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Abstract

The paper deals with the strong discontinuity approach and shows the links with the decohesive fracture mechanics
provided by that approach. On the basis of 1D continuum damage models it is shown that, by introducing some few
ingredients like the strong discontinuity kinematics, discrete constitutive models (traction vs. displacement jumps) are
automatically induced. For the general 2D-3D cases it is shown that the weak discontinuity concept is an additional
ingredient, necessary in order to fulfill the strong discontinuity conditions, which allows to establish additional links
with the fracture process zone concept. Also classical fracture mechanics properties as the fracture energy are related to
the continuum model properties in a straightforward manner. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It is a very known fact that the observed mechanical behaviour of solids exhibits, beyond a limited elastic
range, macroscopical discontinuities which, depending on the analysis environment, take the name of
cracks, slip lines, shear bands etc. From the mechanical modelling point of view, those discontinuities can
be characterized as jumps in the displacement field across material (fixed) lines and have been recently
termed strong discontinuities [30]. Since very often the ultimate carrying capacity and the structural
integrity itself are crucially affected by the appearance of such discontinuities, modelling the onset and
propagation of strong discontinuities has become an important subject in solid mechanics. In this context
the presently available approaches to model displacement discontinuities can be classified into two large
groups, namely:

(1) The fracture mechanics approach: Linear fracture mechanics has been the classical tool to model
displacement discontinuities. In addition, the necessity of dealing with the process of formation and
propagation of discontinuities led the development of the non-linear (decohesive) fracture mechanics
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techniques essentially based on the introduction of adhoc discrete constitutive equations (tractions vs.
displacement jumps) at one discontinuity interface inside an elastic continuum medium [4,10].

(2) The continuum mechanics approach: 1t is well known that the inclusion, in standard continuum (stress
vs. strain) non-linear constitutive equations, of strain-softening features (constitutive softening) leads to the
strain-localization phenomenon, that is, the concentration of strains in narrow bands. This fact has fre-
quently been envisaged as an appealing way to model displacement discontinuities (when the localization
bands become narrower and narrower) [6]. However, it is also well known that in this case the boundary
value problem become ill-conditioned resulting in instabilities and spurious bifurcations of the obtained
solutions. Partial remedies have been found either by introducing mesh dependent regularizations of the
continuum constitutive equation (smeared crack approach) [16,27] or performing substantial modifications
on the nature of those equations (non-local models, viscous or gradient regularized models etc.) [15].

Both families of approaches are developed from different departure points and, frequently, in different
research environments. This results in a lack of theoretical and fundamental connections between them.
However, some attempts to link to each other have already been done [25] and the aim of this paper is
to contribute to this field. The work outlines the general features of the so called strong discontinuity
approach (SDA), which has been developed in the last years [1,13,14,17,18,20-22,24,26,29,30,32,33], whose
main features are:

e The use of standard local continuum constitutive equations (stress—strain), non-linear and equipped with
strain softening.

e Consideration of the strong discontinuity kinematics, i.e. discontinuous kinematics induced by the ap-
pearance of jumps in the displacement fields (the strains are unbounded Dirac’s delta functions) in
the format of continuum kinematics.

e The strong discontinuity analysis, i.e. the mathematical analysis devoted to keep compatibility of those
continuum constitutive equations with the strong discontinuity kinematics.

On that basis it is shown that every continuum constitutive model induces, in a consistent manner, a
discrete one (traction vs. displacement) [19]. This provides the aforementioned links of continuum me-
chanics and non-linear (decohesive) fracture mechanics and furnishes procedures to generalize the appli-
cation of standard constitutive models beyond the continuum range up to reach typical fracture mechanics
applications. Examples of the analytical derivation of such discrete models are given in the remaining of
this paper for 1D and 2D cases on the basis of standard isotropic continuum damage models. Some nu-
merical applications using finite element procedures are also provided.

2. Motivation: 1D example

Let us consider the 1D continuum isotropic damage model defined through the following ingredients:

Free energy  Y(e,r) = [1 — d()Wo(e); iy = JE&° (1a)
Constitutive equation ¢ = 0.¥(e,7) = 0 = (1 — d)Ee (1b)
Damage variable d=1—gq(r)/r; d€]0,]] (1c)
Evolution law #=14; r€[o,,00) 7|,y =0y (1d)
Damage criterion f(a,q) = |o| — g; (le)
Loading-unloading conditions A>0; f<0; Af=0; Af=0 for f=0 (1f)

(consistency)

Hardening rule ¢ = #(r)i (# =q'(r)<0); q€[0,0.] ¢|_y=0. (1g)
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Fig. 1. Uniaxial continuum damage model.

where  is the free energy, ¢ and ¢ are, respectively, the infinitesimal strain and stress, r is the inter-
nal variable and o, is the peak stress (or elastic strength). In addition ), is the elastic free energy, E is the
Young’s modulus and d is the damage variable defined in terms of the hardening/softening variable
q(r) whose evolution is ruled by the hardening/softening parameter 5. Eq. (1f) describes the loading—
unloading conditions where / > 0 is the damage multiplier and (o, ¢q) defines the damage surface (OE, :=
{0;f(0,9) = |o| — g = 0}) which bounds the elastic domain (E, := {0; f(0,q9) = |o| — g < 0}). Therefore
in Eq. (1f) f = 0 determines that the stress state lies on the damage surface OE,. In that case 1 =7 >0
determines, through the consistency condition Af = 0, that / = 0 what corresponds to loading, whereas
A = i = 0 corresponds to neutral loading or unloading (f < 0). In Fig. 1(a) the main features of the stress—
strain law are sketched.

