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Background: Human papillomavirus type 16 (HPV16) plays a central role in the development of cervical
cancer. Worldwide studies indicate the existence of HPV16 variants that show different geographic
distributions and oncogenic potential.

Objective: Our goal was to describe the genetic variation of HPV16 isolates identified in urban women
with different grades of cervical lesions living in northeastern Argentina.

Study design: We analyzed 116 HPV16-positive cervical samples (16 NLIM, 62 L-SIL, 16 H-SIL and 22
cervical cancer) from patients attending health centers in Misiones (Argentina) during 2006-13.
HPV16 isolates were genetically characterized through PCR amplification and direct sequencing of
364 bp within the long control region, and the resulting sequences classified into variants based on phy-
logenetic analysis (lineages A, B, C and D). A potential association between HPV16 variants and lesion
grade was evaluated through an odds ratio (OR) test. A temporal framework for the origin of HPV16 vari-
ants was assessed through coalescence analysis (BEAST v 1.7.5).

Results: Phylogenetic analysis of HPV16 sequences showed that 92.1% of the samples clustered with
lineage A, and 6.9% to lineage D. HPV16 variants from lineage D were more frequently associated with
high-grade lesions and cancer (HSIL+) than lineage A variants at an OR of 13.8 (1.6-117.0). The time to
most common recent ancestor (tmcra) Of all variants was 119,103 years before present (HPD
95% = 48,486-197,239), a date consistent with the time frame for modern human evolution.
Conclusion: Our results suggest that HPV16 variants from lineage D may represent an additional risk fac-
tor for the development of cervical cancer in women living in northeastern Argentina. This study provides
new information about viral isolates present in Argentina that will contribute to the monitoring of HPV16
infection in the vaccine era.
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1. Introduction

Cervical cancer is the second most common cancer among
women worldwide, with an estimated 527,624 new cases and
265,653 deaths occurring in 2013 (Bruni et al., 2014). Worldwide
epidemiological and laboratory studies have revealed that several

* Corresponding author. Tel.: +54 376 4466942; fax: +54 376 435118.
E-mail address: inesbadano@gmail.com (1. Badano).
! Current address: Laboratorio de Genética de Neoplasias Linfoides, Instituto de
Medicina Experimental, CONICET - Academia Nacional de Medicina de Buenos Aires,
Argentina.

http://dx.doi.org/10.1016/j.meegid.2014.11.013
1567-1348/© 2014 Elsevier B.V. All rights reserved.

different concomitant factors and a progressive process are neces-
sary for cervical cancer to develop, and have established a central
role for human papillomavirus (HPV) genital infection (zur
Hausen, 2009). Certain oncogenic viral types such as HPV16 and
HPV18, which cause the majority of cases of cervical cancer, have
been categorized as human carcinogens by the International Agency
for Research on Cancer (IARC, 1995, 2007). The magnitude of the
association between HPV16 infection and cervical squamous cell
carcinoma is very high, with an OR of 434.5 (CI 95% = 278.2-678.7)
(Mufioz et al., 2003).

HPV16 is a member of the Papillomavirus Family (genus
Alpha-papillomavirus, species A9), and its genome consists of a
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circular, double-stranded 8-kb DNA molecule. The analysis of par-
tial and complete viral sequences has allowed the identification of
“viral variants” which differ from the original isolate by about 2%
(de Villiers et al., 2004). Early studies of HPV variants indicated
that their distribution varied considerably in different geographical
regions, suggesting that the virus and its hosts have co-evolved
over time (Ho et al., 1991, 1993; Chan et al., 1992; Yamada et al.,
1997). For HPV16, five phylogenetic lineages have been defined
according to their suspected origin: European (E), Asian (As),
Asian-American (AA), and African (Af1 and Af2). This phylogenetic
classification was determined based on the analysis of the nucleo-
tide sequence of the long control region (LCR) of the virus (Ho et al.,
1993). Subsequent studies of other viral genes such as E6 and L1
and whole viral genomes have expanded this phylogenetic classifi-
cation up to nine lineages: European (E), European-Asian (EAs),
Asian-American types 1 and 2 (AA1, AA2), North American type 1
(NA1), and African types 1a, 1b, 2a and 2b (Afla, Aflb, Af2a,
Af2b) (Cornet et al., 2012).

