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ABSTRACT

We show that it appears possible for starburst galaxies, like the nearby NGC 253, recently identified as a TeV
source by the CANGAROO collaboration, to emit a significant amount of high-energyg-rays and neutrinos
through hadronic processes in their cores. We suggest that proton illumination of the inner winds of massive
stars can be a viable mechanism for producing TeVg-rays and neutrinos without a strong MeV–GeV counterpart.
The rich stellar content of the starbursts, with millions of early-type stars concentrated in the central regions,
where collective effects of the stellar winds and supernovae can produce a significant enhancement of the cosmic-
ray density, provides an adequate scenario for TeVg-ray generation. Close starbursts are also found to be potential
sources for kilometer-scale neutrino telescopes, like IceCube, within reasonable integration times.

Subject headings: galaxies: individual (NGC 253) — galaxies: starburst — gamma rays: observations —
gamma rays: theory

1. INTRODUCTION

Very recently, the CANGAROO collaboration reported the
detection of the nearby starburst galaxy NGC 253 at TeVg-ray
energies (Itoh et al. 2002). The purpose of this Letter is to show
that it is possible for starburst galaxies, like NGC 253, to produce
TeV photons and neutrinos through hadronic processes.

2. A PLAUSIBLE SCENARIO

Collective effects of strong stellar winds and supernova ex-
plosions in star-forming regions are expected to result in particle
acceleration up to multi-TeV energies, or even beyond (e.g.,
Montmerle 1979; Casse´ & Paul 1980; Bykov & Fleishman
1992a, 1992b; Anchordoqui, Romero, & Combi 1999; Bykov
2001). Recently, the region cospatial with the Cyg OB2 asso-
ciation has been detected as a TeVg-ray source by the High
Energy Gamma Ray Astronomy telescope array (Aharonian et
al. 2002). TeV cosmic rays (CRs) accelerated in the association
might be responsible for the high-energyg-ray emission through
the hadronic illumination of some suitable target (Butt et al.
2003). A nearby EGRET source (3EG J2033�4118) has also a
likely stellar origin (Chen, White, & Bertsch 1996; Romero,
Benaglia, & Torres 1999; Benaglia et al. 2001).

In a starburst, where the ambient density of CRs is enhanced
by a local high rate of supernova explosions and the collective
effects of strong stellar winds (e.g., Bykov 2001),g-rays can
be produced by interactions of relativistic protons with the rich
interstellar medium. This interaction produces neutral pions that
quickly decay intog-rays. The latter can also be produced by
leptonic processes, like inverse Compton interactions with the
strong far-infrared (FIR) field, and relativistic bremsstrahlung
in the ambient gas. All these processes have been modeled with
a set of reasonable parameters for NGC 253 by Paglione et al.
(1996). The expected totalg-ray flux, however, is below the
EGRET sensitivity limit, in accordance with the nondetection
of the galaxy in the MeV–GeV range (Bhattacharya et al. 1994;
Blom, Paglione, & Carramin˜ana 1999).

A source ofg-rays not previously considered in the men-
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tioned analysis is the production at the base of the strong stellar
winds of early-type stars. When the relativistic particles are
accelerated in the stellar wind itself, for instance, through mul-
tiple shocks produced by line-driven instabilities (e.g., White
& Chen 1992), theg-ray flux from pion decays is limited to
MeV energies. However, if the star is immersed in an external
bath of relativistic particles accelerated at larger scales, e.g.,
in the core of the starburst, TeV protons can penetrate the base
of the wind to produce TeVg-rays. The injection of MeV–GeV
particles into the wind of the stars will be strongly attenuated
by the modulation effects of the wind itself.