The evolution equation (1d) can be integrated along the time ¢ as follows. Let us define the effective or
elastic stress G(¢) as

Effective stress 6 =FEe=0= (1 —d)Ee=(1—-d)s = 15 (2)
r

For loading cases (4 = 7 > 0) and from Egs. (1f) and (2):

i=i>0=flo.0) =l —q=0=lo|—g= % |s|l—g=0=7r=]d 3)

~—

=0

and since A =7 > 0 and r|,_, = g,, from Egs. (1f) and (1d), Eq. (3) yields:

r(1)<r, = max(a,, |5(e(s))|] (4)
s€[0.,7]
which identifies r as the historical maximum of the effective stress &(¢). Since the hardening/softening law
q(r) is assumed to be explicitly known from Eq. (1g), substitution of Eq. (4) into the constitutive Egs. (1b)
and (1c) supplies a closed form expression of the whole damage model.

2.1. Strong discontinuity kinematics

Let us consider the 1D bar of Fig. 2 clamped at one end and pulled from the other. Let us denote by 2
the set of material points of the bar, and let / and A be the bar length and the area of its cross-section,
respectively. Let us also consider that a strong discontinuity (namely a jump in the displacement field) takes
place at a certain cross-section S of the bar and let us denote by Q/S the set of material points of Q ex-
cluding the ones of S and by Q" and Q those portions of Q/S placed in front of and behind of S, re-
spectively. Then the discontinuous displacement field can be written as:
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Fig. 2. Strong discontinuity kinematics.

u(x,t) = u(x,t) + Hs[u](x, 1) (5)

where both u(x,#): Q x [0, 7] — R and [u](x,#): Q x [0, T] — R (where [0, T] stands for the time interval of
interest) are regular (smooth) functions and Hs(x) stands for the Heaviside (or step) function placed at S
(Hs(x) = 0 for x < xg and Hs(x) = 1 otherwise). Then the continuum strain field compatible with the dis-
placements (5) can be written as:

~ Ou(x, 1) _ Ou(x, 1) u oflu](x,1)

o(x, 1) = 0 t) = g(x,t 0 t 6
ol ) = o =D LD s = s+ Ssu() ©)
regular (bounded)  singular (unbounded)

&(x,1)
where 0s stands for the Dirac’s delta placed at S (ds = (dHs(x)/dx) in the distributional sense) and
[u](xs, 1) # [u](z) is the jump of the displacement field at S:

[u] = ul,; —ul,. (7)

N

Rate versions of Egs. (5) and (6) are (see Fig. 2):
i‘(xv t) = ﬁ(xv t) +H5[uﬂ(x7 t); [”] = u|x;f - Z:’l)r

Strong discontinuity 5

kinematics ént) = exg) 4+ os[u]() (8)
regular (bounded)  singular (unbounded)

2.2. Strong discontinuity analysis

The strong discontinuity analysis aims at making compatible the continuum constitutive model (1) with
the unbounded strain field (6). The departure point is the fact that the continuum constitutive model returns
bounded stresses (and rate of stresses) for bounded strains (and rate of strains). Therefore, since at Q/S the
strains eq/s are bounded ! (6g/s = ¢ = bounded and éq/5 = & = bounded), according to Egs. (6) and (8),
then go/s and 6o/5 are bounded and so are, in virtue of the momentum balance (equilibrium) condition
(05 = 0gss and 65 = Ggys) the stresses og and ¢ at the discontinuous interface S. Consequently, we con-
clude that both o5 and 6¢/s are bounded in spite of the fact that the strains &5 and &5 can become unbounded
due to the presence of the Dirac’s delta function Js in Egs. (6) and (8). We shall take advantage of that
result in the following.

! From now on (-)g stands for (-)(X, )|ycs and (")gys stands for ()(x, £)lxeqys-
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Substitution of Eq. (6) into Eq. (2) yields:
qs ..,-
g =—E(e+ ds|u 9
ST (& + os[ul) ©)
bounded

For the subsequent mathematical treatment, lets us approach the Dirac’s delta function ds by a k-regu-
larized sequence, 5/;7 defined as follows: instead of considering the discontinuity surface S, we shall consider
a discontinuity band @, of bandwidth k (where k is a very small regularization parameter, see Fig. 2) and
then:

k difl . i 1 xe Q
B s ) ={ T (10)
so that, in the distributional sense, lim;_ 5'; = Js5. Now, substitution of Eq. (10) into Eq. (9) yields:
B (e i) = tim LB ~ (fm L
o5 = e E(a + k[[u]]) = }gr& krSE(ka +[ul) = (1136 krs> gsE[u] (11)
bounded bounded

where the bounded character of gs € [0,0,], E and [u] is emphasized. Therefore, in order to fulfill the
mathematical consistency of Eq. (11) condition 1/rs = O(k) (and, thus, lim,_, 1/krs = bounded in Eq. (11))
has to be guaranteed by introducing an appropriate ingredient in the continuum constitutive model. Let us
state this ingredient in terms of the continuum softening parameter # i.e.:

H = kH (12)

where # will be termed the discrete softening parameter and shall be considered a material property.
Substitution of Eq. (12) into Eq. (1g) reads:

gs = Hi=H kis = g5 = Ha (13)
bounded def -

which defines the discrete internal variable & (bounded) as:

& == kI"S
Discrete internal variable < pounded = g =
&,_, =0; a€[0,00}

—

. 1,
%a:rszau—i—%a (14)

and the discrete hardening/softening variable (&) = ¢s(rs) through the discrete hardening rule:

Discrete hardening rule :  g(a) = #a (15)

Indeed, the result in Eq. (14) guaranties that lim,_o 1 /krs = 1/a and, consequently, the mathematical
consistency of Eq. (11) which now reads: bonmded

os :@E[u] (16)

o
2.3. Discrete 1D model
From the continuum density (per unit of volume) of free energy (¢, r) in Eq. (la) and the relation