Although the geographical designation of viral lineages has
been widely used by the papillomavirus community, an alpha-
numeric classification system has recently been developed (Burk
et al.,, 2013). Because this nomenclature provides a standardized
taxonomy that facilitates the comparison of variants across geo-
graphic regions and among different populations, it will be
adopted in the manuscript. According to this system, the E and
EAS variants are identified as lineage A, Afr1 variants as lineage
B, Afr2 as lineage C, and NA/AA as lineage D. Furthermore, the nine
sublineages have been described as Al, A2, A3 (European, E), A4
(Asian, As), B1 (Afrla), B2 (Afrib), D1 (NA), D2 (AA1), and D3
(AA2) (Burk et al., 2013). From a clinical point of view, several stud-
ies have provided evidence that HPV16 variants from lineage D are
associated with an increased risk of persistent infection and devel-
opment of cervical lesions in Latin American women (Hildesheim
et al, 2001; Berumen et al., 2001; Sichero et al., 2007; Smith
et al., 2011), hence, may be related to a different pathogenic poten-
tial (Sichero et al., 2012).

The aim of this study was to describe the genetic variation at
the LCR of HPV16 isolates among urban women with normal cytol-
ogy and different grades of cervical lesions, living in northeastern
Argentina (Posadas, Misiones Province). Misiones Province is con-
sidered a region with high mortality rates of cervical carcinoma
(15.5/100,000) compared to other urban areas of the country, such
as Buenos Aires (6.3/100,000) (Arrossi, 2008). Previous research
has also shown that HPV16 prevalence is 6% in urban women with
normal cytology and 51% in individuals with cervical cancer
(Badano et al., 2011, 2012), although the genetic variation of the
associated isolates is still unknown. Consequently, an expanded
analysis of HPV16 sequence variation at the LCR will provide
new information about viral isolates present in the Misiones pop-
ulation, and also contribute to the monitoring of HPV16 infection
in the region.

2. Methods
2.1. Study population

This study was conducted in the city of Posadas, the capital of
Misiones Province. The city is located at the south of the province,
at the margins of the Paranad River (27°21'59"S; 55°53'39"W).
Study subjects included women attending several private practices
in the city and the public Hospital (Escuela de Agudos “Dr. Ramén
Madariaga”). Information about their ethnicity was not collected.
However, judging from the usual demographics for patients at
the hospital and medical centers, we estimated that the sample
is broadly representative of the population of Posadas (i.e.,

white-admixed of Amerindian-European descent). Unpublished
data from our research group has indicated a European maternal
contribution (mitochondrial DNA) of roughly 50%. Because of the
existence of reported gender bias in this population, the extent of
European admixture is probably higher (Corach et al., 2010).

2.2. Nomenclature

The cytological classifications used in this study are as follows:
NILM = negative for intraepithelial lesion and malignancy; L-SIL =
low-grade squamous intraepithelial lesion, including human
papillomavirus/mild dysplasia/cervical intraepithelial neoplasia
(Solomon et al., 2002) and women with discordant papanicolaou-
colposcopy results, who, after being tested positive for HPV16,
were referred for biopsy/treatment by the gynecologist; H-SIL =
High-grade squamous intraepithelial lesion; CIS = carcinoma
in situ; and ISCC = invasive squamous cell carcinoma. The denota-
tion H-SIL+ is used to cluster H-SIL + CIS + ISCC patients.

2.3. Biological samples

The samples used in this study came from previous epidemio-
logical studies described in Badano et al. (2011) (n = 139, controls)
and Badano et al. (2012) (n=56 H-SIL+). These studies did not
describe the genetic variation of HPV16 isolates. In addition, an
additional 657 samples (cervical scrapes) were obtained by trained
gynecologists working in different private centers in Posadas from
2006-13. These samples came from women suspected to have
abnormal cytological changes (either by colposcopy and/or pap
cytology) and, thus, were referred to the Laboratorio de Biologia
Molecular Aplicada (Universidad Nacional de Misiones) for HPV
typing. At the laboratory, all patients signed an informed consent,
and their samples were incorporated into this study.

2.4. Ethical permission

All participants gave their informed consent, and data confiden-
tiality was maintained throughout the study. This study was con-
ducted with the approval of the Ethics Committee of the
“Departamento de Docencia e Investigacién, Comité de Bioética,
Hospital Dr. Ramén Madariaga, Posadas, Misiones”.