The dense medium in which theseg-rays are produced is,
nonetheless, transparent tog-ray propagation. The optical depth
to pair production is , wheren is the photon numbert ∼ njR
density,j is the photon-photon cross section, andR is the distance
that the photon must travel to escape. In order to computen, we
need the photon energy density at the base of the stellar wind,
U. We shall assume that target photons in the wind have typical
energies of∼1 eV. Then, eV cm�3,2 10U p 3L/(4pR c) ∼ 2 # 10
where we have taken, for order-of-magnitude estimates, the fol-
lowing typical values: cm and ergs s�1.14 39R ∼ 5 # 10 L ∼ 10
Then, , and the optical depth is very small,n p U/(1 eV) t ∼

. The computation oft makes use of theg-g (1 TeV–�52 # 10
1 eV) cross section, cm2 (Lang 1999, p. 434).�30j ∼ 2 # 10
Once TeV photons are produced and escape from the wind re-
gion, they must yet leave the galaxy to reach the Earth. The
starburst has an FIR field with eV cm�3 (e.g., PaglioneU ∼ 200
et al. 1996), and photons have to travel distances of about 70–
100 pc to leave the active region of the galaxy. The optical depth
is, in this case, photons cm�3)( cm2) #�30t p (200 2# 10
(100 pc , which is also small enough to secure�7) ≈ 1.2# 10
that photons can escape from the galaxy.

3. NGC 253

NGC 253 has been described as an archetypal starburst galaxy
by Rieke et al. (1980), and it has been extensively studied from
radio tog-rays (e.g., Beck et al. 1994; Paglione et al. 1996; Ptak
et al. 1997). The supernova rate is estimated to be as high as
0.2–0.3 yr�1, comparable to the massive star formation rate,
∼ yr�1 (Ulvestad & Antonucci 1997; Forbes et al. 1993).0.1M,

The central region of this starburst is packed with massive stars.
Watson et al. (1996) have discovered four young globular clusters
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near the center of NGC 253; they alone can account for a mass
well in excess of (see also Keto et al. 1999).61.5# 10 M,

Assuming that the star formation rate has been continuous in the
central region for the last 109 yr, and a Salpeter initial mass
function for , Watson et al. (1996) find that the0.08–100M,

bolometric luminosity of NGC 253 is consistent with 1.5#
of young stars. Based on this evidence, it appears likely810 M,

that there are at least tens of millions of young stars in the central
region of the starburst. Many stars might be obscured by the
large amount of molecular material, as in the case of the massive
Galactic cluster Westerlund 1 (Clark & Negueruela 2002).

Physical, morphological, and kinematic evidence for the ex-
istence of a galactic superwind has been found for NGC 253
(e.g., McCarthy, Heckman, & van Breugel 1987; Heckman,
Armus, & Miley 1990). This superwind creates a cavity of hot
(∼108 K) gas, with cooling times longer than the typical ex-
pansion timescales. As the cavity expands, a strong shock front
is formed on the contact surface with the cool interstellar me-
dium. The shock velocity can reach thousands of kilometers
per second, and iron nuclei can be efficiently accelerated up
to high energies∼1020 eV by diffusive mechanisms operating
at large scales. Indeed, NGC 253 has been proposed as the
origin for some of the observed ultra–high-energy CRs (An-
chordoqui et al. 1999; Anchordoqui, Goldberg, & Torres 2002).

The CANGAROO collaboration did not give a precise photon
spectrum for NGC 253. The reported data were only the inte-
grated flux above 0.5 TeV (securing an 11j confidence detection)
and the possible range of power-law indices , 3.75)G p (1.85
(Itoh et al. 2002). We can summarize these results expressing
the differential photon spectrum as TeV)�GF (E ) p B(E /1g g g

cm�2 s�1 TeV�1, where for ,�12B p (3.8� 1.2)# 10 G p 1.8
or for . It is worth noticing�12B p (3.2� 1.0)# 10 G p 3.75
that the direct extrapolation of the spectrum at TeV energies
down to the GeV band would yield an integrated value com-
patible with the EGRET upper limits for NGC 253 only for
power-law indices . Spectra softer than those withG � 2 G p

at TeV energies should present a break at a few hundred GeV.2

4. HADRONIC ORIGIN OF THE TeV EMISSION FROM NGC 253?

The differentialg-ray photon number distribution from neu-
tral pion decays at the source is given by (e.g., Gaisser 1990)