Q, = Ak (see Fig. 2) we can define the discrete (per unit of cross-section surface) free energy, ¢, at the
discontinuity interface S as:
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o Q . . 1 1
5%wwwhf=gW%wFﬂg%kf%ﬂgaiﬂmf (17)
=~ NG NG [u]
=k (1—ds) a0
Di . o _q(@) (1 2
iscrete free energy :  ¢([u],a) = }{makx/z(ss,rs) =75 EE[M] (18)

where Eqgs. (8), (9) and (14) have been considered. Now, by derivation of Eq. (18), in view of Eq. (16), one
obtains:

o[l ) = 12 Efu] = o (19)

Eq. (19) can now be rewritten as:

Discrete constitutive equation : os = (1 —w)

=~

[u]
p (20)

Discrete damage variable : w(@) =1-142

- o € (—o0, 1]
In Eq. (20) the only role of the bar length / is to keep the dimensionless character of w. Therefore, the
evolution law (1d), taking into account Eq. (14), reads:
1. .
I."S =—0= /1 =0 =

. = ki =1 (1)
.

Finally, the damage criterion (le) and the loading—unloading conditions (1f), at the discontinuous interface
S, can be written as:

Discrete damage criterion :  f(as,9) = F (05,q) = |os| — g (22)
A20; F<0; 7 =0 (23)

In summary, by collecting Egs. (12)—(23) we recover the following discrete damage model at the dis-
continuous interface S:

_ i\ 1

Free energy  o([u], %) = (q(@)/@)o([u]); @0 = EEMZ (24a)

—_——

=lim kj(es.rs)

k—0

E
Constitutive equation a5 = Op, ¢ ([u], ) = a5 = (1 — w) 7 [u] (24b)
Damage variable (&) = # w € (—o0, 1] (24c)
Evolution law & =/; &€ [0,00) &|_,=0 (24d)
Damage criterion /(o—s, q) =|os| — g (24e)
Loading—unloading conditions 1>0; #<0; 1% =0; A% =0for # =0 (24f)
(consistency)
Hardening rule §(a) = #% # =g (@)<0; Gecl[0,6,] §l_,=o0. (24g)
tw

By comparing the discrete damage model (24) with the original continuum damage model (1) we can check
that there is a one to one correspondence of the continuum and discrete variables as stated in the following
table:
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(a) (b)
cA o=(1-d)Ee Oy o, =(1-w)E/DH[[u]
de [0»1] we (—w,l]
Gu 777777777777 (7”
(1-d)E (1-w)(E/D)
E -
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4 *.41_1

N = L
e=e+0, [u]

Fig. 3. Continuum and discrete damage models.

Continuum model ¢ ¢ E d r q(r)
Discrete model o5 [u] E/I o a g(a) (25)

Thus, we can conclude from the analysis that the insertion of the strong discontinuity kinematics
¢ = & + Os[u] (which can be k-regularized as indicated in Eq. (10)) into the continuum damage model (1),
induces the fulfillment, at the discontinuous interface S, of the discrete (stress-jump) model (24). Moreover,
this can be achieved by solely performing the regularization of the continuum softening parameter in Eq.
(12) and keeping the rest of the model in the standard continuum format (see Fig. 3).

It can be also observed that at the peak stress &,_, =0 (see Eq. (14)) = w(%) =1 - (g/%)l = —oo.
Therefore, the initial secant stiffness for the discrete model is (1 — w)(E/I) = 4o0. In this sense, the induced
discrete model could be termed as a rigid-damage model.

For the bar of Fig. 2, and in the context of an increasing displacement at the bar end ¢ > 0, the ac-
tivation mechanism of such a discrete model is a local bifurcation of the stress—strain fields when the
elastic strength o, is reached (which corresponds to a displacement J, = o,//E). Beyond that point
the strong discontinuity kinematics (8) develops ([u] # 0) and the constitutive behaviour at the dis-
continuity interface S is ruled, formally by the non-linear part of the continuum constitutive model (1)
(Fig. 3a) but in practice by the discrete constitutive model (24) (Fig. 3b). As far as the continuous part
of the bar Q/S is concerned, after the bifurcation the constitutive behaviour features a linear elastic un-
loading, i.e.

6<GuZ/E 5>O'MZ/E
Discontinuous interface S ¢ =FEg &=0/l o= (1—-d)E(E+ 0s[u]) =(1—w)E[u] (26)
Continuous domain Q/S ¢ =FEg; &e=9/I oc=Eg &= (6—[i])/l<0)

2.4. Fracture mechanics properties: the fracture energy

It is illustrative to compute the energy consumption for the formation of the discontinuity during the
time interval 7 € (0, #,], where 7., stands for the time at which complete decohesion of the crack is achieved
(0],—,. = 0). In virtue of the theorem of the expended power, and neglecting the kinetic energy (as corre-
sponds to the quasistatic case), the external power input in the bar equals the stress power:
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d#(t) = Fod = /QO'SdV = /Qa(é—i— os[u])dv = /Q/sa € dV—&—/Sa[[u]dS
External power input ~—— G/E
Stress power
'd [ o?
=4 — = 1] 4 2
/0 dt<2E>dx+0[[u]} (27)

where the strong discontinuity kinematics (8), the Dirac’s delta property [, ds(-)dV = [,(-)dS and the
elastic constitutive behaviour at Q/S (¢ = Ez) have been considered. Now, by integration along time, the
total mechanical work %" can be computed as:

"f//:/otmd“/%(t)dt:/otx (A/)l(i(;]z)dx—ka[[i{}]A)dt
:A/OI [/Ox %(%)dt]dx—f—A/O%a[a]dt:A/o[ {%}: dx—I—A/O%a[[u]dt
—

=0-0

— 4 / " ol dt = 4G (28)

Gy

which identifies the area under the discrete o5 — [u] constitutive law of Fig. 3 (right) as the energy con-
sumption per unit of surface to produce the discontinuity that is, in terms of fracture mechanics, the
fracture energy Gr.

