
Latin American Applied Research 31:419-425 (2001)

419

AN ENVIRONMENT FOR MODELING AND MANAGING THE PROCESS DESIGN
PROCESS

S. GONNET, G. MANNARINO, H. LEONE 1 * and G. HENNING 2

1 INGAR (CONICET) - GIPSI (Fac. Reg. Santa Fe, Universidad Tecnológica Nacional),

Avellaneda 3657, 3000 Santa Fe, Argentina, hleone@ceride.gov.ar
2
 INTEC (Universidad Nacional del Litoral – CONICET), Güemes 3450, 3000 Santa Fe, Argentina,

ghenning@intec.unl.edu.ar

Keywords: Process Design Process Environment; Task Modeling Language.

Abstract
A three-layer object based environment architecture (Client, Application Server and Server) to support the
modeling and management of the process design process is presented. It guides the design process and
explicitly maintains the evolution of the design knowledge as a consequence of each design decision that is
adopted during a particular design project. The Client encapsulates the interface of the designer to the
design environment. The Application Server is responsible for managing the designer requirements by
resorting to the Server data. It manages the definition of generic design tasks and the administration of
the scenarios that are generated when a particular design process is carried out. Design tasks are defined
according to the Coordinates language syntax. Basically, a design process is viewed as a set of tasks that
are linked by temporal relationships and/or a set of resources they share. Generic design tasks can be
instantiated and used in a specific design project. The Server contains the data that are created, used or
modified by the Application Server.

1. Introduction
 Computer-aided environments that support design
processes have to (i) provide tools to structure the
knowledge that is iteratively acquired, to administrate
the design decisions that are adopted and their
rationale, etc., (ii) integrate different design tools, (iii)
coordinate the collaborative work among design
experts, (iv) explore different design alternatives, etc.
As there is not a unique design methodology, but a set
of standard tasks that are usually carried out in a
design process, a design environment should provide
task patterns that each design team could combine
according to their practices. There is very little
previous work in this area in chemical engineering.
Westerberg et al. (1997) have developed design
support tools based on the n-dim environment. They
have focused on supporting the management of
information, a critical issue when addressing
cooperative design. Bañares-Alcántara et al. (1995)
have also made contributions to support the process
design process. Their Epée environment makes
possible the representation of the designer's intent and
allows model traceability.
 This paper presents a process design environment
architecture whose goal is to support the execution of
design projects, according to different design methods.
Therefore, two object based components are defined:
(i) a language for representing design methodologies;
i.e., the design phases, the products to obtain at each
stage, and the way the phases are linked by producing
and consuming those products, and (ii) a conceptual
tool for supporting the scenarios that are generated for
a particular design problem.

 The Coordinates language (Mannarino et al., 1999)
is used both to represent the different design methods
and the outcomes of their application, i.e., process
models representing a particular design. The version
concept proposed by Gonnet et al. (1998) is employed
for managing the evolution of a design process.
Basically, the environment supports the explicit
representation of the states through which a particular
process model evolves during its design.
 The environment proposed in this paper is
supported by a three-layer architecture: the Client, the
Application Server and the Server layers. Basically,
the Client layer supplies the interface of the design
environment to the designers; the Application Server
manages the services the Client requires, such as the
definition of generic design tasks or the
implementation of the decisions adopted during a
particular design project by making use of the data
stored in the Server.

2. The Task Modeling Language
 The different design tasks that can be carried out
during a particular design process are represented
according to the Coordinates language syntax.
Coordinates is based on a three-layered architecture
(Fig. 1). The Metamodel layer contains metaclasses
representing the basic design modeling concepts, such
as the notion of design task and resource. It also
specifies the protocol required for defining and
manipulating the different classes that inhabit the
Model Layer. The Model Layer defines different
design tasks and resource templates such as the ones
that represent the structure of a flowsheet, an
equipment item or the functionalities of an

Latin American Applied Research 31:419-425 (2001)