Here is the pho-(a)N (E ) p N (E )y 4pj (E )N2Z /a. E0g g p g A pp g p r p g

ton energy, is the column density, is the protonN p S/m mp p

mass, anda is the proton spectral index, such thatN pp

. In addition, is a correction factor that takes�aK E y ∼ 1.5p A

into account possible effects of heavier nuclei,j (E ) ∼pp g

35 mbarn is the hadronic interaction cross section, and
stands for the fraction of kinetic energy of the(a)Z ∼ 0.170p r p

parent proton that is transferred to the neutral pion during the
collision. For a photon/proton spectral index , wea ∼ 2
get cm�3 TeV�1 (notice that�25 �2N (E ) p 1.12# 10 K Eg g p g

TeV). Assuming typical grammages for the stellar1 erg∼ 1
winds of OB stars in the range g cm�2 (e.g., WhiteS ∼ 50–150
1985), we get cm�3 TeV�1. The�2N (E ) p (3.4–10.1)K Eg g p g

luminosity in the CANGAROO observing range is

∼20 TeV

2L p 4pR c N (E )E dE� g g g g

∼0.5 TeV

12 2 �1p (4.7–13.9)# 10 R K ergs s , (1)p

whereR is the size of the base of the wind andc is the speed

of light (all numerical coefficients are for cgs units). The CR
energy density is, on the other hand,

∼20 TeV

�1q p N (E )E dE p 9.9K ergs s { �q ,CR � p p p p p CR,,
∼1 GeV

(2)

where� is the amplification factor of the CR energy density
with respect to the local value, ergs cm�3. This�12q ∼ 10CR,,

implies that the TeV luminosity can be written asL p
ergs s�1. The latter corresponds to the luminosity2(0.47–1.4)R �

of a single star illuminated by TeV CR protons. In the central
region of the starburst, millions of stars could be illuminated
at the same time. The total luminosity would then be

where is the number
N∗ 2 �1L p � (0.47–1.4)R � ergs s , Ntotal i i ∗ip1

of contributing stars and we have allowed for the possibility
that not all of them will have the sameR, nor will they be
located within regions having the same CR enhancement factor.

If we now assume the following ranges for the different
parameters involved— (Lamers12 151 # 10 ! R(cm) ! 1 # 10
& Cassinalli 1999), (Suchkov, Allen, & Heck-300! � ! 3000
man 1993), and (see above)—there is am-6 710 ! N ! 5 # 10∗
ple room for the total luminosity to reach values above 1039

ergs s�1, i.e., the observed CANGAROO luminosity above
0.5 TeV, given the distance to NGC 253 (2.5 Mpc; de Vaucou-
leurs 1978). To show this, we have carried out Monte Carlo
numerical simulations where the number of stars illuminated by
the accelerated protons, the grammage, the size of the base of
the wind for each star, and the ambient enhancement of CRs are
independently allowed to take values within their assumed
ranges. For each of these cases, the total luminosity was com-
puted. We show the results in Figure 1a, for a sample of 1000
trials. Only for less than 40% of the trials, the total luminosity
is below 1039 ergs s�1. This scenario then appears to be a plausible
explanation for the TeV observations of NGC 253.

Note that multi-TeV electrons in the starburst central region
will experience inverse Compton losses with the FIR fields
(typical energy density∼200 eV cm�3) in the Klein-Nishina
regime, which result in a very steepg-ray spectrum (that can
be approximated by power-law indices�3.2, although notice
that the actual spectrum is not a pure power law; see, e.g.,
Georganopoulos, Kirk, & Mastichiadis 2001). The total lep-
tonic contribution from the central starburst region at TeV en-
ergies is then negligible in comparison to the hadronic one.