Now we focus on the continuum constitutive model (1) and the discontinuity interface S. For the loading
conditions occurring there it can be readily shown, from Eq. (3), that both couples (g, é) and (q, (1/E)F) are
conjugate variables for the stress power so that we can write:

. . 1,
O'SS:O'JSS:qSEI"S (29)

Now, substitution of the k-regularized strong-discontinuity kinematics (¢ = &+ (1/k)[u]) and the regu-
larized hardening softening law from Eq. (13) g5 = #ki-s into Eq. (29) yields:

. - 11 1 df1,\ . o1 d[1,
oEg = O'(S"‘%[uﬂ) :qSEVS :WquS :WE<§qS> :>£1113k0'85 = O'[Mﬂ :ﬁ& <§qs> (30)

Therefore the fracture energy of Eq. (28) can be computed as:

o 1d 1, 11 ] 1a2 1 o2
= J = —_ — = — | = = 4 ¥ = — — u 1
Gy /0 ofu]de /0 = dt<2q>dt 7 {2(]} 251/:%% 3 EG, (31)

4=40=0u

where, for the sake of simplicity, a constant value for .# has been considered (linear softening). Eq. (31)
states the material property character of the discrete softening parameter 5 which can be then charac-
terized in terms of the fracture mechanics properties o,, E, and Gy.

3. Extension to general 2D and 3D problems

The approach outlined above can be readily extended to the general multidimensional case as follows in
next sections.
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Fig. 4. Strong discontinuity kinematic general 2D-3D case.

3.1. Kinematics: weak and strong discontinuities

Let us consider a body Q exhibiting a jump in the displacement field across a material surface S, whose
normal is n, that splits the body into the domains Q* (pointed by n) and Q (see Fig. 4a). The strong
discontinuity kinematics of Eq. (8) can be now extended to [22]:

fl(X, t) = ﬁ(X, t) +H5[ﬁﬂ(xa t); [u] = l.l|xeSJr - l.l‘xeS*

Strong discontinuity . 5. . : S
. . ex,1) =Vualx,t) = &(x,t + ds([u] ®n 2
kinematics (x.1) (x,1) ‘( _/) S (I ]_/) (32)
regular (bounded)  singular (unbounded)

where Hg(x) is the step function placed in S (Hs(x) = 0 for x € @ and Hs(x) = 1 otherwise) and dg stands
for the Dirac’s delta function emerging from the gradient (in the distributional sense) of Hs(x) (VHs(x) =
osn(x)).

For the subsequent mathematical analysis it is convenient to consider again a regularized version of the
kinematics in Eq. (32) by defining a discontinuity band S” (of bandwidth /) containing the discontinuity
surface S (see Fig. 5) and approaching the Dirac’s delta function by the regularized Dirac delta function
defined as:

(33)

1 1 vVvxeds
h __h . h =
Is(x) = 2 us(x); ps(x) {0 VxeQ/s

where u(x) is a collocation function on §* and Q/S" stands for the set of points of Q not belonging to S”.
The regularized version of the rate of strain field in Eq. (32) now reads:

éx,0) =Vi(x,0) =  &x,0) + Ss([a] @ m)°® (34)
N—— —
regular (bounded)  singular (unbounded when A—0)

The kinematics of Eq. (34) allows to introduce a new ingredient, the weak discontinuity concept, which
appears to be necessary for modelling purposes. We shall consider in Section 3.4 the onset of the dis-
continuity to originate from a local bifurcation process (discontinuous bifurcation) occurring at time #g at
which the strain fields localizes inside a band S” according to the kinematics of Eq. (34). In the most general
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Fig. 5. (a—c) Collapse of a weak discontinuity (A # 0) into a strong discontinuity (4 — 0); (d) bandwidth evolution.

case, the bandwidth of the localization band is different from zero (4 # 0) so that, according to Eq. (34), the
strain field is bounded and it is characterized in terms of an apparent jump [u] = u|, g, —ul,_, (measured
as the difference of the displacement field at both sides of the band). We shall name such situation weak
discontinuity and, for the subsequent analysis, we will characterize it by slight modification in Eq. (34)
neglecting the bandwidth % in front of the typical size of the body Q and, therefore, considering the dis-
continuity surface S instead of the discontinuity band S” in such equation i.e.:

#(x,0) = &(x, 1)+ ps([a] @ m)’; “S(X):{(l) igiz/S

Weak discontinuity — 4 # 0
Strong discontinuity — 2 — 0

Weak-strong discontinuity kinematics

(35)

In this context, the process of formation of a strong discontinuity at a material point £ of the body, can
be modelled as a weak discontinuity that collapses into a strong discontinuity at a certain time of the
deformation process (see Fig. 5). At time g (from now on the bifurcation time) the stress—strain field bi-
furcates, according to the kinematics of Eq. (35), with [a] # 0, resulting in a localization band of band-
width Ap (see Fig. 5(a) which characterizes the onset of a weak discontinuity. At subsequent times the
bandwidth decreases ruled by a certain (material property) bandwidth evolution law (see Fig. 5(d)) up to
reach a null value (for computational purposes, a very small parameter k) * at time #sp (from now on the
strong discontinuity time) which characterizes the onset of the strong discontinuity. Therefore, during the

2 This minimum bandwidth value, k, should be as small as permitted by the machine precision.
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Fracture Process Zone

Linear (elastic)

Non - linear (continuity, [ul = 0)
<</
,»’7\ Weak discontinuity(h#0,  [u] # 0)

Fig. 6. The fracture process zone modelled by the strong discontinuity approach.

time interval [fg, tsp] @ weak discontinuity appears at 2 which collapses into a strong discontinuity at time
t = tsp. Finally for # > tsp a full strong discontinuity develops.