2.5. HPV16 sequencing

A total of 852 samples, including 139 NLIM, 654 L-SIL, 16 H-SIL,
14 CIS and 29 ISCC, were screened for HPV infection with L1 con-
sensus primers MY09-MY11 (Bernard et al., 1994). The typing of
HPV DNA positive samples was performed by E6-Nested Multiplex
PCR (E6-NMPX) with cocktails of primers C-1 (HPV-High Risk 16,
18, 31, 45, and 59) and C-2 (HPV-High Risk 33, 56, 52, 58 and
HPV-Low Risk 6 and 11) (Sotlar et al., 2004). Among these samples,
123 of them, including 16 NLIM, 68 L-SIL, 16 H-SIL, 10 CIS and 13
ISCC, were positive for HPV16 (52.6% single HPV16 infection and
47.4% with co-infections with other high-risk types) and available
for sequencing analysis of the LCR. The occurrence of co-infections
did not affect the ability to recover LCR-HPV16 type specific
sequences.

Genetic variation in the HPV16 samples was determined
through PCR amplification and direct sequencing of 364 bp within
the non-coding LCR (Ho et al., 1991, 1993; Chan et al., 1992), which
has been extensive used for taxonomic purposes (Smith et al.,
2011; Cornet et al., 2012). Briefly, PCR products were visualized
by agarose gel electrophoresis, and the amplicons were purified
with the ADN PuriPrep-GP extraction kit (INBIO, Argentina). The
purified amplicons were sequenced using the original forward pri-
mer through sequencing services (Cromatida, Argentina), while 42
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sequences were obtained using both Forward and Reverse primers.
Twenty HPV16 LCR sequences were already available because they
were part of a multicenter study being conducted across Argentina
(Basiletti et al., 2012).

The HPV16 LCR sequences were read and analyzed using Codon
Code aligner software v. 3.0.1 (CodonCode Corporation). The first
20 nucleotides of each strand were trimmed in order to exclude
illegible regions, seven sequences (5.7%) were unreadable and
excluded from the study. The remaining sequences (n=116;
322 bp) were unequivocally aligned and the positions of the single
nucleotide polymorphisms (SNPs) designed according to the
European Reference genome (NCBI# NC 001526). Variants that
were found at least twice were counted as “natural” variants,
and those found only once were repeated in order to exclude them
as potential PCR mutation artifacts. To identify a novel variant, the
sequences were compared with those previously published at
GenBank by using the BLAST program (Altschul et al., 1990).

2.6. Phylogenetic analysis

The sequences obtained were classified based on phylogenetic
analysis as HPV16 lineages A, B, C and D. Phylogenetic trees were
constructed using all sequences from this study (n =116) and pub-
lished sequences belonging to the following lineages: A (NC001526,
KF466832, KF466824, KF466819, KF466817, KF466812, KF466800,
KF466797, KF466789, KF466769, KF466736, KF466704, KF466693,
KF466679), B (KF466577, KF466540), C (KF466653, KF466635,
KF466594), and D (KF466527, KF466523, KF466510, KF466851,
KF466844) (Cornet et al., 2012). The phylogenetic tree was obtained
using the Bayesian method implemented in BEAST v 1.7.5 software
(see Section 2.8).

2.7. Statistical analysis

The distribution of HPV16 variants according to the lesion grade
was compared by y? or two-tailed Fisher exact test. Logistic regres-
sion was used to estimate the odds ratio (OR) and 95% confidence
intervals (CIs) using SPSS software (SPSS, Inc., Chicago).

2.8. Coalescent analysis

Dating of the time to most recent common ancestor (tygrca) of
the HPV16 sequences was carried out by Monte Carlo Markov
Chain (MCMC) Bayesian coalescent analysis implemented in BEAST
v 1.7.5 (Drummond and Rambaut, 2007). To select the nucleotide
substitution model that best fit the sequence data, we used jMod-
elTest v 2.1.3 (Darriba et al., 2012) and the Akaike Information Cri-
terion (AIC). The XML file was then manually modified to change
the original GTR model into the selected one (TPM1uf: Kimura
81 with unequal base frequencies). The Bayesian Skyline Plot
(BSP) was selected as a model to estimate the evolutionary and
coalescent parameters. BSP is considered to be more flexible than
other demographic models for exploring the data as it can fit a
wide range of demographic scenarios (Pybus et al, 2000;
Strimmer and Pybus, 2001; Drummond et al., 2005). BSPs were
run under the two molecular clock models - strict and relaxed
uncorrelated lognormal. A substitution rate of 1 x 10~7 subs/site/
year (s/s/y) was set according to Halpern (2000). This theoretical
value comes from the bottleneck hypothesis, according to which
the approximately 2% difference between major variants of muco-
sal types reflects some 100,000 years of human evolution.