MeV–GeV particles cannot easily penetrate the stellar winds,
and hence these winds will glow mainly at TeV energies. The
modulation of CRs by stellar winds is a complex subject that
has been studied in detail only in the context of the relatively
weak solar wind. In such case, three-dimensional models in-
cluding diffusion and the effects of the terminal shocks have
been developed (e.g., Ko´ta & Jokipii 1983; Jokipii, Kóta, &
Merényi 1993). These models can explain fairly well the basic
observed features of the nucleonic CR component in the solar
system, where strong gradients in the CR density are known to
exist from interplanetary spacecraft measurements (e.g., Quenby,
Lockwood, & Webber 1990).3 In OB stars, with extremely su-
personic winds and mass-loss rates orders of magnitude higher
than the solar values, these effects should be far more pro-

3 Although it is highly dependent on the solar activity and the inclination angle
of the incident particles, the proton flux decreases to less than∼30% of its initial
value at 80 AU for 2.5 GeV particles and to less than∼10% for 250 MeV
particles.
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Fig. 1a Fig. 1b

Fig. 1.—(a) Results of 1000 Monte Carlo trials to compute the total TeV luminosity of a starburst lying at the distance of NGC 253. (b) Hadronic model
expectation of neutrinos from NGC 253 compared with the upper limit for the neutrino background in a generation neutrino telescope.1� # 1�

nounced, leading to an almost complete rejection of externally
injected MeV–GeV particles at the base of the winds and thus
to an absence of a strong (above EGRET sensibility)g-ray coun-
terpart at these energies. The modulation effect depends on the
parameter , whereu is the stellar wind velocity,e ∼ uR /D Rw w

is the radius of the wind shell, andD is the diffusion coefficient.
The parametere measures the ratio between the diffusive time-
scale of the particle to their convective timescale. The former
should be shorter than the latter for a TeV particle to enter into
the wind cavity. For a typical O star, pc andR 1 10 u ∼w

km s�1. Hence, the diffusion coefficient of the TeV particles2500
should be at least 1028 cm2 s�1, similar to what is estimated for
our Galaxy (e.g., Berezinskii et al. 1990).

5. NEUTRINO SIGNAL

If the g-ray emission is explained by the decay of neutral
pions, their charged counterparts must produce a neutrino flux.
Following Alvarez-Muñiz & Halzen (2002), the neutrino¯n � nm m

flux produced by the decay of charged pions in the sourceF (E )n n

can be derived from the observedg-ray flux by imposingF (E )g g

energy conservation (see also Stecker 1979):

max maxE Eg n

E F (E )dE p K E F (E )dE . (3)� g g g g � n n n n
min minE Eg n

Here ( ) is the minimum (maximum) energy of themin maxE Eg(n) g(n)

photons (neutrinos) and the prefactor .4 The maximumK p 1

4 Note that there are two muon-neutrinos (out of the pion-to-muon-to-electron
decay chain) for every photon produced. Each of the latter carries, on average,
an energy , whereas each photon carries on average half the energy of theE /4p

pion. Therefore, there is as much energy in photons as there is in neutrinos, and
.K p 1

neutrino energy is fixed by the maximum energy of the ac-
celerated protons ( ), which can in turn be obtained frommaxEp

the maximum observedg-ray energy ( ) as ,max max maxE E ∼ 6Eg p g

(Alvarez-Muñiz & Halzen 2002). The mini-max maxE ∼ 1/12En p

mum neutrino energy is fixed by the threshold for pion pro-
duction, , whered is themin 2 2E p d [(2m � m ) � 2m ] /2mp p p p p

Lorentz factor of the accelerator relative to the observer. As-
suming a Lorentz factor of order 1, then-spectrum results
in TeV�1 cm�2 s�1 for the�12 �1.85F (E ) ∼ 4.2# 10 (E/TeV)n n

harder photon index and �13 �3.75F (E ) ∼ 9.5# 10 (E/TeV)n n

TeV�1 cm�2 s�1 for the softer photon index.
The event rate of atmosphericn-background is (see An-

chordoqui et al. 2003)

dN dFBp A dE P (E )DQ , (4)eff � n n r m n 1�#1�F Fdt dEB n

where is the effective area of the detector,A DQ ≈eff 1�#1�

sr is an assumed bin size for the observation�43 # 10
(IceCube-generation detector; Karle et al. 2002), and

