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a b s t r a c t

We study the behavior of lift-and-project procedures for solving combinatorial optimiza-
tion problems as described by Lovász and Schrijver (1991) [6] in the context of the stable
set problem on graphs. Following thework ofWolsey (1976) [10], Lipták and Lovász (2001)
[4] and Lipták and Tunçel (2003) [5], we investigate how to generate facets of the relax-
ations obtained by these procedures from facets of the relaxations of the original graph,
after applying fundamental graph operations. We show our findings for the odd and the
star subdivision, the stretching of a node and a new operation defined herein called the
clique subdivision of an edge.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In a seminal paper, Lovász and Schrijver [6] introduced two lift-and-project operators, N0 and N , with which – starting
from a (convex) polytope K ⊂ [0, 1]n – we may construct a sequence of polytopes yielding in at most n steps the convex
hull of the integer points in K, K I = conv(K ∩ {0, 1}n). (They introduced also a third operator, N+, which generally does
not yield a polyhedron and the results in this paper may not apply.)

In what follows, we denote by N♯ either operator, N or N0, and define N0
♯(K) = K and Nk

♯(K) = N♯(Nk−1
♯ (K)) for every

integer k ≥ 1 (we refer the reader to Section 2 for further basic definitions and notation).
We always have K I ⊂ Nk+1

♯ (K) ⊂ Nk
♯(K) for any k, and N(K) ⊂ N0(K), although Nn(K) = Nn

0 (K) = K .
This brings up the idea of the N♯-rank or index of the convex set K, r♯(K), defined as the smallest k for which Nk

♯(K) =

K I . Thus, r(K) ≤ r0(K) ≤ n.
A particularly interesting case is when K I = STAB(G), the stable set polytope of a simple graph G = (V , E), and

K = FRAC(G), the fractional stable set polytope. Since we will mostly use FRAC(G) as the initial relaxation, for simplicity
we write Nk

♯(G) = Nk
♯(FRAC(G)).

Lovász and Schrijver pointed out that STAB(G) = FRAC(G) if and only if G is bipartite, whereas N(G) = N0(G) =

CSTAB(G), the polytope defined by the trivial, edge and odd cycle inequalities,
u∈C

xu ≤
1
2

(|C | − 1) for all odd cycles C .

Thus, for bipartite graphs we have r♯(G) = 0, and in general, r♯(G) ≤ |V | − 2, with equality attained if G = Kn, the
complete graph on n vertices. Many other properties are shown in [6].
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Fig. 1.1. The Au and Tunçel graph (AT-graph).

Fig. 1.2. Graphs where the operators differ at the second iteration and coincide (G1) or not (G2) at the third, reaching STAB(G) at the fourth.

Several questions naturally arise from the fact that N♯(G) = CSTAB(G). For example, are there simple characterizations
of Nk

0(G) or Nk(G) for k ≥ 2? Is it always the case that Nk
0(G) = Nk(G)? Or, at least, is it r0(G) = r(G) for all G?

The last two questions were raised by Lipták and Tunçel [5], who were among the first to study the ranks of N♯(G), and
introduced two conjectures: the N −N0 conjecture, stating that Nk

0(G) = Nk(G) for all k, and the rank conjecture, stating that
r0(G) = r(G).

The N − N0 conjecture was shown to be false by Au and Tunçel [1], by giving an example of a graph with 7 nodes and 14
edges for which r(G) = r0(G) = 3 and N2(G) ≠ N2

0 (G). This graph – which we will call the AT-graph – is shown in Fig. 1.1.
They also showed that adding a suitable edge yields a perfect graph with the same properties.

Another counter-example to the N − N0 conjecture is given by the web graph W 2
8 , having 8 nodes and 16 edges (u is

adjacent to v if |u − v| ∈ {1, 2}, where the difference is taken modulo 8). As with the AT-graph, for G = W 2
8 we have

r(G) = r0(G) = 3 and N2(G) ≠ N2
0 (G) (it can be seen that x =

1
5 (1, 1, 1, 2, 1, 1, 2, 2) ∈ N2

0 (G) \ N2(G)). Unlike the
AT-graph,W 2

8 is planar.
Obviously, the N − N0 conjecture holds for graphs G with r0(G) ≤ 2, which includes bipartite graphs (r0(G) = 0) and

t-perfect graphs (defined by STAB(G) = CSTAB(G)), and in particular, series–parallel graphs. It also holds for the complete
graphs. Nevertheless, as seen by the previous examples, neither perfect graphs nor planar graphs are properly contained in
the family of graphs for which the N − N0 conjecture is true.

On the other hand, the rank conjecture remains unsettled. It holds for perfect graphs (for which STAB(G) = QSTAB(G),
the clique polytope associated with G), h-perfect graphs (defined by STAB(G) = QSTAB(G) ∩ CSTAB(G)), and many other
graphs (see, e.g., [1,5]).

Thus, it is important to extend the known families of graphs for which either conjecture holds: in these cases we would
not need to study Nk(G), and just consider Nk

0(G), which in a sense is ‘‘easier’’ since it can be obtained as


j Pj(N
k−1
0 (G)),

where Pj denotes the Balas et al. lift-and-project operator defined by Pj(K) = conv

(K ∩{x : xj = 0})∪ (K ∩{x : xj = 1})


(see [2,6]).

A normal technique for studying theN+,N andN0 ranks is to bound themby the disjunctive rank associated to the operator
Pj. Still, the disjunctive rank may be strictly greater than the N and N0 ranks, as shown by the web W 2

7 , having N♯-rank 2
but disjunctive rank 3. Of course, the N+-rank may be strictly smaller than either the N or N0 ranks: for n > 3 we have
r♯(Kn) = n − 2 whereas r+(Kn) = 1 [6].

The complexity of the study is illustrated by the fact that we could have N2(G) ≠ N2
0 (G), r(G) = r0(G) = 4 and either

N3(G) equal to or different from N3
0 (G) (respective examples are given by the graphs G1 and G2 of Fig. 1.2). That is, the

operators may differ at some step but be equal later (and before reaching STAB(G)).
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Fig. 1.3. A graph whose full support facets have different ranks.