The MCMC were run for 5 x 107 generations, sampling every
5000th generation in order to achieve an Effective Sample Size
(ESS) > 200. A minimum of five independent MCMC simulations
were performed for each clock-model combination. The fiftieth
run of each model was set to include the estimation of the

marginal likelihood by Stepping Stone method (Baele and Lemey,
2013). Those two runs were used to compute the log10 Bayes Fac-
tor of the strict clock versus relaxed clock and the best clock model
was selected for the estimation of tyrca. Values greater than 1
log10 Bayes Factor were taken as significant difference in the per-
formance of the models. All BEAST run logs were analyzed with
TRACER program version 1.5 (Available from http://beast.bio.ed.a-
c.uk/Tracer) after discarding 2% of the run length as burn-in. The
maximum clade credibility tree (MCCT) was constructed with the
TreeAnnotator tool after discarding 2% of the sampling. The MCCT
summarizing the posterior information of topologies and the med-
ian branch lengths from the trees sampled was then visualized
with FigTree V1.4.0 software (http://tree.bio.ed.ac.uk/software/fig-
tree/).

2.9. GenBank accession number

All sequences described in this study were deposited in
GenBank under the accession numbers: KM094931 - KM095046.

3. Results
3.1. Study population

A total of 116 samples, including 16 NLIM, 62 L-SIL, 16 H-SIL, 10
CIS and 12 ISCC, were analyzed. he age distribution for each group
was as follows: NLIM = mean age 28.7 years (SD = 8.8; range 19-
52; median 27); L-SIL = mean age 27.1 years (SD = 7.0; range 17-
54; median 26); H-SIL+=mean age 39.3 years (SD = 11.6; range
20-65; median 39); and total population = mean age 31.5 years
(SD =10.7; range 17-65; median 29).

3.2. HPV16 variants and phylogenetic analysis

We identified 16 variable sites in the LCR sequence (from nt
7526 to nt 7847), which occurred in eleven unique combinations,
five of which being previously unreported. A summary of the
nucleotide sequence of each HPV16 variant and its frequency is
shown in Table 1. Overall, 7.8% (9/116) of the circulating HPV16
variants were putatively novel.

The phylogenetic analysis of our samples showed that about
93.1% (108/116) of the samples from Misiones clustered within
lineage A (formerly E branch), and 6.9% (8/116) within lineage D
(formerly AA/NA branch) (Fig. 1). Among the A isolates, the fre-
quency of sublineage A1 (E-prototypic variants) was 87.0% (94/
108), whereas among the D isolates, 87.5% (7/8) belonged to the
sublineage D2 (designated by a diagnostic SNPs at position
7743T/G) and 12.5% (1/8) to D1 (designated by a SNPs position at
7834G/T), respectively.

3.3. Distribution of HPV variants according to the lesion grade

The frequency of HPV16 variants according to the Pap cytology
is shown in Table 1. The HPV16 variants from lineage D showed a
differential distribution according to the severity of the cervical
lesion (32 test; p value of 0.003). The association analysis of
HPV16 variants and cytological diagnosis is shown in Table 2.
Our results indicate that HPV variants from lineage D were more
frequently found in women with H-SIL+ than those from lineage
A, at an OR of 13.8 (CI 95% = 1.6-117.0).

3.4. Coalescent analysis

The convergence of the MCMC chains was evaluated by the
visual inspection of the trace file (no trend), by the value of the
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Table 1

Summary of nucleotide sequence variation in the long control region (LCR) of Human papillomavirus type 16 (HPV16) isolates from Posadas city, Misiones, Argentina.
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4 Putative novel variant.

ESS of each parameter estimated (ESS > 200) and by comparison of
the multiple independent runs. Although some parameters showed
an ESS of less than 200 in some runs, all of the runs consistently
showed similar results (Supplementary Materials, Table S1 and
Fig. S1). Moreover, the Bayes Factor analysis indicated that both
clocks performed equally well (Supplementary Materials,
Table S2). Therefore, we selected the one that used the fewest
parameters (strict molecular clock). The logs and trees file of the
five independent runs were combined with the LogCombiner tool
after discarding the initial 2% of the samples as burn-in. The molec-
ular dating for the HPV16 phylogenetic tree is shown in Fig. 1. In
our population, all variants coalesced to a tycra of 119,103
years (HPD 95% = 48,486-197,239). The mean estimates for the
tmcra Of each lineage were as follows: A=41,793 years (HPD
95%=13,511-65,972); D=33,959 (HPD 95%=8945-55,849);
D1=17,711years (HPD 95%=2886-24,102) and D2 =21421
(HPD 95% = 5065-31,010).