GeV�1 cm�2 s�1 sr�1 is the�3.21 ¯dF /dE � 0.2(E /GeV) n � nB n n m m

atmospheric n-flux (Volkova 1980; Lipari 1993). Here
denotes the probability that a�6 0.8P (E ) ≈ 1.3# 10 (E /TeV)n r m n n

n of energy , on a trajectory through the detector,E 1 1 TeVn

produces a muon (Gaisser, Halzen, & Stanev 1995). On the other
hand, then-signal is

dN
p A dE F (E )P (E ). (5)eff � n n n n r m nF Fdt S

The signal-to-noise ratio (S/N) in the 1–20 TeV band is then
for 1 yr of operation, de-1/2(FdN/dtF )/(FdN/dtF ) p 0.1–2.5S B

pending on the photon spectral index. A NEMO-generation
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detector, with a bin size (Riccobene et al.DQ ∼ 0�.3# 0�.3
2002), would have an S/N roughly 3 times larger for the same
integration time. The effect of neutrino oscillations may reduce
the flux by a factor of 3 at Earth (Bilenky, Giunti, & Grimus
1999). However, for some possible values of the photon spectral
index, this signal could be detected in a reasonable time span.
The possible starburst neutrino spectra producing the previ-
ously quoted S/N are plotted, together with an upper limit for
the atmospheric neutrino background with vertical incidence,
in Figure 1b.5

6. CONCLUDING REMARKS

Through hadronic interactions in their central regions, nearby
starburst galaxies can generate high-energyg-ray emission de-
tectable at Earth. Proton illumination of the inner winds of
massive stars in a high-density CR environment may result in
TeV sources without strong counterparts at MeV–GeV ener-
gies. The high number of early-type stars with strong stellar
winds in this kind of galaxy might produce a strong collective
effect, providing the setting for accelerating protons up to multi-
TeV energies. In addition, we have found that starbursts might
also be potential sources for kilometer-scale neutrino telescopes
within reasonable integration times, depending on the photon
spectral index. The detection—or nondetection—of the neu-
trino signal may be an essential piece of evidence in the de-
termination of the origin of the high-energy radiation.

Gamma-rays from neutral pion decays will be produced not

5 Regrettably, the South Pole location of the IceCube telescope would render
its observation of NGC 253 nearly impossible; only neutrinos going through
Earth can be identified. The smaller northern telescope ANTARES (0.1 km2;
Becherini et al. 2002) would need much longer integration times to be able
to distinguish NGC 253 from the background, if at all possible. Nevertheless,
the analysis presented here can be directly applied to M82, a northern sky
starburst at the same distance as NGC 253.

only in the stellar winds at the core of the starburst but also
in the diffuse matter among the stars. If we model the starburst
region as a disk with a radius of∼300 pc and a thickness of
∼70 pc, where the average density of H atoms in the diffuse
interstellar medium is∼300 cm�3 (Paglione et al. 1996), we
get that the expected flux above 1 TeV isF(E 1 1 TeV) �

photons cm�2 s�1, for an average CR enhancement�133.9# 10
of (see Torres et al. 2002 for details of calculation).� ∼ 1000
This means an additional diffuse contribution of∼ 383 # 10
ergs s�1 to the total TeVg-ray luminosity of the starburst. In
most of our models, this diffuse contribution is only a small
fraction of the totalp0-decayg-ray emission, which is domi-
nated by interactions occurring in the stellar winds.

Finally, it is important to remember that the CANGAROO
observations are consistent with an extended source, whose
size might be even bigger than the galaxy itself. If this is true,
it would imply that there might be another component gen-
erating TeV radiation, related with the Galactic halo. This com-
ponent might probably be the result of inverse Compton scat-
tering of cosmic-ray background photons by TeV electrons
accelerated at the superwind. In such case, since the interactions
occur in the Thomson regime, the spectrum should be harder
than that produced by hadrons in the center of the starburst.
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