 420

optimization module. Tasks such as Solve-Material-
Balance, Select-Reaction-Method, or Define-Recycle-
Structure as well as the resources they require and
transform during their execution, are identified at the
Model Layer. This layer also defines the protocol for
manipulating the entities of the Instance layer. Finally,
the Instance Layer encompasses those entities
generated by instantiating the Model Layer classes.
Figure 1 shows instance relationships linking the three
layers.
 The Coordinates language describes a domain
through different perspectives: Task, Domain and
Dynamic. Task Models are used to represent a domain
from a functional point of view. Domain Models put
emphasis on the domain entities and their static
relationships. Finally, Dynamic Models focus on the
way the domain resources evolve during their lifecycle
and how they interact in order to achieve the domain
goals.

 Task-M
Resource

Perspective-M task-resource-link

Create I/O
Structure1

InputStream1 creates1

Create I/O
Structure InputStream

Task-C creates
Resource

Perspective-C

Instance-of

Subclass-of

METAMODEL
 LAYER

MODEL
 LAYER

INSTANCE
 LAYER

Fig. 1. Coordinates language

 The Task Metamodel components (Fig. 2) can be
used to prescribe design tasks. A Task metaclass
(Task-M) represents an activity to be carried out. It
makes use of different resources during its execution.
A Resource-M is a conceptual or physical entity that
can provide different services. It represents a piece of
information, a design expert, or any computer design
tool. Not every service a Resource-M can supply is of
interest to every Task-M. Therefore, the resource
perspective (ResourcePersp-M) concept is introduced
in order to filter those aspects of a Resource-M that are
relevant in a given context. Tasks-M are linked to
ResourcePersps-M by resorting to the task-
resourcePersp-link-M. The meaning of the task-
resourcePersp-links-M is expressed by making use of
the state concept (ResourcePerspState-M). A state
represents a “snapshot” of a ResourcePersp-M at a
certain moment. The task-resourcePersp-link-M is
specialized into the uses, employs, modifies, creates
and eliminates relationships. It is said that a
ResourcePersp-M is used if the state it needs to be in
order to participate in the Task-M is the same to the
one it assumes when the Task-M has finished. The
creates relationship represents the fact that a new

ResourcePersp-M appears in the domain as a
consequence of the Task-M execution. The link
eliminates is the inverse of the creates one. Finally, the
modifies link indicates that the ResourcePersp-M
suffers a change of state due to its participation in the
Task-M.
 As seen in the previous paragraphs tasks relate
among themselves indirectly by means of the
resources they operate on. However, two tasks can be
directly linked through explicit temporal relationships
(Allen, 1983). The fact that a Task may have different
endings is explicitly represented by resorting to the
TaskMode (TaskMode-M language element) concept.
Moreover, tasks can be described at different
abstraction levels, according to the complexity of the
design activity that is being modeled. Hence, a task
can be decomposed into subtasks. However, as there
may exist alternative ways of disaggregating a given
task, the Task Decomposition concept is introduced. A
TaskDecomp-M encapsulates a particular way of
decomposing a Task-M, under a specific TaskMode-M.
Each Task-M precisely identifies when it can assume
the structure specified by each associated
TaskDecomp-M. Actually, a set of task preconditions
identifies the states its associated ResourcePersps-M
need to assume for the Task-M to be executed as
specified by each Task Decomposition.

task-resourcePersp-link-M

temporal-rel-M

TaskMode-MTaskDecomp-M
1..*1..* 1..*1..*

variant
1..*

1..*

1..*

1..*

comprises

Body-M

Task-M

1

0..*

1

0..*

task-mode-link

1..*

1..*

1..*

1..*

comprises

0..1

1

0..1

1

task-specification

ResourcePerspState-M

Resource-M

ResourcePersp-M

1..*

1..*

1..*

1..*

1

1

1

1

res-persp-state

1
1..*

1
1..*

resource-persp

Fig. 2. Task Metamodel.