Considering now the body level, we can envisage the propagation of the discontinuity as the above
process taking place, successively along time, in an increasing set of material points (see Fig. 6). In this set,
which defines the propagating discontinuity, we can find the following subsets:

e Material points that have already reached the non-linear (damage, plastic etc.) behaviour but not having
bifurcated yet. They define a zone with continuous non-linear behaviour (zone Y-B in Fig. 6).

e Material points that have already bifurcated and thus experiencing a weak discontinuity kinematics,
[u] # 0, with a non-zero bandwidth (zone B-SD in Fig. 6).

e Material points that have reached the strong discontinuity regime, 2 = k ~ 0 (zone S in Fig. 6).

According to this, the zone Y-SD in Fig. 6 can be immediately identified as that in which the fracture
(strong discontinuity) is processed and, therefore, as the fracture process zone classically considered in non-
linear fracture mechanics [3,4].

3.2. An isotropic damage model
The described methodology can be applied to any non-linear constitutive equation equipped with strain

softening behaviour. For the sake of simplicity we shall consider here the extension of the one-dimensional
isotropic damage model (1) to the general three-dimensional case:

Free energy y(e,r) = [1 —d(r)Wy(e): o =1e:C:e (36a)
Constitutive equation ¢ =0,/(s,7) =6 =(1—-d)C:¢ (36b)
Damage variable d=1-—g¢q(r)/r; d€]0,1] (36¢)
Evolution law #=1; r€ [r,00) ro=r|,_y=0./VE (36d)

Damage criterion f(6,9) =1, —¢; T, = ||6]|c1 =Ve:C': 6 (36e)
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Loading-unloading conditions 7<0; A>0; Af=0; Af=0for f=0 (36f)
~———

(consistency)

Hardening rule ¢ = #(r)i; (# =4 (r)<0); q€[0,r0] 4gl_o=r0 (36g)

In addition to the variables already described in section 2, in Eq. (36a) C is the elastic fourth order
constitutive tensor defined by C =21 ® 1+ 2ul (1 and I are the second and fourth order unit tensors,
respectively, and / and 1 the Lamé parameters). In Eq. (36e), C~' defines a metric in the stress space * such
that the damage surface 0, := {7; f(6,9) = 7, — ¢ = ||6]||c-1 — ¢ = 0} is an ellipsoid in the principal stress
space [8].

By defining the equivalent stresses ¢ = C : ¢ and the strain based norm 7, = [|6]|c-1 = V& :C ' :6 =
(1/(1 — d))z,, and following the same reasoning than for the one dimensional case of Section 2, the model
of Eq. (36a)-(36g) can be integrated in closed form, leading to:

(o), = max[r. . (o(s))] (37)

and the tangent (in terms of rates) constitutive equation for loading cases results:

6=C":¢
{Cd =(1-d)C-Hsxe (38)

q

where C? is the tangent constitutive operator.
3.3. Strong discontinuity analysis

As commented above the goal of the strong discontinuity analysis is to extract those features that make
the constitutive continuum model (36) compatible with the unbounded strain field (35). The key point for
that analysis is to realize that the local form of the linear momentum balance principle imposes the traction,
J =6 -n, to be continuous across the discontinuity interface S. This traction continuity condition reads:

T (x,t)=6gs-n=05-n ¥YxeS Vie[0,T] (39)

Since the strains &o/s = &, at the continuous neighbourhood of S, are bounded according to Eq. (34), and
since the continuum constitutive model returns bounded stresses for bounded strains (or rates of strains) we
can conclude that 6¢/s(&g/s) is bounded and so is .7~ = 6¢/s - n. Consequently, from Eq. (39), 65 - n has to be
also bounded and so must be the whole tensor o5 even for ¢ > fsp (the strong discontinuity regime) when
h — 0 and the strains &g are unbounded according to Eq. (34) (see Ref. [19] for further details). A subse-
quent analysis shows that also g5, 65 and ¢s are bounded at the strong discontinuity regime. Based on those
facts a similar analysis to the one of Sections 2.2 and 2.3 can be performed. The main results from this
analysis are:

(1) The softening regularization condition:

H =kAH for t>tsp (40)

in terms of the continuum softening parameter # and the discrete softening parameter J#, as a necessary
condition for the aforementioned compatibility.

(2) The following discrete damage constitutive model emerging from the traction continuity condition
(39) (more details on its derivation can be found in Ref. [19]):

* For uniaxial stress states it results 7, = ||6]|c-1 = ||/ VE.
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¢(A[u], Az) = L2 g (Alu]) { 0o = LA[u] - Q° - Alu]

FIee CCTEY o (aTu], A%) Zlim b s rs) 1 Q) = C e
Constitutive equation 7 = Op@(Afu],Aa) 7 = (1 — w)Q° - Afu]/! (41b)
Damage variable w(A%) =1— @l w € (—o0, 1] (41c)
Evolution law & =7 (5% 1im7#) { M_fef[(i’ OO)_ (41d)
h=0 (Aa=al, *O‘|z:zsn)
Damage criterion #(7,9) =17 —q 17 = T lgqr =\/ 7 - Q' 7 (41e)
Loading-unloading conditions f<0;A>0; Af=0 1% =0 for Z =0 (41f)
(consistency)
Hardening rule §(A%) = #a; A = G (Ax) <0 7 € [0,qsp] (41g)

qsp = q|t:l‘5D

where, Afu]| = [u], — [u], stands for the incremental jump from the onset of the strong discontinuity. *In
Eq. (41a), Q°(n) =n-C-n is the so called acoustic tensor which can be proved to be non-singular
(det Q°(n) > 0) [34].

