊗ |ψj 〉 is
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a basis vector in H ⊗ H having 1 in the (i − 1)n + j -th entry, and by Eq. (4),

SWAP(n
2)(|ψi〉⊗ |ψj 〉) is the basis vector in H⊗H having 1 in the (j − 1)n+ i -th

entry. Thus, SWAP(n
2) moves the 1 from the (i−1)n+j -th entry to the (j−1)n+ i

-th entry, and leaves the other entries unchanged. Hence, our claim follows. �

PROPOSITION 5.2. Let us consider a Werner state ρ(n
2)

w = (rk,l)1≤k,l≤n2 . Then

rk,l =











































H =
2w

n(n+1)
, k = l = (j−1)n+j, 1 ≤ j ≤ n,

J =
n+1−2w

n(n2−1)
, k = l 6= (j−1)n+j, 1 ≤ j ≤ n,

Q =
2nw−n−1

n(n2−1)
, k 6= l, k = (j−1)n+i, l = (i−1)n+j, 1 ≤ j, i ≤ n,

0 otherwise

In particular, the diagonal of ρ(n
2)

w has the following form

diag(ρ(n
2)

w )

= {(H, J, . . . , J ), (J
︸ ︷︷ ︸

n

, H, J, . . . , J ), (J, J
︸ ︷︷ ︸

n

, H, J, . . . , J ), . . . , J, (J . . . , J
︸ ︷︷ ︸

n

, H)}.

Proof : It immediately follows from Proposition 5.1 and Eq. (3). �

PROPOSITION 5.3. Let us consider a Werner state ρ(2
2n)

w in ⊗n+n
C

2. Then

1. p(T(2
n,2n,1)(ρ(2

2n)
w ⊗ P0)) =

22n + 2n(2w − 1)− 2

4(22n − 1)
,

2. p(ρ(2
2n)

w n) =
1

2
where ρ(2

2n)
w n is the reduced state of ρ(2

2n)
w on ⊗n

C
2,

3. tr(T(2
n,2n,1)

p (M(ρ(2
2n)

w )⊗ P0)) = w2n+1 − 2n − 1/4(22n − 1).

Proof : By considering the (2n, 2n)-Toffoli blocks of ρ(2
2n)

w and by Proposition
5.2, we have that

diag(ρ(2
2n)

w )

= {(H, J, . . . , J ), (J
︸ ︷︷ ︸

2n

, H, J, . . . , J ), (J, J
︸ ︷︷ ︸

2n

, H, J, . . . , J ), . . . , J, (J . . . , J
︸ ︷︷ ︸

2n

, H)},

where each j -th 2n-tuple is the diagonal of the Toffoli block Tj . It is easy to see

that the j -th 2n-tuple of diag(ρ(2
2n)

w ) contains one and only one H in the j -th
entry and J in all other entries. Moreover, H can be found in an even entry of
every even j -th 2n-tuple (j = 2t) and in an odd entry of every odd j -th 2n-tuple
(j = 2t − 1).
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1) The number of even 2n-tuple is 2n−1. Each of them has one H in even
entries and 2n−1 − 1 occurrences of J in the rest of the even entries. Therefore, by
Proposition 4.3,

p(T(2
n,2n,1)(ρ(2

2n)
w ⊗ P0)) = 2n−1[H + (2n−1 − 1)J ] =

22n + 2n(2w − 1)− 2

4(22n − 1)
.

2) We first prove that

β(2
n,2n)(ρ(2

2n)
w ) = γ (2

n,2n)(ρ(2
2n)

w ) =
22n + 2n − 2n+1w

4(22n − 1)
.

Each odd 2n-tuple has J in all odd entries, since we have 2n−1 odd 2n-tuple

β(2
n,2n)(ρ(2

2n)
w ) = 22(n−1)J = 22(n−1) 2

n + 1 − 2w

2n(22n − 1)
=

22n + 2n − 2n+1w

4(22n − 1)
.

With the same argument we can prove that γ (2
n,2n)(ρ(2

2n)
w ) = 22(n−1)J . Hence, by

Proposition 4.4,

p(ρ(2
2n)

w n) = p(T(2
n,2n,1)(ρ(2

2n)
w ⊗ P0))+ β(2

n,2n)(ρ(2
2n)

w )

=
22n + 2n(2w − 1)− 2

4(22n − 1)
+

22n + 2n − 2n+1w

4(22n − 1)
=

1

2
.

3) Immediate from the items 1 and 2. �

The fuzzy component of T
(2n,2n,1)(ρ(2

2n)
w ⊗ P0) is 1

2
· 1

2
= 1

4
. Therefore,

p(T(2
n,2n,1)(ρ(2

2n)
w ⊗ P0)) =

1

4
+
w2n+1 − 2n − 1

4(22n − 1)
.

Note that, w =
2n + 1

2n+1
iff

w2n+1 − 2n − 1

4(22n − 1)
= 0 iff ρ(2

2n)
w =

1

22n
I (2

2n) i.e. the Werner

state is factorized.
Fig. 1 allows us to see the incidence of tr(T(2

n,2n,1)
p (M(ρ(2

2n)
w ) ⊗ P0)) on

p(T(2
n,2n,1)(ρ(2

2n)
w ⊗ P0)) for w ∈ [0, 1] and n = 1, 2, 3. When the dimension

of the space ⊗n+n
C

2 is large enough, the incidence of tr(T(2
n,2n,1)

p (M(ρ(2
2n)

w )⊗P0))

on p(T(2
n,2n,1)(ρ(2

2n)
w ⊗ P0)) tends to disappear and p(T(2

n,2n,1)(ρ(2
2n)

w ⊗ P0)) ≈ 1
4
,

which is the fuzzy component.

6. Conclusions

In this paper we have introduced and studied a probabilistic type representation
for the Toffoli gate. This representation establishes a relation between the mentioned
gate and two continuous t-norms: Łukasiewicz and product t-norms. An algebraic
structure that jointly encodes these t-norms is known as PMV-algebra. In this way,
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Fig. 1. Fuzzy component vs. incidence of tr(T
(2n,2n,1)
p (M(ρ

(22n)
w )⊗ P0)).

we can mathematically represent ensemble of Toffoli gates by using term operation
in a PMV-algebra.

However, this representation is interesting not only for its relation with PMV-
algebras. In fact, Łukasiewicz and product t-norms are also known for their relations
with game theory applied to the theory of communication with feedback. For
example, the Łukasiewicz t-norm is related to Ulam’s games [20] and the product
t-norm is specially applied in fuzzy control [5] and allows us to model a probabilistic
variant of Ulam’s game: the so-called Pelc’s game [18]. It could also suggest further
developments as possible applications to the study of error-correcting codes in the
context of quantum computation.
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