3. The design process environment architecture
 As it was introduced in the previous section, the
Task Metamodel can be used to define the generic
design tasks associated to a particular synthesis and
design methodology. Thus, at a class level (Model
Layer), generic design models are represented.
However, when the design activities of a particular
project are to be modeled, generic tasks have to be
instantiated and executed. The instantiation process
produces specific occurrences of the different classes
specified at the Model Layer (Fig. 1). Basically, a
chemical process is envisioned as a set of
ModelVersions, where each Model Version represents
a snapshot of the design process at a specific moment.
In other words, the design environment naturally
shows how a set of ResourcePersps (at the Instance
Layer) evolves from initial to final states. The
proposed environment makes explicit a process design
history in terms of the decisions that are adopted at

S. GONNET, G. MANNARINO, H. LEONE and G. HENNING

 421

each design step, and the effects of those decisions
over each participating ResourcePersp. This
description is modified each time a design task is
executed. The model version management approach
introduced in this paper provides an explicit
mechanism to administrate the different
ModelVersions being generated during the course of a
design project, as design tasks are executed.
 In order to manage the evolution of the states of
the ResourcePersps, the Version Administration
System (VAS) proposed by Gonnet et al. (1998) was
specialized.
 The term software architecture is usually employed
in the software engineering jargon to describe an
abstract representation of the components of a
software system and their relationships. Therefore, a
three-layered architecture approach was adopted to
represent the VAS system (Fig. 3).

Client
Tools

Application
Server INSTANCE

LAYER

MODEL
LAYER

S
erver Server

Request Data

Fig. 3. The design process Architecture.

3.1 Client Tools component
 The Client Side provides the required user
interface for both (i) specifying the different design
tasks and (ii) interacting during a particular design
project by instantiating some tasks and resources or
transforming some existing resources. At any moment,
the Client can get information such as when a given
ResourcePersp was created, which adopted decision
transformed a particular ResourcePersp, why some
ResourcePersp were generated in the model, etc.

3.2 Application Server layer
 The Application Server provides the functionality
for managing the Client Side requirements. Basically,
this layer provides two main services: (i) the definition
of design tasks classes and (ii) the administration of
design process scenarios.

3.2.1 Design Tasks classes administration
 A use case (Jacobson et al., 1994) represents a
given functionality a system provides which is
specified in terms of a set of collaborating objects by
resorting to the so-called Sequence diagram. In order
to define the different design tasks, various use cases
are identified (Fig. 4)
 The Task Metamodel shown in Fig. 2 specifies
how design tasks classes are defined and manipulated.
One of the basic use cases is the creation of a generic
design Task class, such as Create AFD (Abstract Flow
Diagram), Select Reaction Alternatives, etc. The
Sequence Diagram that appears in Fig. 5 shows that a
task class creation is responsibility of the Task-M
metaclass. The generated Task requires a duration and
is also subclass of the Task-C, which defines the

protocol for creating and manipulating the tasks at the
Instance Layer. It can be seen that every class is a
direct or indirect subclass of Task-C.

Add
TaskMode

Add TaskVersion

Create Task
Version

Eliminate Task

Eliminate task-resource-persp
relationship

Associate two
resources

Create Task

Create temporal
relationship

Create task-resource-persp
relationship

Create Resource
Perspective

Actor

Create
Resource

Fig. 4. Use cases associated to the Task Metamodel.

 : Designer
 : Task-M

CreateClass(TaskName)

duration?If the Task does
not exist

Generate(TaskName, Task-C, duration)

Superclass?

If there is no
superclass, add
Task-C as its
direct superclass

Fig. 5. Design Task class creation.

 The Sequence Diagram that appears in Fig. 6
shows the process of creating an InputStream
ResourcePersp. As a ResourcePersp filters only those
services of a Resource class relevant in a given
context, it is a responsibility of a Resource-M the
definition of a new ResourcePersp class. Therefore,
the generation of InputStream is responsibility of the
Stream class.