Also, although Nk(G) ⊂ Nk
0(G) always, it is the case that sometimes all the facets of Nk

0(G) are facets of Nk(G) as for the
AT-graph andW 2

8 , and sometimes this is not true.
One approach to these studies is to compare the N♯-ranks of just the facets of STAB(G), and in particular to consider only

those with full support. In this regard, it is interesting to notice that the rank (N or N0) of a facet with full support need not
be equal to the rank of G. For example,

x1 + x2 + x3 + x4 + x5 + 2x6 + x7 + x8 + x9 ≤ 3,
x1 + 2x2 + 2x3 + x4 + 2x5 + 3x6 + x7 + x8 + x9 ≤ 4,

are two of the facets of the stable set polytope of the graph in Fig. 1.3 (a variant of the AT-graph), the first one has N♯-rank
2 and the last one has N♯-rank 3.

Yet another common technique – which we follow here – is to consider different operations on a graph and study how
these operations influence the behavior of the N and N0 operators.

For instance, the AT-graph may be obtained from the wheel W5 (a center node joined to every node in the cycle C5) by
replicating one of the rim nodes. It is easy to see that r♯(W5) = 2, and by replicating the node the N♯-rank has increased
by 1. For general G, if we replicate a node in G to obtain G′, the facets of STAB(G′) are completely characterized in terms of
those of STAB(G), and r♯(G) ≤ r♯(G′) ≤ r♯(G) + 1, but either inequality could be strict.

Another important operation is the (complete) join of the disjoint graphs G1 = (V1, E1) and G2 = (V2, E2) to obtain
G = (V , E) with V = V1 ∪ V2 and e ∈ E if either e ∈ E1, or e ∈ E2, or e = [v1, v2] with vi ∈ Vi and i ∈ {1, 2}. To wit, we
could think of the AT-graph as the join of the center with the 6 rim nodes. For general G, the non-trivial facets of STAB(G)
are precisely those obtained by combining the non-trivial facets of STAB(Gi). As in the case of the replication of nodes, this
simplicity does not carry over to the behavior of the ranks: r♯(G) ≥ max {r♯(G1), r♯(G2)} but we could have strict inequality
(as in the AT-graph case) or equality (e.g., by completely joining the graph in Fig. 1.3 with one node). Even more, r♯(G) may
be as large as r♯(G1) + r♯(G2) + 2, as seen by taking G1 and G2 to be complete graphs.

When G is obtained by replication of a node or the join of two graphs, the facets of STAB(G) are completely characterized,
but there are many operations for which some facets of STAB(G) may be obtained from those of the original graph (see,
e.g., [9,8,10,3,11]).

With a view tounderstanding the Lipták andTunçel conjectures, hereweextend theirwork on theN♯-ranks of FRAC(G)by
studying the relationship between the facets ofNk

♯(G) and those of its induced subgraphs. After reviewing some notation and
some elementary results, in Sections 3 and 4 we study the odd subdivision of an edge and the stretching of a node operations
introduced by Wolsey [10]; in Section 5 we study the star subdivision, introduced by Lipták and Lovász [4], and in Section 6
we study what we believe is a new operation, the clique subdivision of an edge, motivated by the AT-graph. We end the
discussion by applying our results to show that the N −N0 conjecture remains false if we take QSTAB(G) instead of FRAC(G)
as the initial relaxation, and stating a general result along this line.

2. Preliminaries

In this section we review some of the nomenclature we use, and state some simple results.
We will not differentiate between row and column vectors, since the orientation of the vectors employed in this paper

should be clear from the context. We denote by ei the i-th unit vector and by 0 the null vector, in any case of appropriate
dimension. If x and y are vectors of the same dimension, their inner product is indicated by x · y, and x ≥ y indicates xi ≥ yi
for all i. If I ⊂ {1, 2, . . . , n} we write x(I) =


i∈I xi. An inequality of the form a · x ≤ b is valid for the set S ⊂ Rn if it is true

for all x ∈ S. If π : a · x ≤ b is valid for the polytope K , and {x ∈ K : a · x = b} is a facet of K , we will say that π defines a
facet, and sometimes we will say simply that π is a facet of K .
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2.1. The N0 and N operators

As alreadymentioned, theN0 andN operatorswere introduced by Lovász and Schrijver [6], who considered convex cones
K̃ ⊂ Rn+1 (with components indexed by 0, 1, . . . , n) such that

{x ∈ Rn
: (1, x) ∈ K̃} ⊂ [0, 1]n.

Denoting by diag(Y ) the diagonal of the matrix Y , for a convex cone K̃ as above, we let M0(K̃) be the cone of matrices
Y ∈ R(n+1)×(n+1) such that diag(Y ) = Y Te0 = Ye0, and Yei ∈ K̃ and Y (e0 − ei) ∈ K̃ for i = 1, . . . , n. Projecting M0(K̃) to
Rn+1, we get the cone

N0(K̃) = {Ye0 : Y ∈ M0(K̃)}.

By requiring the matrices inM0(K̃) to be symmetric also, we obtain the coneM(K̃) and its projection

N(K̃) = {Ye0 : Y ∈ M(K̃)}.

The cone generated by the convex set K ⊂ [0, 1]n is

cone(K) = {(t, tx) ∈ Rn+1
: t ≥ 0, x ∈ K}.

For simplicity, when we say we are applying the N0 or the N operator to a convex set K ⊂ [0, 1]n, we mean that we
consider cone(K), apply the corresponding operator to it, then take the intersection of this cone with x0 = 1 and project it
back onto Rn. Thus, in the sequel, N0(K) and N(K) stand for these final subsets of [0, 1]n. We say that Y represents a point
x ∈ N♯(K) ⊂ Rn if Y ∈ M♯(cone(K)) ⊂ R(n+1)×(n+1) and Ye0 = (1, x).

The next lemma establishes that if a valid inequality is tight at some point x ∈ N♯(K), then it is also tight for the columns
of a matrix representing it in the higher dimensional space.

Lemma 2.1. If the inequality π : a · x ≤ b is valid for K , and a · x = b for some x ∈ N♯(K), then for every representation Y of
x and X i

∈ Rn such that Yei = (xi, X i) we have a · X i
= xib and a · (x − X i) = (1 − xi) b for all i = 1, . . . , n.