(3) The strong discontinuity conditions. Unlike the 1D analysis of Section 2, in general 2D-3D cases,
some restrictions on the structure of stress field 65 during the strong discontinuity regime (¢ > #sp) appear
from the strong discontinuity analysis in addition to the discrete constitutive model (41). Those restrictions,
which can be formally written as R(a5) = 0, have to be fulfilled all along the strong discontinuity regime
and, in particular, at the strong discontinuity time fsp. For the damage models considered here these
conditions can be shown to be [19]:

€y = &3 = 833, =0
:>Y[C7] :gas}zz ; [Cfl :0'5] = [C7l :O'S] =0 (42)

Strong discontinuity conditions R(es) = {
23 33

where ¢ = C ™' : o stands for the effective strains and subscripts (), refer to tensorial components in a local
orthogonal coordinate system defined by the unit vectors {n = &, €,, &;} at every point of the discontinuous
interface S.

Remark 1. Again, the following one to one correspondence of the continuum constitutive model (36) and
the induced discrete one (41) can be found:

4 Notice that the possibility [u]l,, # 0 is considered here. This corresponds to the case, tackled in Section 3.1, that a displacement
jump [u] develops during the weak discontinuity regime (¢ € [¢g, #sp]) preceding the strong discontinuity.
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Continuum model Discrete model
V(er) o(A[u]. A%) = lim i (es. rs)
g Alu]
6=0y(e,r)=(1-d)C:¢ T = Ope(Alu], A%) = (1 — 0)Q° - Afu]/!
C Q°(n)=n-C-n
r Ag = },ii%hr (43)
q(r q(Az)
d=1—gq/r o=1-1g/Aa
floe,q9)=1,—4q F(T.q9) =17 —q
7o = |6 Ty = ||?||[Q8j*1
H = Hh .

Remark 2. The constitutive model in Eq. (41a)—(41g) is a discrete damage model relating the traction 7
at the discontinuity interface and the displacement jump [u]. Several important features can be noticed
here:

(1) The discrete model is automatically induced by the strong discontinuity kinematics (35) and the
traction continuity condition (39) on the basis of the continuum model of Eq. (36a)-(36g), and there is
no need to derive it explicitly. For modelling purposes the whole simulation is kept in the continuum
format.

(2) The discrete model inherits the nature of the parent continuum model. For the present case the
damage character of the continuum damage model (¢ = (1 — d)C : ¢) is inherited by the discrete damage
model (7 = (1 — w)Q® - A[u]/I). Moreover, it can be observed that, since Ag|, =0 then |, = oo (see
Eq. (41c)) and the initial secant discrete constitutive model is Q° = (1 — w)Q° = —coQ*(see Eq. (41b)).
Therefore the discrete damage model is a rigid-damage one. Those facts can be proved to happen also with
other parent continuum constitutive models (plasticity models for instance), see Ref. [19] for details.

Remark 3. The strong discontinuity conditions (42) clearly preclude, for general cases, the formation of a
strong discontinuity directly by discontinuous bifurcation from a continuous stress—strain field. Unless
those conditions are fulfilled by that stress field, > the bifurcation must take place under a different kine-
matics. This suggest the weak discontinuity concept and the variable bandwidth model, outlined in Section
3.1, as appropriate modelling mechanisms to allow such bifurcation in general cases and to progressively
induce the strong discontinuity conditions (42).

3.4. Onset of the discontinuity: bifurcation analysis

At this point the following questions, with respect to the mechanism of formation and propagation of
the discontinuity outlined in Section 3.1, remain to be answered:

e How the bifurcation time ¢y, signalling the onset of the weak discontinuity at a given material point, is
determined?

e What is the procedure to set up the normal n that appears in the kinematical description of Eq. (35)?

e How the bandwidth 4y at the bifurcation time of Fig. 5(d) is determined?

5 Which only happens for very particular loading conditions.
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Those questions can be tackled by resorting to the tools provided by the discontinuous bifurcation
analysis [28] which focus on the problem of the bifurcation of the stress—strain fields in the neighbourhood
of a given material point £ € S, constrained by the rate form of the traction continuity condition (39):

[71(x,t8) = [6] -n =0 (44)

The problem can be stated as follows: find under what conditions the stress—strain fields, continuous in a
neighbourhood of 2 (65 = 645,85 = ¢,,,), bifurcate into discontinuous rate of stress and strain fields (35)
such that:

Q/S
G0/s(Xp,t5) = Cqys  éays = Coys : & (45)
05(X»,13) = Cs 1 &5 = Cs : [5 +; (], ® “)S}

subjected to the condition (44). In Eq. (45) Cq/s and Cg stand for the tangent constitutive operator at the

continuous and discontinuous neighbourhoods, respectively, of 2. It can be shown [28] that the most

unfavourable case (first bifurcation) corresponds to bifurcation under neutral loading at /S (Cgss = C)

and loading at S (Cs = Cd(;/f), see Eq. (38)). Some algebraic manipulation of Egs. (44) and (45) leads
finally to:

(-C'-n)-[a]_, =Q"-[u]_, =0 (46)
Qd
where Q?(#, n) =n - C?(A) -n is termed the localization tensor [31,34]. Since we look for the first time,
t = tg, that at point £ occurs that [l’l]],:,B =0, ® from Eq. (46) the localization tensor has to be singular:
det [Q*(#,n)] =0 (47)
Let us consider the set ¥ of values of the softening parameter J# fulfilling Eq. (47):
4= {A# € R|3In; det [Q‘(#,n)] =0} (48)

In the elastic range Q“ = Q° and it can be shown that det(Q°) > 0 [34] and, therefore, ¥ = {(}. Beyond the
peak stress % is not empty and, in general, contains more than one value. Therefore a choice is made for the
highest value in ¥ (denoted by ), and the corresponding value of n (denoted by n.;) fulfilling
det [Qd(%crity ncrit)] =0:

H it = maxH

49
nei = {n| ||| =1; det [Q!(#cu,m)] =0} (49)

The first time that the value of the continuum softening parameter # (considered a material property) at
point 2 equals the critical value #, signals the bifurcation time #g at that point and determines that value
of n:

H (Xp,t) = Huit(Xp, 1) — t(P) =1 = N(Xp, 1) = Dot (Xp, t3) V=1 (50)

On the other hand, if we extend the softening regularization condition (40), to the weak discontinuity
regime we have, from Eq. (50):

%B ~yfcrit

Extended softening regularization condition # =h# fort>ty=hg ="~ =

7 7 (51)

which provides the initial value 4y of the bandwidth law of Fig. 5(d).