Stream :
Resource-M : Designer

 : Resource
Persp-M

InputStream :
ResourcePersp-M

 : Resource
PerspState-M

AddPerspective(InputSream)

PerspDoesExist?(InputStream)

If the
InputStream
perspective
does not exist

GetServices()

SelectAvailableServices(Services) Services:
available Stream
methodsOtherServices?()

For every
new behavior AddService()

The structure
of
InputStream
is infered
from the
sevices it
provides

GetRequiredStructure(SelectedStreamServices)

CreateClass(InputStream, Stream, SelectedStreamServices, SelectedStreamStructure)

CreateClass(StateName, SelectedStreamStructure, InputStream)

When the
InputStream
is created, its
associated
state class is
generated

CreateClass(InputStream, Stream, SelectedStreamServices, SelectedStreamStructure)

GenerateResourceServicesAccesses(SelectedStreamServices)

Fig. 6. An InputStream ResourcePersp is associated to
the Stream Resource.

Latin American Applied Research 31:419-425 (2001)

 422

 The services the InputStream provides are derived
from the set of Stream services together with the new
ones that may be added during the ResourcePersp
creation. In this particular case, the InputStream views,
among other characteristics, the destination unit and
the flow value of its associated Resource (Stream).
The definition of each ResourcePersp method consists
of delegating the required service to its associated
Resource-C. That means, for example, that whenever
the message GetDestinationUnit is sent to the
InputStream, it will be delegated to the Stream
Resource, which actually contains the structure.
Finally, the InputStreamState class is generated. This
class represents a copy of the structure of the
Resource (as view by the ResourcePersp) whose
evolution will be documented. When a particular
design project is executed, this class will give rise to a
new instance each time the associated InputStream
changes its state.

3.2.2 The Scenario support
 The design environment structure that supports the
administration of the process design process, shown in
Fig. 7, is defined at the Model layer. Note that some of
the classes that appear in the figure are instances of the
metaclasses specified by using the Task Metamodel.
More specifically, we make reference to the classes
Task-C, ResourcePersp-C, State-C, Resource-C and
task-resourcePersp-link-C.
 A ModelVersion-C represents a snapshot of the
chemical process being designed. More specifically,
the products of the design process are encapsulated in
ResourcePersp instances. Those products suffer
different transformations, as expressed by the various
states they can assume. Therefore, a ModelVersion-C
explicitly stores the different resource perspective
states (State-C) of the ResourcePersps instances
involved in a particular design process. Figure 7 not
only shows that design information is maintained, but
also information relevant for (i) navigating among the
different Model versions and (ii) documenting the
transformations of the ResourcePerps. The basic links
that are currently used to specify how a given chemical
process evolves are the addition, elimination and
redefinition links. The addition (elimination) link
represents the fact that a ResourePersp instance is
generated (eliminated) as a consequence of executing
an instance of Task-C. The addition and elimination
links relate a specific ModelVersion instance with the
added or deleted resource perspective state. The
redefinition relationship links two resource
perspectives states (instances of State-C) and not only
expresses that the associated ResourePersp instance
suffered a change of state but also which was the
actual change
 The Versions, Design Tasks and Repository
Packages that appear in Fig. 7 capture different
aspects of a design project. The Versions Package
encapsulates the evolution of the design knowledge in

terms of the different states the involved resource
perspectives assume. The Task Package makes explicit
the design decisions that are adopted at each design
step. Finally, the Repository Package identifies the
resources and therefore the perspectives that can
evolve in the design process scenario.

+predecess or

Versions
Package

Model-Version-C

history

successor

predecessor

State-C
1 1..*1 1..*

addition

elimination

redefinition

+successor

Resource-C

Task-C

executed-task
ResourcePersp-C

1

*

+entity1

+version*

resource-persp

task-res ourcePersp-link-C

task resource

Design Tasks
Package

Repository
Package

The Version Package contains the Model-Version-C class whose
instances will encapsulate snapshots of the process design process

in terms of a set of instances of Resource-Perspective States

The Design Tasks’ Package includes
the Task-C classes whose instances

will be executed during the course of a
particular design project

The Repository Package contains the
Resource-Perspective-C classes

whose instances will evolve during a
particular process design process

Fig. 7. The VAS structure

 A design process scenario is carried out by
iteratively executing the following two tasks: Select
the next task to execute (Fig. 8) and Execute the
chosen task (Fig. 9). Let us assume that some instances
of task-C have been generated together with the
ResourcePersp they either use, modify or eliminate.
Only atomic tasks are considered in the interaction
diagrams. The Planner entity that appears in the
following figures is responsible for managing a
particular design process