Proof. Since (xi, X i) and (1−xi, x−X i) both belong to cone(K) and π is valid forK, a ·X i
≤ xib and a · (x−X i) ≤ (1−xi) b.

Adding these two inequalities we obtain

a · x = a · X i
+ a · (x − X i) ≤ xib + (1 − xi) b = b.

The result follows now from a · x = b. �

2.2. Graphs, stable sets and related polytopes

Wewill work with simple undirected graphs G = (V , E), usually letting n = |V |. If v ∈ V , the graph obtained by deletion
of v, denoted by G − v, is the subgraph of G induced by the nodes in V \ {v}. Similarly, G − [v1, v2] stands for the graph
obtained after removing the edge [v1, v2] from G.

A stable set in G is a subset of mutually nonadjacent nodes and a clique is a subset of pairwise adjacent nodes.
The stable set polytope of the graph G is the convex hull of the incidence vectors χ S of the stable sets S of G,

STAB(G) = conv{χ S
: S stable set in G},

the fractional stable set polytope is defined by the trivial (0 ≤ xv ≤ 1 for v ∈ V ) and edge inequalities,

FRAC(G) = {x ∈ [0, 1]V : xu + xv ≤ 1, [u, v] ∈ E},

and the clique polytope is defined by the trivial inequalities and the clique inequalities,

QSTAB(G) = {x ∈ [0, 1]V : x(K) ≤ 1, K clique in G}.

The maximal clique inequalities always define facets of STAB(G).
If an inequality π is valid for STAB(G), we define its N♯-rank, r♯(π), as the minimum k such that π is valid for Nk

♯(G).

3. Odd subdivision of an edge

Wolsey [10] introduced the odd subdivision of an edge as follows: given the graphG and an edge [v1, v2] ofG, construct the
graph G′ from G by deleting the edge [v1, v2], adding two new nodes, vn+1 and vn+2, and the edges [v1, vn+1], [vn+1, vn+2]

and [vn+2, v2].
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Let a · x ≤ b, with a ≥ 0 and a ≠ e1 + e2, define a facet of STAB(G). Wolsey proved [10, Proposition 2] that

a · x + b′ (xn+1 + xn+2) ≤ b + b′

defines a facet of STAB(G′) if

b′
= max {a · x − b : x ∈ STAB(G − [v1, v2])} > 0. (3.1)

Our purpose is to generalize this result to the N♯ context. Given a valid inequality for Nk
♯(G),

π : a · x ≤ b, (3.2)

with a 
 0 and a ≠ e1 + e2, we look for a valid inequality for Nk
♯(G

′) of the form

π̄ : a · x + b′ (xn+1 + xn+2) ≤ b + b′, (3.3)

with b′ > 0.
Notice that the inequality x1 + x2 ≤ 1, valid for FRAC(G), is replaced for FRAC(G′) by the three inequalities

x1 + xn+1 ≤ 1, xn+1 + xn+2 ≤ 1 and xn+2 + x2 ≤ 1, (3.4)

which define facets of Nk
♯(G

′) for every k.
Lipták and Tunçel [5, Theorem 16 and Lemma 17] showed the following.

If x ∉ STAB(G) then x̄ = (x, 1 − x1, x1) ∉ STAB(G′). (3.5)

If x ∈ Nk
♯(G) then x̄ = (x, 1 − x1, x1) ∈ Nk

♯(G
′). (3.6)

r♯(G) ≤ r♯(G′). (3.7)

They also gave an example where the inequality (3.7) is strict.
For x̄ ∈ Rn+2 we write x̄ = (x, xn+1, xn+2) with x ∈ Rn, and set

H = {x̄ ∈ Rn+2
: xn+1 + xn+2 = 1}.

We establish now a partial converse and a more precise version of (3.5) and (3.6).

Lemma 3.1. Let G′ be obtained from G by the odd subdivision of [v1, v2]. If x ∈ Rn, let x̄1 = (x, 1 − x1, x1) and x̄2 =

(x, x2, 1 − x2).

1. If x̄ = (x, xn+1, xn+2) ∈ Nk
♯(G

′) ∩ H, then x ∈ Nk
♯(G) and x̄ is a convex combination of x̄1 and x̄2. In particular, x1 + x2 ≤ 1,

and if x̄ is an extreme point of Nk
♯(G

′) then x̄ = x̄1 or x̄ = x̄2.
2. If x is an extreme point of Nk

♯(G), then x̄1 and x̄2 are extreme points of Nk
♯(G

′).

Proof. 1. Given x̄ = (x, xn+1, xn+2) ∈ Nk
♯(G

′) ∩ H , we prove that x ∈ Nk
♯(G) by induction on k.

For k = 0 we only have to check that x1 + x2 ≤ 1. Since the inequalities in (3.4) hold and x ∈ H , it follows that

x1 + xn+1 + x2 + xn+2 = 1 + x1 + x2 ≤ 2,

and then x1 + x2 ≤ 1.
Suppose k > 0 and let Ȳ be a representation of x̄ ∈ Nk

♯(G
′),

Ȳ =



1 x1 · · · xi · · · xn xn+1 xn+2
x1 x1 x1,i x1,n 0 x1,n+2
...

...
...

...
...

...
xi xi,1 · · · xi · · · xi,n xi,n+1 xi,n+2
...

...
...

...
...

...
xn xn,1 xn,i xn xn,n+1 xn,n+2

xn+1 0 xn+1,i xn+1,n xn+1 0
xn+2 xn+2,1 xn+2,i xn+2,n 0 xn+2


,

where, e.g., xn+1,n+2 = xn+2,n+1 = 0 since [vn+1, vn+2] ∈ E(G′) [6].
Lemma 2.1 and xn+1 + xn+2 = 1 imply

xn+1,i + xn+2,i = xi, (xn+1 − xn+1,i) + (xn+2 − xn+2,i) = 1 − xi,

for i = 0, . . . , n + 2, so that, by the inductive hypothesis, the submatrix of Ȳ with rows and columns in {0, . . . , n} is a
representation of x as a point in Nk

♯(G).
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2. If x̄1 were not an extreme point ofNk
♯(G

′), then x̄1 = λz̄+(1−λ)w̄withλ ∈ (0, 1) and z̄, w̄ ∈ Nk
♯(G

′). If z̄ = (z, zn+1, zn+2)

and w̄ = (w, wn+1, wn+2) it is easy to check that x = λz + (1 − λ)w. Moreover, zn+1 + zn+2 = 1 and wn+1 + wn+2 = 1.
According to the first part, z, w ∈ Nk

♯(G), contradicting that x is an extreme point of Nk
♯(G). �

The next result follows immediately from the previous lemma.