6 Otherwise there is no bifurcation.
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4. Computational aspects: numerical simulation

The approach outlined above requires, for numerical simulation purposes via finite elements, the use of
specific elements which are able to capture the discontinuous kinematics of Eq. (35). Recent developments
on that field lead to the formulation of the so called finite elements with embedded discontinuities
[1,7,11,13,18] which, essentially, supplement the standard finite elements (triangular, quadrilateral etc.)
with additional internal degrees of freedom whose associated shape functions are discontinuous inside the
element and, therefore, match the weak and strong discontinuity kinematics (see Fig. 7).

Using such finite elements some typical drawbacks of standard finite elements when dealing with strain
softening problems (mesh size and mesh bias unobjectivity) can be completely removed [18] without the
necessity of any remeshing procedure. The strong discontinuity is captured by a set of elements which
propagate along the finite element mesh. The locus of the interface S, in such elements (see Fig. 7) defines
the discontinuity path representing the actual crack or fracture.

In order to show the capability of the approach, some simulations of typical fracture mechanics
problems are presented in next sections. In all the cases the numerical results have been obtained by using
the SDA on the basis of the isotropic continuum damage model sketched in Section 3.2. A standard non-
linear finite element code was modified to introduce the aforementioned finite elements with an embedded
discontinuity and to regularize the softening law of the continuum damage model according to Eq. (51).
The discrete softening parameter .# was computed in terms of the fracture energy G; according to Eq. (31).
The continuum softening parameter .# was taken equal to the discrete one (# = #).

4.1. Notched specimen in plane stress

Fig. 8(a) shows a notched concrete specimen tested by Kobayashi et al. [12]. The couples of forces F; and
F, are progressively applied, as it is indicated, in Fig. 8(b) in order to induce a mixed mode crack which

Point # 2

Fig. 7. (a) Discontinuity shape function. (b) Regularized delta-sequence.
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Fig. 9. Notched concrete specimen: (a) force /i vs. CMOD, (b) normal displacement jump, [u],, vs. tangential displacement jump, [[u],

at point A.

develops from the notch tip with an inclination angle of 71° with respect to the vertical (see Fig. 8(d)). For
the numerical simulation the following material data have been adopted: £ = 30.5 GPa, v= 0.2, Gy = 100
N/m and 6, = 3 MPa. The width of the specimen is z = 50.8 mm.

The finite element mesh used for the analysis is shown in Fig. 8(c). The obtained numerical results are
compared with the experimental ones in terms of the crack mouth opening displacement (CMOD), d in Fig.
9(a), and in terms of the crack path in Fig. 8(d). In Fig. 9(b) the normal ([u],) vs. the tangential ([u],)
displacement jump at point A of Fig. 8(d) are plotted, stating clearly the mixed mode character (Ju], # 0,
[u], # 0) of the resulting crack.
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4.2. Three and four points bending tests

The experimental results reported in Ref. [9], in which a novel testing procedure for mixed mode crack
propagation on concrete under non-proportional loading was developed, were numerically reproduced
using the SDA. Fig. 10(a) shows the geometry of two different test specimens, depending on a spring
boundary condition. A spring stiffness value (K) equal to zero, K = 0, represents a three points bending test
whereas K = oo represents a four points bending test. The thickness of the specimens is £ = 50 mm, and the
corresponding finite element mesh (1600 enhanced linear triangle elements) is presented in Fig. 10(b). The
considered material parameters are: £ = 38 GPa, v =0.18, ¢, = 3.0 MPa and G; = 69 N/m. These are
again mixed mode fracture cases leading to numerical crack paths that match very well the experimental
ones as it is shown in Fig. 11(a) (notice that different spring stiffness values (K) cause different crack tra-
jectories). An amplification of the deformed set of elements that capture the discontinuity near the notch is
also shown in Fig. 11(b).

In Fig. 11(c)—(d) load P vs. CMOD (crack mouth opening displacement) curves obtained in the nu-
merical simulation are shown to fit very well into the experimental band of results. Finally, in Fig. 12(a) the
tangential displacement jump vs. normal displacement jump curve shows the mixed mode character of the
fracture.

In Fig. 12(b) the o,, — [u], (horizontal stress vs. normal jump) trajectories, at the tip of the notch, are
plotted for a cyclic loading case in which the loading is reversed at a certain point B, to be completely
released at point C, and then reversed again to load the specimen up to the complete failure. As it is shown
in the figure, the numerically response, obtained using the continuum damage model of Section 3.2, exactly
fulfills what is expected for the induced discrete damage model of Fig. 3b in terms of the traction-jump
parameters. The crack onsets at point A, when the peak stress is reached, then loading (with softening)
takes places up to point B when the load is reversed. Beyond that point, a damaged-elastic unloading takes
places up to point C where the crack is completely closed and the stress is released ([u], = 0,0, = 0). The
subsequent reloading produces, first, an elastic behaviour up to point B and, then, the rest of the loading
trajectory B-D. Notice that discrete damage model was never introduced in the analysis but, as predicted
by the theoretical analysis, it is effectively reproduced by the SDA.