TheResource
: Resource-C

Planner TheTask
: Task-C

TheRelationship :
task-resourcePersp-link-C

TheResPersp :
ResourcePersp-C

VerifyPreconditions()

IsTheResourcePerspInTheRequiredState?()For every
ResourcePersp
associated to
the Task State()

StateView()If every task
precondition
is satisfied

Execute()Do until no
more tasks can
be executed

Fig. 8. Selection of the next Task to be executed

 In order to guide the designer in a chemical
process creation, the Planner has to select among the
instantiated tasks the next one that can be carried out.
The planner therefore, “suggests” the next step to take.
Nevertheless, at any moment, the designer can
instantiate new tasks or propose a different design
activity. As mentioned before, a task is linked to a set
of ResourcePersps by task-resourcePersp-links. Each
link specifies the state the ResourcePersp needs to
assume in order to participate in the associated task.
Therefore, in order to determine whether a given task
can be executed, a set of preconditions has to be
verified. Figure 8 shows that each task-resourcePersp-
link has to contrast the current resource perspective

S. GONNET, G. MANNARINO, H. LEONE and G. HENNING

 423

state with the prescribed state. Each resource
perspective state is generated by accessing in the
associated Resource the values of the slots of interest.
Therefore, the message State() that retrieves the
resource perspective state is delegated to the
associated resource by invoking the StateView()
method.
 Once the next step to take is chosen (TheTask from
now on), it has to be executed. But before that, a new

ModelVersion-C instance (NewVersion) has to be
created so as to register the changes to be made, and
thus maintaining the chemical process history. The
Execute() message is sent to the TheTask, which
delegates the responsibility to its associated Body,
which encapsulates the actual task behavior. During
the task execution, the involved resource perspectives
exchange messages which are ultimately delegated to
each corresponding Resource

Planner TheTask

: Task-C
TheBody
: Body-C

TheRelationship :
task-resourcePersp-link-C

 : State-C TheResourceI
: Resource-C

TheResourceK
: Resource-C

 :
Model-Version-C

NewVersion :
Model-Version-C

TheResPerspI :
ResourcePersp-C

MakeInstance()

Execute()
Execute()

MessageI()
MessageJ() MessageK()

For every
ResourcePersp
instance
associated to
the task

UpdateModelVersion(PreviousVersion, NewVersion)

UpdateModelVersion(PreviousVersion, NewVersion)

If not an
eliminates
link

CreateState()
MakeInstance()

AssociateState(NewState)

AddState(NewState)

UpdateLinks(PreviousVersion, NewVersion, NewState)