Lemma 3.2. If G′ is obtained from G by the odd subdivision of [v1, v2] and π in (3.2) is valid for Nk
♯(G), then π̄ in (3.3) is valid

for Nk
♯(G

′) ∩ H for every b′.

Thus, in order to define b′ for π̄ as in (3.3), we only need to consider points outside H . To this end, let W be the set of
extreme points of Nk

♯(G
′) not in H (W ≠ ∅ since 0 ∈ W ), and for x̄ = (x, xn+1, xn+2) ∈ W let

β(x̄) = min {γ ≥ 0 : γ (1 − xn+1 − xn+2) ≥ a · x − b}.

For every x̄ ∈ W we will have that if b′
≥ β(x̄) then

a · x + b′ (xn+1 + xn+2) ≤ b + b′,

so it is natural to define

b′
= max {β(x̄) : x̄ ∈ W }. (3.8)

Remark 3.3. If Nk
♯(G

′) = STAB(G′), the value of b′ in (3.8) coincides with that of (3.1), and is called strength of the edge
[v1, v2] in [4].

The above definitions and Lemma 3.2 imply the following.

Theorem 3.4. If G′ is obtained from G by the odd subdivision of [v1, v2] and π in (3.2) is valid for Nk
♯(G), then π̄ defined

in (3.3) with b′ as in (3.8), is valid for Nk
♯(G

′).

When π defines a facet of Nk
♯(G), we may say more.

Theorem 3.5. If G′ is obtained from G by the odd subdivision of [v1, v2], π in (3.2) defines a facet of Nk
♯(G) different from

x1 + x2 ≤ 1 and b′ given in (3.8) is positive, then π̄ given in (3.3) defines a facet of Nk
♯(G

′).

Proof. We know from Theorem 3.4 that π̄ is a valid inequality for Nk
♯(G

′). Let x1, . . . , xn ∈ Nk
♯(G) be affinely independent

points satisfying π with equality, and define

x̄i = (xi, 1 − xi1, x
i
1) for i = 1, . . . , n.

In addition, theremust exist j ∈ {1, . . . , n} such that xj1+xj2 < 1 (otherwise,π would define the same facet as x1+x2 ≤ 1).
Let us set x̄n+1

= (xj, 1 − xj2, x
j
2). From (3.6), x̄i ∈ Nk

♯(G
′) for i = 1, . . . , n + 1. Finally, let x̄n+2

∈ W be an optimal solution
of (3.8).

It is not difficult to see that x̄1, . . . , x̄n+2 are affinely independent points satisfying π̄ with equality. Therefore, π̄ defines
a facet of Nk

♯(G
′). �

Corollary 3.6. Under the hypotheses of Theorem 3.4, both inequalities, π and π̄ , have the same N♯-rank, i.e., r♯(π) = r♯(π̄).

Proof. Let r and r̄ be the N♯-ranks of π and π̄ , respectively. Theorem 3.4 (with k = r) implies r ≥ r̄ .
On the other hand, let x ∈ N r̄

♯(G). Using (3.6), x̄ = (x, 1 − x1, x1) ∈ N r̄
♯(G

′) and then

a · x + b′(1 − x1 + x1) ≤ b + b′.

Therefore, π is a valid inequality for N r̄
♯(G) and r ≤ r̄ . �

We conclude this section by commenting on similarities and differences between the N♯ relaxations and the stable set
polytope after odd subdivision of an edge.

Mahjoub [7] presents nice structural results complementing Wolsey’s result. More precisely, if ā = (a, an+1, an+2) and
ā · x̄ ≤ b is a facet defining inequality of STAB(G′) different from those in (3.4), then we have the following.

1. If both an+1 and an+2 are positive, we must have an+1 = an+2.
2. We cannot have an+1 > 0 and an+2 = 0 (and vice versa).

The first of these two statements is no longer true when we consider Nk
♯(G

′) instead of STAB(G′). A counter-example is
the graph obtained by the odd subdivision of [1, 7] in the AT-graph (Fig. 1.1). However, wemay extend the second statement
to the intermediate N♯ relaxations, using that if G = G1 ∪ G2 and V (G1) ∩ V (G2) = {v}, then Nk

♯(G) is defined by the facets
of the polytopes Nk

♯(G1) and Nk
♯(G2) [5, Theorem 6].
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Lemma 3.7. Let G′ be obtained from G by the odd subdivision of [v1, v2] and let ā · x̄ ≤ b be a facet defining inequality of Nk
♯(G

′)
different from those in (3.4). Then we cannot have an+1 > 0 and an+2 = 0 (and vice versa).

Proof. If an+1 > 0 and an+2 = 0, ā · x̄ ≤ b defines a facet of Nk
♯(G

′
−vn+2). By the above mentioned result, the facet defining

inequalities of Nk
♯(G

′
− vn+2) also define facets of Nk

♯(G
′
− {vn+1, vn+2}). Since an+1 > 0, ā · x̄ ≤ b must coincide with the

facet x1 + xn+1 ≤ 1, contradicting the hypothesis. �

4. Stretching of a node

Wolsey [10] presented also a generalization of the odd subdivision of an edge, the stretching of a node: given the graph
G and a selected node vn, we obtain G′ by separating the adjacent nodes of vn into two non-empty subsets V1 and V2,
introducing two new nodes vn+1 and vn+2 so that each vertex of Vℓ is joined to vn+ℓ, ℓ = 1, 2, and finally joining vn to
vn+1 and vn+2 only.

This operation is named the stretching operation of type I in [5] and is also analyzed in [3] for obtaining facets of the
stable set polytope.