4.3. Gravity dam model

A reduced model of a concrete gravity dam tested by Carpintieri et al. [S] was analyzed using the tools
of the SDA. The notched upstream face of the model was loaded with a pressure equivalent to a water
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column, as it is indicated in Fig. 13(a), in order to induce a curved crack that propagates from the tip of the
notch towards the downstream face (see Fig. 13(d)). The numerical simulation is done on the basis of
the SDA, with the continuum damage model of Section 3.2, and the finite element mesh of Fig. 13(b). The
considered material parameters are: £ = 35700 MPa, v = 0.18, g, = 3.6 MPa and G; = 184 N/m. Although
the depth of the notch was not reported in the reference, for the numerical simulation it was taken ¢ = 310
mm.

In Fig. 13(c) and (d) the numerical and experimental results, in terms of the resulting total up stream face
load vs. CMOD curves (Fig. 13(c)) and the crack trajectories (Fig. 13(d)) are presented. In both cases, the
numerical results provided by the strong discontinuity approach show good agreement with the experi-
mental ones. Notice that the curved character of the crack trajectories is correctly captured by the SDA
simulation.
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4.4. Four points bending test

We shall deal now with the classical four points bending tests, on a concrete beam, reported by Arrea
and Ingraffea in 1982 [2]. The main difference with the ones considered in Section 4.2 is that in this case the
external load is applied through a flexible steel beam which is responsible for a curved crack trajectory. The
geometry of the problem is sketched in Fig. 14(a), where the thickness is t = 140 mm, and the corre-
sponding finite element mesh (1997 enhanced linear triangle elements) is presented in Fig. 14(b). The
considered material parameters are £ = 24800 MPa, v = 0.18, g, = 2.8 MPa and Gy = 100 N/m. The SDA
simulation results in a curved crack trajectory that agrees very well with the experimental one shown in Fig.
14(c). An amplification of the deformed set of elements that capture the discontinuity near the notch is also
shown in Fig. 14(d).

In Fig. 15(a) the load, P vs. the crack mouth sliding displacement (CMSD) (6 in Fig. 14(a)) curve is
shown to fit into the experimental band of results. Finally, in Fig. 15(b) the typical load—deflection, at point
C of Fig. 14(a), curve exhibiting the classical snapback response, is also presented.

5. Concluding remarks

In the preceding sections it has been shown that displacement discontinuities (fractures, cracks etc.) can
be modelled from the continuum mechanics side through the so called SDA. In essence, the approach owns
a continuum character since, for analysis and modelling purposes, it keeps the continuum format for both
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the kinematics and the constitutive equation. However it has been proved that the introduction of two main
ingredients i.e.

e the regularized discontinuous kinematics (and the associated weak and strong discontinuities),
e the regularization of the softening law,

induces, for every parent continuum constitutive model, a discrete counterpart that is implicitly fulfilled at
the discontinuity interface and provides the tractions (continuous across the interface) in terms of the
displacement jumps. The resulting discrete (traction—jump) constitutive model is equipped with ingredients
such as free energy description, internal variables evolution and loading—unloading conditions, all of them
determined in terms of the appropriated projections of the parent continuum constitutive model onto the
discontinuity interface. Also it inherits the family properties (damage, elasto-plastic character) of the
parent model. Besides, some fracture-mechanics-type material properties, as the fracture energy, can be
straightforwardly recovered from the material properties of the continuum model like the peak stress and
the softening parameter.

Therefore, the strong discontinuity approach provides the intended link with the non-linear decohesive
fracture mechanics, where the aforementioned discrete constitutive equations were first developed, and the
non-linear continuum mechanics. However, it has to be stressed that for modelling purposes the analysis is
formally held in a continuum environment this providing the advantageous possibility to keep the whole
analysis and simulation (both the continuous and discontinuous regimes) in the continuum format.

Although for the simple 1D cases there is no restriction for the induction of strong discontinuities by
discontinuous bifurcation of the stress—strain field at the peak stress, for the general 2D-3D case the
panorama is slightly different. In fact, it is found that some strong discontinuity conditions on the stress
field have to be fulfilled at the strong discontinuity regime and, therefore, they preclude the strong dis-
continuity to originate directly from a discontinuous bifurcation. This drawback can be overcome by
considering the weak discontinuity kinematics and the associated weak discontinuity regime, in between the
bifurcation and the strong discontinuity regime, as an intermediate stage characterized by the bandwidth
evolution from a bifurcation value to zero. Therefore, from the mathematical point of view, the goal of the
weak discontinuity regime is to induce the strong discontinuity conditions. This can be translated to the
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physical viewpoint by considering the weak discontinuity as a fracture process regime, which is devoted to
the induction of the actual fracture, and the zone where it takes places as the fracture process zone, another
typical ingredient of the non-linear fracture mechanics [4] recovered by the strong discontinuity approach
that closes the link.

Regarding the fracture range, there is no conceptual restriction for the SDA to tackle both brittle or
ductile cases. Although, for the sake of simplicity, this point has not been considered here, modelling of
ductile fracture can be done by resorting to a longer prebifurcation non-linear behaviour which, in turn, can
require the continuum model to be equipped with large-strain kinematics. This has already been done in
recent works [1,14,23].

Although distinction on fracture modes (mode I, mode II or mixed mode) is not a priori done in the
SDA, not any continuum constitutive model is appropriate to model any fracture process. For instance, it
can be shown that a J2 (von Mises) continuum plasticity model in plain-strain is only compatible with
tangential displacement jumps (mode II case) [19]. However, the same model in plain-stress cases sets no
restriction on the type of displacement jump. Therefore, an appropriate choice of the continuum consti-
tutive model family is also necessary in the SDA to succeed in modelling the fracture behaviour of the
material.
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