Fig. 9. Execution of the chosen task

Design Tasks

Task-1

creates1

Resource

Pers pective-4

Resource 4

Task-1 executed

Model VersionN

Model VersionN + 1

Resource

Pers pective 4

State 1

Repository

addition

deletes1

modifies1

Resource

Pers pective 2

State 1

Resource

Pers pective-1

State-1

Resource

Pers pective 3

State 1

Resource

Pers pective 3

State 2

Resource

Pers pective-3

Resource 2
Resource

Pers pective-1 Resource 1

Resource

Pers pective-2

Resource 3

elimination

redef inition

CREATES -
ADDITION

ELIMINATES -
ELIMINATION

MODIFIES -
REDEFINITION

CREATES -
ADDITION

ELIMINATES -

ELIMINATION

MODIFIES -
REDEFINITION

Design Tasks

Task-1 Task-1

creates1creates1

Resource

Pers pective-4

Resource

Pers pective-4

Resource 4

Task-1 executed

Model VersionN

Model VersionN + 1

Resource

Pers pective 4

State 1

Repository

addition

deletes1deletes1

modifies1modifies1

Resource

Pers pective 2

State 1

Resource

Pers pective-1

State-1

Resource

Pers pective 3

State 1

Resource

Pers pective 3

State 2

Resource

Pers pective 3

State 2

Resource

Pers pective-3

Resource

Pers pective-3

Resource 2
Resource

Pers pective-1

Resource

Pers pective-1 Resource 1

Resource

Pers pective-2

Resource

Pers pective-2

Resource 3

elimination

redef inition

CREATES -
ADDITION

ELIMINATES -
ELIMINATION

MODIFIES -
REDEFINITION

CREATES -
ADDITION

ELIMINATES -

ELIMINATION

MODIFIES -
REDEFINITION

Fig. 10. Relationship among task-resourcePersp-links
and VAS operations

 Once the task finishes its execution, the design
knowledge changes have to be documented. As the
task-resourcePersp-links are the ones that describe the
effects of the tasks over their associated resource
perspectives, they are the ones responsible for
updating the previous ModelVersion. Each task-
resourcePersp-link gives rise to a new ResourcePersp
state instance (NewState), with exception of the
eliminates links. The created NewState instance is
stored in the NewVersion Model Version and finally,
the links between the previous Model Version
(PreviousVersion), the NewVersion and the NewState
are updated by invoking the UpdateLinks method.
Figure 10 explicitly shows the relationships among the
task-resourcePersp-links specified in the task model

and the VAS history links. The semantics is the
following: (i) the existence of a creates relationship in
a task model gives rise to an addition link, (ii) an
eliminates relationship derives in an elimination
relationship and (iii) a modifies link generates a
redefinition relationship

3.3 Data Access Server (DAS)
 The Server side is responsible for storing and
retrieving the information generated in every design
project as well as the design tasks specifications.

creates1 creates2

Generate
IO

Structure

creates3

Evaluate
IO

Structure

<<Before>>

modifies1 modifies2

Output Stream
<<ResourceP ersp>>

1..*1..* 1 ..*1 ..*

1 ..*1 ..*

creates4

Reaction Section
<<ResourceP ersp>>

modifies3

Input Stream 1
<<ResourceP ersp>>

1..*
1..*

deletes1
IO Structure

<<ResourceP ersp>>

creates5

Separation Section
<<ResourceP ersp>>

Generate
Recycle
Structure

<<Before>>

creates6

Internal Stream
<<ResourceP ersp>>

1..*1..*1 ..*
1 ..*

Fig. 11. Tasks involved in the example scenario

4. Example
 In order to illustrate the scenario administration
environment a small scenario is considered. Figure 11
shows the generic design tasks involved in the scenario
as well as their associated ResourcePersps. The tasks

Latin American Applied Research 31:419-425 (2001)

 424

represent the initial steps taken during the creation of a
flowsheet.

Repository

creates1
creates2

creates3
creates4

creates5

modifies3

modifies4

creates6

creates7
creates8

creates9

creates10

deletes1

creates11

Output
Stream 4

Input
Stream 2

Input
Stream 1

IO
Structure 1 Output

Stream 6

Output
Stream 5

Reaction
Section 1

Input
Stream 6

Separati on
Section 1

Stream6

Stream 5

Input
Stream 5

Evaluate IO
 Structure 1

Generate
Recycle

 Structure 1

Generate IO
 Structure 1

Design Tasks

Output
Stream 3

modifies5modifies6

modifies7

modifies8

Task executed

Input Stream 1
State 1

IO Struc ture 1
State 1

Input Stream 2
State 1

Output Stream 3
State 1

Output Stream 4
State 1

Model Version 0

Model Version 1

Output Stream 3
State 2

Output Stream 4
State 2

Model Version 2

Input Stream 5
State 1

Input Stream 6
State 1

Output Stream 5
State 1

Output Stream 6
State 1

Reaction Section 1
State 1

Separation Section 1
State 1

Model Version N
Task executed

Task executed

Input Stream 1
State 2

Input Stream 2
State 2

Output Stream 3
State 3

Output Stream 4
State 3

...