Let us recall some results in [5,10], analogous to the ones presented in the previous section.
If a · x ≤ bwith a ≥ 0 defines a facet of STAB(G) such that

max

a · x : x ∈ STAB(G), xj = 0, j ∈ Vℓ ∪ {n}


= b

for ℓ = 1, 2, then [10, Proposition 3],

π̄ : a · x + an (xn+1 + xn+2) ≤ b + an, (4.1)

defines a facet of STAB(G′).
The main purpose of this section is to obtain a similar result for the intermediate N♯ relaxations.
If z̄ = (z1, . . . , zn+p) ∈ Rn+p for some p ≥ 0 we write ẑ = (z1, . . . , zn−1) ∈ Rn−1, so that z̄ = (ẑ, zn, . . . , zn+p). We also

consider

Hℓ = {x̄ ∈ Rn+2
: xn + xn+ℓ = 1} for ℓ = 1, 2.

We have, by [5, Lemma 26 and Theorem 25], the following.

If x = (x̂, xn) ∉ STAB(G), then x̄ = (x̂, 1 − xn, xn, xn) ∉ STAB(G′). (4.2)

If x = (x̂, xn) ∈ Nk
♯(G), then x̄ = (x̂, 1 − xn, xn, xn) ∈ Nk

♯(G
′). (4.3)

r♯(G) ≤ r♯(G′). (4.4)

Lemma 4.1. Let G′ be obtained fromGby stretching the node vn. If x̄ = (x̂, xn, xn+1, xn+2) ∈ Nk
♯(G

′)∩H1, then (x̂, xn+2) ∈ Nk
♯(G).

Proof. We prove that (x̂, xn+2) ∈ Nk
♯(G) by induction on k.

For k = 0 we only need to check that the edge inequalities xi + xn ≤ 1 for i ∈ V1 ∪ V2 are satisfied. If i ∈ V2, this is true
since xi + xn+2 ≤ 1 for every point in FRAC(G′). Let i ∈ V1. Combining the inequalities xn + xn+2 ≤ 1, xi + xn+1 ≤ 1 and the
fact that x̄ ∈ H1 we have

xi + xn+2 ≤ xi + 1 − xn = xi + xn+1 ≤ 1.

Hence, x ∈ FRAC(G).
Suppose k > 0 and let Ȳ be a representation of x̄ in Nk

♯(G
′),

Ȳ =



1 x1 · · · xi · · · xn xn+1 xn+2
x1 x1 x1,i x1,n x1,n+1 x1,n+2
...

...
...

...
...

...
xi xi,1 · · · xi · · · xi,n xi,n+1 xi,n+2
...

...
...

...
...

...

xn xn,1 xn,i xn 0 0
xn+1 xn+1,1 xn+1,i 0 xn+1 xn+1,n+2
xn+2 xn+2,1 xn+2,i 0 xn+2,n+1 xn+2


.

Since xn + xn+1 = 1, Lemma 2.1 implies

xn,i + xn+1,i = xi, (xn − xn,i) + (xn+1 − xn+1,i) = 1 − xi,
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for i = 0, . . . , n + 2. Using the inductive hypothesis we obtain that

Y =



1 x1 · · · xi · · · xn+2
x1 x1 x1,i x1,n+2
...

...
...

...
xi xi,1 · · · xi · · · xi,n+2
...

...
...

...

xn+2 xn+2,1 xn+2,i xn+2


is a representation of x as a point in Nk

♯(G). �

LetWi,j be the set of extreme points of Nk
♯(G

′) in Hi \ Hj for i, j = 1, 2 (clearly, Wi,j ≠ ∅).

Theorem 4.2. Let G′ be obtained from G by stretching vn. If π : a · x ≤ b defines a facet of Nk
♯(G) such that π̄ as in (4.1) is valid

for Nk
♯(G

′), and

max {â · x̂ + anxn+2 : x̄ ∈ W1,2} = max {â · x̂ + anxn+1 : x̄ ∈ W2,1} = b, (4.5)

then π̄ defines a facet of Nk
♯(G

′).

Proof. Let x1, . . . , xn ∈ Nk
♯(G) be affinely independent points satisfying π with equality, and for i ∈ {1, . . . , n}, consider

x̄i = (x̂i, 1 − xin, x
i
n, x

i
n).

Using (4.3), x̄i ∈ Nk
♯(G

′) ∩ H1 ∩ H2 for every i ∈ {1, . . . , n}.
Let x̄n+1

∈ W1,2 and x̄n+2
∈ W2,1 be optimal solutions to (4.5), i.e.,

â · x̂n+1
+ anxn+1

n+2 = b and â · x̂n+2
+ anxn+2

n+1 = b.

Then x̄1, . . . , x̄n+2 are affinely independent points satisfying π̄ with equality, and π̄ defines a facet of Nk
♯(G

′). �

Remark 4.3. Let us observe the following.
• After Lemma 4.1, if x̄ ∈ Nk

♯(G′) ∩ H1, then â · x̂ + anxn+2 ≤ b provided that a · x ≤ b is valid for Nk
♯(G).

• Theorem 4.2 generalizes Wolsey’s result [10] when Nk
♯(G′) = STAB(G′).

• The hypotheses of Theorem 4.2 clearly imply that r♯(π̄) ≤ r♯(π).

5. Subdivision of a star

GivenG and a selected node vn with neighbors v1, . . . , vs, Lipták and Lovász [4] define the graphG′ obtained by subdivision
of a star on vn as follows: for every i ∈ {1, . . . , s}, delete the edge [vi, vn], add a new node vn+i and the edges [vn+i, vi] and
[vn+i, vn].

If a · x ≤ bwith a ≥ 0 defines a facet of STAB(G) and

ci,n = max {a · x − b : x ∈ STAB(G − [vi, vn])} > 0, for i = 1, . . . , s,

it is proved in [4] that

π̄ : â · x̂ +


s

i=1

ci,n − an


xn +

s
i=1

ci,nxn+i ≤ b +

s
i=1

ci,n − an, (5.1)

defines a facet of STAB(G′).
In [5, Lemmas 16 and 17] the authors show the following.