IO

 Structure 1

Stream 1

Stream 2

Stream 3

Stream 4

IO

 Structure 1

Stream 1

Stream 2

Stream 3

Stream 4

Reactio
n

Section
 1

Stream 1

Stream 2

Stream 5

Stream 6

Separation

 Section
 1

Stream 3

Stream 4

State 1Input Stream 2

Flow: f2

Destination: IO
 Structure 1

Output S
tr eam 3 State 2

Flow: f3

Output: IO
 Structure 1

Inp
ut S

tream 2 Sta
te 2

Flow: f2

Destination: R
eactio

n Section 1

Output S
tream 3 Sta

te 1

Flow: not sp
ecifie

d

Output: IO
 Structure 1

... V iew s gen erated by th e
A pplication Se rver

Fig. 12. Process design execution

 Initially, an empty model Version (Model Version
0) is created (Fig. 12). An instance of task Generate IO
Structure1 does exist. As the task does not have any

preconditions, it can be executed. Model Version 1 is
created. Task Generate IO Structure1 is executed and
the IO Structure1 is created with two input streams

S. GONNET, G. MANNARINO, H. LEONE and G. HENNING

 425

(ResourcePersps Input Stream1, Input Stream2) and
two output streams (ResourcePersps Output Stream1
and Output Stream2). The Input Stream2 perspective
only knows the destination and the flowrate (f2) of the
Stream2 Resource. Similarly, Output Stream3 filters
the origin and the flowrate of Stream3. The flowrate of
Stream3 has not been specified yet. The results of
executing Task Generate IO Structure 1 are
graphically shown in the figure as “Repository View
by Model Version 1”. When the Input Stream2
perspective is created an instance of the State-C class
is generated (Input Stream2 State1) and stored in
Model Version 1. Input Stream2 State1 represents a
snapshot of Stream2 as viewed by the Input Stream2
perspective. The remaining streams are similarly
treated.
 In order to capture the process history, a reference
to the task Generate IO Structure 1 is stored in the
history relationship that links Model Version 0 with
Model Version 1. The relationship addition between
Model Version 0 and Input Stream2 State1 is created.
It makes explicit how the design knowledge evolved
after executing task Generate IO Structure 1.
 Task Evaluate IO Structure is then executed in
order to specify the Output Streams flows

References

Allen, J. F., “Maintaining knowledge about temporal

intervals”, Communications of the ACM 26, 832-
843 (1983).

Bañares Alcántara, R., J. King and G.H. Ballinger,
"Extending a Process Design Support Systems to
Record Design Rationale", AIChE Symposium
Series No. 304, 332-335 (1995).

Gonnet, S., R. Holzer, H. Melgratti and H. Leone,
“Administración de Versiones de Modelos en una
Herramienta de Soporte para el Análisis y Diseño
Orientados a Objetos”. Proceedings of the IV
CACIC, Neuquén, Argentina (1998).

Jacobson, I., Christerson M., Jonsson P. and Övergaad
G., Object-Oriented Software Engineering. A Use
Case Driven Approach, Addison-Wesley (1994).

Mannarino, G., G. Henning and H. Leone,
“Coordinates: A Framework for Enterprise
Modeling. Information Infrastructure Systems for
Manufacturing II, J.J. Mills and F. Kimura (Eds.)
Kluwer Academic Publishers (1999).

Westerberg, A., E. Subrahmanian, Y. Reich, S. Konda
and the n-dim group, "Designing the Process
Design Process", Computers chem. Engng. 21,
Suppl, S1-S9 (1997).

Received September 2, 1999.
Accepted for publication March 14, 2001.
Recommended by A. Bandoni.

Latin American Applied Research 31:419-425 (2001)

 426