If x ∉ STAB(G), then x̄ = (x̂, 1 − xn, xn, . . . , xn) ∉ STAB(G′). (5.2)

If x ∈ Nk
♯(G), then x̄ = (x̂, 1 − xn, xn, . . . , xn) ∈ Nk

♯(G
′). (5.3)

r♯(G) ≤ r♯(G′). (5.4)

Following the ideas of the previous sections we look for a facet π̄ of Nk
♯(G

′) of the form (5.1) which could be derived from
a facet of Nk

♯(G). In order to do so, we define for i = 1, . . . , s,

Hi = {x̄ ∈ Rn+s
: xn+i + xn = 1}, Ti =

s
j=1
j≠i

Hj \ Hi, H =

s
i=1

Hi. (5.5)

The following simple result helps us to construct a point in Nk
♯(G) from a point in Nk

♯(G
′) that also lies in H .
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Lemma 5.1. Let G′ be obtained from G by subdivision of a star on vn. If x̄ = (x̂, xn, xn+1, . . . , xn+s) ∈ Nk
♯(G

′) ∩ H, with H given
in (5.5), then x = (x̂, 1 − xn) ∈ Nk

♯(G).

Proof. The proof is by induction on k.
For k = 0 it only remains to check that xi + (1 − xn) ≤ 1 for every i ∈ {1, 2, . . . , s}. Since x̄ ∈ H, xn + xn+i = 1 for every

i, so that xi + (1 − xn) = xi + xn+i ≤ 1 given that x̄ ∈ FRAC(G′).
Assume that k > 0 and let

Ȳ =



1 x1 · · · xj · · · xn xn+1 xn+s
x1 x1 x1,j x1,n x1,n+1 · · · x1,n+s
...

...
...

...
...

...
xj xj,1 · · · xj · · · xj,n xj,n+1 · · · xj,n+s
...

...
...

...
...

...

xn xn,1 xn,j xn xn,n+1 xn,n+s
xn+1 xn+1,1 xn+1,j xn+1,n xn+1 xn+1,s

...
...

...
...

...
...

xn+s xn+s,1 xn+s,j xn+s,n xn+s,n+1 xn+s


be a representation of x̄ ∈ Nk

♯(G
′).

Using Lemma 2.1, we know that for i = 1, . . . , s and j = 1, . . . , n + s,

xn,j + xn+i,j = xj, (xn − xn,j) + (xn+i − xn+i,j) = 1 − xj.

Hence, the inductive hypothesis implies that

Y =



1 x1 · · · xj · · · 1 − xn
x1 x1 x1,j x1 − x1,n
...

...
...

...
xj xj,1 · · · xj · · · xj − xj,n
...

...
...

...

1 − xn x1 − xn,1 xi − xn,j 0


is a representation of x as a point of Nk

♯(G
′). �

When the points belong to H , there are no restrictions on the coefficients ci. More precisely, we have the following.

Lemma 5.2. Let G′ be obtained from G by subdivision of a star on vn. If π : a · x ≤ b is valid for Nk
♯(G), then

π̄ : â · x̂ +


s

i=1

ci − an


xn +

s
i=1

cixn+i ≤ b +

s
i=1

ci − an, (5.6)

is valid for Nk
♯(G

′) ∩ H for every ci, i = 1, . . . , s.

Proof. Let us first rewrite π̄ as

â · x̂ + an(1 − xn) −

s
i=1

ci (1 − xn − xn+i) ≤ b.

If x̄ ∈ Nk
♯(G′) ∩ H , from Lemma 5.1, (x̂, 1 − xn) ∈ Nk

♯(G). Since a · x ≤ b is valid for Nk(G),

â · x̂ + an(1 − xn) ≤ b. (5.7)

Finally, 1 − xn − xn+i = 0 for every i since x̄ ∈ H , and using (5.7), the result follows. �

Let us now rewrite π̄ in (5.6) as

π̄ : â · x̂ + an(1 − xn) − b ≤

s
i=1

ci(1 − xn − xn+i).

As is easily seen, x̄ ∈ Ti satisfies π̄ if and only if

â · x̂ + an(1 − xn) − b
(1 − xn − xn+i)

≤ ci.
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LetWi be the set of extreme points of Nk
♯(G

′) which are in Ti, and for x̄ ∈ Wi, let

βi(x̄) = min {γ ≥ 0 : â · x̂ + an(1 − xn) − b ≤ γ (1 − xn − xn+i)},

and

ci = max {βi(x̄) : x̄ ∈ Wi}. (5.8)

Theorem 5.3. Let G′ be obtained from G by subdivision of a star on vn. If π : a · x ≤ b defines a facet of Nk
♯(G) such that π̄

in (5.6) is valid for Nk
♯(G

′), then π̄ defines a facet of Nk
♯(G

′).

Proof. Let x1, . . . , xn ∈ Nk
♯(G) be affinely independent points satisfying π with equality. For j ∈ {1, . . . , n} let

x̄j = (x̂j, 1 − xjn, x
j
n, . . . , x

j
n) ∈ Rn+s.

By (5.3), x̄j ∈ Nk
♯(G

′) ∩ H for all j ∈ {1, . . . , n}.
Now let x̄n+i

∈ Wi be an optimal solution of (5.8) for i ∈ {1, . . . , s}.
Then, x̄ℓ

∈ Nk
♯(G

′) for every ℓ ∈ {1, . . . , n + s}, are affinely independent and satisfy π̄ with equality. This shows that π̄

defines a facet of Nk
♯(G

′). �

Remark 5.4. Let us observe the following.
• The coefficients ci in (5.8) generalize the ones obtained by Lipták and Lovász for the stable set polytope. That is, if

Nk
♯(G

′) = STAB(G′) then ci = ci,n with ci,n defined as in [4].
• The hypotheses of Theorem 5.3 clearly imply that r♯(π̄) ≤ r♯(π).

6. Clique subdivision of an edge

In the introduction we mentioned that the AT-graph (Fig. 1.1) could be obtained from the graph-join of W5 and a point,
or as the replication of a rim node in W5. It may be seen also as obtained from K5 consisting of the nodes {3, 4, 5, 6, 7} in
which we make an odd subdivision of the edge [3, 5], obtaining the nodes 1 and 2, and then connecting these with 7. As a
matter of fact, the reverse operation of contracting the edges [1, 5] and [2, 3] shows that the AT-graph is not planar.

Thus, given the graph Gwith nodes {1, . . . , n} and the clique (not necessarily maximal) K = {v1, . . . , vs} (2 ≤ s ≤ n) in
G, it seems natural to define the clique subdivision of the edge [v1, v2] in K as follows: G′ is obtained from G by deleting the
edge [v1, v2], adding the nodes vn+1 and vn+2 together with the edges [v1, vn+1], [vn+1, vn+2], [vn+2, v2] and [vn+i, vj] for
i = 1, 2 and j = 3, . . . , s. (In Fig. 6.1 we show the clique subdivision of the edge [1, 2] in the clique K = {1, 2, 3}.)

Notice that if the clique is K = {v1, v2}, this operation reduces to the odd subdivision of [v1, v2].
We know of no results on the facets of the stable set polytope after applying this operation, and we start by following

the ideas of Wolsey [10] and Mahjoub [7].
Let us consider the sets

K̂ = K \ {v1, v2} = {v3, . . . , vs}, K̄ = K̂ ∪ {vn+1, vn+2}, Ki = K̂ ∪ {vi, vn+i} for i = 1, 2, (6.1)

and let us note that K , the original clique in G, is no longer a clique in G′, but every set in (6.1) is.

Remark 6.1. The above defined cliques K̄ , K1 and K2 are maximal in G′. Hence, the inequalities

x(K̄) ≤ 1, x(Ki) ≤ 1 for i = 1, 2, (6.2)

define facets of STAB(G′) and of Nk
♯(G

′) for every k ≥ s − 2.

Consider the valid inequality for STAB(G)

π : a · x ≤ b, (6.3)

where b > 0, a ≥ 0 and such that there is j ∈ {4, . . . , s} with aj ≠ 0. For x̄ ∈ Rn+2, we denote x̄ = (x, xn+1, xn+2), and look
for a valid inequality of STAB(G′) of the form

π̄ : a · x + b′x̄(K̄) ≤ b + b′, (6.4)

with b′ > 0.

Proposition 6.2. Let G′ be obtained by the clique subdivision of [v1, v2] in the clique K of G. If π as in (6.3) is valid for STAB(G)
different from the clique inequality x(K) ≤ 1, and

b′
= max {a · x − b : x ∈ STAB(G − [v1, v2])} > 0, (6.5)

then π̄ defined in (6.4) is a valid inequality for STAB(G′).
Moreover, if π defines a facet of STAB(G), π̄ defines a facet of STAB(G′).
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Fig. 6.1. The graphs G and G′ of Example 6.7.

Proof. We first study the validity of π̄ and it is enough to do so for the binary points in STAB(G′).
If x̄ ∈ STAB(G′), it is clear that x ∈ STAB(G−[v1, v2]). Now, if x ∉ STAB(G) then x1 = x2 = 1 and x̄(K̄) = 0, and therefore,

a · x + b′x̄(K̄) = a · x ≤ b + b′.

On the other hand, if x ∈ STAB(G) then a · x ≤ b and x̄(K̄) ≤ 1. Summing the two inequalities we have the validity of π̄ .
If π defines a facet of STAB(G), there exist binary affinely independent points x1, . . . , xn ∈ STAB(G) satisfying π with

equality.
If i ∈ {1, . . . , n}, let us define

ȳi =


(xi, 1, 0) if xi1 + xi(K̂) = 0,
(xi, 0, 1) if xi1 = 1 (then xi1 + xi(K̂) = 1 and xi2 + xi(K̂) = 0),
(xi, 0, 0) if xit = 1 for some 3 ≤ t ≤ s (then xi1 + xi(K̂) = 1).

Note that all these cases are mutually disjoint and that each one is possible.
Since this facet does not coincide with x(K) ≤ 1, there exists j such that xj(K) = 0, and let ȳn+1

= (xj, 0, 1). Finally,
let x∗

∈ STAB(G − [v1, v2]) be an optimal solution to (6.5). Since x∗

1 = x∗

2 = 1 and x∗
t = 0 for t = 3, . . . , s, we define

ȳn+2
= (x∗, 0, 0), which satisfies ȳn+2(K̄) = 0.

It is not hard to check that ȳ1, . . . , ȳn+2 satisfy (6.4) with equality and are affinely independent points. �

Let us now study necessary conditions for the coefficients of the facets of STAB(G′) for this operation (cf. [7]).

Lemma 6.3. Let G′ be obtained from G by the clique subdivision of [v1, v2] in the clique K . If ā ≥ 0 and b̄ > 0 are such that

π̄ : ā · x̄ ≤ b̄ (6.6)

is a facet defining inequality for STAB(G′), then we have the following.

1. If this inequality is different from x̄(K1) ≤ 1 in (6.2), then we cannot have both an+1 > 0 and an+2 = 0.
Similarly for x̄(K2), an+2 > 0 and an+1 = 0.

2. If this inequality is different from those in (6.2), then an+1 = an+2.

Proof. 1. Let us assume that an+1 > 0 = an+2, and let S be a set of affinely independent stable sets in G′ for which (6.6) is
satisfied with equality.
Let S ∈ S. Note that S ∩ K1 ≠ ∅ since if n + 2 ∈ S then S ′

= S \ {n + 2} ∪ {n + 1} would be a stable set for which
ā · χ S′

> b. Hence, χ S(K1) = 1 for every S ∈ S. This implies that π̄ defines the same facet as x̄(K1) ≤ 1.
2. Again, suppose that an+1 > 0 and consider S as before. We will prove the existence of a set S0 ∈ S such that n + 2 ∈ S0

and 1 ∉ S0.
If this were not the case, for every S ∈ S we would have that n + 2 ∈ S implies 1 ∈ S, and then S ∩ K1 ≠ ∅. If n + 2 ∉ S,
again S ∩ K1 ≠ ∅ for S ∈ S, since otherwise we could add the node n + 1 to the stable set S obtaining ā · χ S > b (recall
that an+1 > 0). In any case, we have χ S(K1) = 1 for every S ∈ S, contradicting the fact that π̄ is different from x̄(K1) ≤ 1.
Let S ′

= S0 ∪ {n + 1} \ {n + 2}. S ′ is a stable set in G′ and ā · χ S′

≤ b̄ = ā · χ S0 , proving an+1 ≤ an+2. By symmetry,
an+2 ≤ an+1. �

We end this section by analyzing the relationship between the N♯ ranks of G and G′. For this purpose we first establish
the following.

Lemma 6.4. Let G′ be obtained from G by the clique subdivision of edge [v1, v2] in the clique K . Then, for x ∈ Rn, we have the
following.

1. If x ∉ STAB(G), then x̄ = (x, x2, x1) ∉ STAB(G′).
2. If x ∈ Nk

♯(G), then x̄ = (x, x2, x1) ∈ Nk
♯(G

′).
Moreover, x̄(K̄) = x̄(K1) = x̄(K2) = x̄(K).
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Proof. 1. Once again, it is enough to consider only binary points. If x̄ ∈ STAB(G′)∩{0, 1}n+2, we cannot have x̄n+1 = x̄n+2 =

1 or, equivalently, x1 = x2 = 1. Since [v1, v2] is the only edge in G not in G′, the result follows.
2. Let x ∈ Nk

♯(G). The proof is by induction on k.
If k = 0, the edge inequalities

xn+1 + xn+2 = x1 + x2 ≤ 1, xn+i + xj = xi + xj ≤ 1

for i = 1, 2, j ∈ K̂ , are clearly satisfied. Assume k > 0 and let

1 x1 x2 · · · xi · · ·

x1 x1 0 · · · x1,i · · ·

x2 0 x2 · · · x2,i · · ·

...
xi xi,1 xi,2 · · · xi · · ·

...


be a representation of x ∈ Nk

♯(G).
Define

1 x1 x2 · · · xi · · · xn+1 = x2 xn+2 = x1
x1 x1 0 · · · x1,i · · · 0 x1
x2 0 x2 · · · x2,i · · · x2 0
...
xi xi,1 xi,2 · · · xi · · · xi,2 xi,1
...

x2 0 x2 · · · x2,i · · · x2 0
x1 x1 0 · · · x1,i · · · 0 x1


.

By the inductive hypothesis, column i belongs to xicone(Nk−1
♯ (G′)) and similarly for the difference between the first and

the ith column, for every i. This matrix is also symmetric if the original one is, proving that x̄ ∈ Nk
♯(G′). �

Wemay present now the main result of this section.

Theorem 6.5. If G′ is obtained from G by the clique subdivision of [v1, v2] in the clique K , then r♯(G′) ≥ r♯(G).

Proof. If r♯(G) = k + 1, there exists x ∈ Nk
♯(G) \ STAB(G). By Lemma 6.4, x̄ = (x, x2, x1) ∈ Nk

♯(G
′) and x̄ ∉ STAB(G′), so

r♯(G′) ≥ k + 1. �

The following examples show that the N♯-ranks can either strictly increase or remain unchanged by the subdivision of a
clique.

Example 6.6. Consider a clique K of size 3 in G = K4. By the clique subdivision of any edge with nodes in K , we obtain
G′

= W5, and r♯(G) = r♯(G′) = 2.

Example 6.7. The graph G in Fig. 6.1 is t-perfect and r♯(G) = 1. The rank inequality x1 + · · · + x8 ≤ 3 defines a facet of
STAB(G′), and hasN♯-rank at least 2 since it is neither a trivial, nor an edge nor an odd cycle inequality. Therefore, r♯(G′) ≥ 2.
In fact, it can be seen that it is 2.

7. A counter-example to the N − N0 conjecture starting from the clique relaxation

In this section we show that the N − N0 conjecture is still false if we substitute QSTAB(G) for FRAC(G) as the initial
relaxation.

To do so, we will apply some of our previous results to the AT-graph, for which we know the original conjecture does not
hold. So let G be the AT-graph shown in Fig. 1.1, and consider the graph G′′ (to the right in Fig. 7.1) obtained from G by the
odd-subdivision of [4, 6] followed by the star subdivision on node 7. As is easily seen, FRAC(G′′) = QSTAB(G′′).

Claim 1. N2
0 (QSTAB(G

′′)) ≠ N2(QSTAB(G′′)).

Proof. We will make use of the point

x =
1
5

(2, 2, 1, 2, 1, 1, 1) ∈ N2
0 (G) \ N2(G),

considered by Au and Tunçel [1] to disprove the N − N0 conjecture.
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Fig. 7.1. The graphs G′ and G′′ in Claim 1.

Let G′ be the graph obtained from the AT-graph G by the odd subdivision of [4, 6] (shown to the left in Fig. 7.1). Using
(3.6) for xwe have

x′
=

1
5

(2, 2, 1, 2, 1, 1, 1, 4, 1) ∈ N2
0 (G

′).

Now, by Lemma 3.1 and since x ∉ N2(G), we must have x′
∉ N2(G′).

Let G′′ be obtained by the star subdivision on node 7 of G′. As before, (5.3) and Lemma 5.1 imply

x′′
=

1
5

(2, 2, 1, 2, 1, 1, 4, 4, 1, 1, 1, 1, 1, 1, 1) ∈ N2
0 (G

′′) \ N2(G′′),

proving the claim. �

The arguments used in the previous proof can be extended to any graph G not verifying the N − N0 conjecture.

Theorem 7.1. Let G be a graph such that Nk
0(G) ≠ Nk(G) for some k. If G′ is obtained from G by the odd subdivision of an edge,

the star subdivision of a node or the stretching operation, then Nk
0(G

′) ≠ Nk(G′).

Remark 7.2. A related example is given by G = W 2
8 , for which we have FRAC(G) ≠ QSTAB(G), r(QSTAB(G)) =

r0(QSTAB(G)) = 2 and N(QSTAB(G)) ( N0(QSTAB(G)).
For instance, 1

4 (1, 1, 1, 1, 1, 1, 1, 2) is a vertex of N0(QSTAB(G)) and does not satisfy

x1 + x2 + x3 + x4 + x5 + 4x6 + 4x7 + 4x8 ≤ 5,

a facet defining inequality of N(QSTAB(G)).
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