4. Discussion

In Argentina, cervical cancer is the third most frequent cancer
among women, with current estimates indicating that 4956
women are diagnosed with cervical cancer and that 2127 die of
the disease every year (ICO HPV Information Centre, 2013). Previ-
ous studies of HPV16 variation within Argentina have focused on
Amerindian populations, such as the Quechua from Jujuy, the
Pilagd from Formosa, and the Mbya-Guarani from Misiones
(Picconi et al., 2002, 2003; Tonon et al.,, 2007; Deluca et al.,
2012). These studies neither addressed nor found an association
between HPV16 variants and cervical cancer development. How-
ever, in light of the limited sample sizes used in those studies,
we consider that the issue remains inconclusively resolved. Inter-
estingly, European variants were highly frequent among the Native
American populations (from 70% to 80%) and their presence was
attributed primarily to contacts with the Spanish conquerors
(Picconi et al., 2002, 2003; Tonon et al., 2007; Deluca et al., 2012).

This is the first study conducted in an urban population of
northeastern Argentina. Our results show that the composition of
HPV16 variants at the LCR region was 93.1% lineage A and 6.9%
lineage D. The high prevalence of HPV16 lineage A variants was
congruent with previous publications on Amerindian populations
from Argentina (~80%), a recently meta-analysis that includes
Argentinean study data (90.6%) and other Latin American

populations of multiethnic composition such as Paraguay (82%)
and Ecuador (85%) (Picconi et al., 2002, 2003; Tonon et al., 2007;
Deluca et al., 2012; Cornet et al, 2013; Mendoza et al., 2013;
Tornesello et al., 2008). However these findings were different
from those reported for Brazil (54%) and Mexico (13%), countries
where HPV16 variants of non-European origin are more frequent
(Villa et al., 2000; Calleja-Macias et al., 2004).

These differences may be related to the ethnic composition of
those populations. For example, in Misiones, genetic admixture
as measured with autosomal loci is 13% Native-American, 82%
European and 5% African (Corach et al., 2010). Thus, it is possible
that the described proportions of infections with HPV16 variants
reflect these ancestral contributions to this population. Neverthe-
less, no lineage B and C (African origin) variants were identified
in our sample. Instead, we found a single variant from lineage D1
(formerly NA), one that has been recently reported at highly fre-
quency in North Africa (Cornet et al., 2012). Therefore, D1 may rep-
resent an understudied branch of HPV16 African evolution, a
hypothesis that will require further testing through the analysis
of larger phylogeographic datasets.

Despite their low frequency, HPV16 variants from lineage D
were more frequently associated with high-grade lesions and can-
cer than the HPV16 variants from lineage A, with an OR of 13.8
(1.6-117.0). This is an important finding, as HPV16 variants from
lineage D have been associated with invasive cervical cancer in
other Latin American countries such as Mexico (Berumen et al.,
2001), Costa Rica (Hildesheim et al., 2001; Schiffman et al.,
2010), and Brazil (Villa et al., 2000; Sichero et al., 2007), but not
in those from Europe (e.g., Portugal, United Kingdom, Italy, among
others; Hildesheim and Wang, 2002; Sichero and Villa, 2006; Burk
et al., 2013). The existence of conflicting data concerning the link-
age between lineage D variants and disease risk has been explained
by the ethnic composition of the study population (reviewed in
Hildesheim and Wang, 2002; Sichero and Villa, 2006; Burk et al.,
2013). For example, in European communities that are ethnically
homogeneous, the lack of any association may be due to the over-
whelming predominance of lineage A HPV16 variants which, in
turn, does not allow a proper evaluation of risk associated with
non-European HPV16 variant infections (lineages B, C and D)
(Marongiu et al., 2014). On the other hand, studies of more diverse
populations such as those of North and Latin America, have indi-
cated that lineage D variants are more aggressive than those of
lineage A, with a 2- to 9-fold increased risk of cervical cancer
and high-grade cancer precursors (Hildesheim et al., 2007;
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Fig. 1. Phylogenetic analysis and molecular dating of HPV-16 variants from this
study. The evolutionary history was inferred using the Bayesian method. The
maximum clade credibility tree is shown. The analysis involved 140 nucleotide
sequences. The final dataset included a total of 322 positions. Timeline: the X axis
indicates years ago. The posterior probability values (>0.89) are shown next to the

branches. The HPD 95% values for the tycra are shown in the shaded areas.

Table 2
Distribution of HPV16 variants according to the lesion grade.

HPV16 Variant NLIM L-SIL HSIL* 0dds ratio (CI 95%)"
Lineage A 16 61 31 1 (Ref)
Lineage D 0 1 7 13.8 (1.6-117.0)

2 H-SIL+ includes H-SIL, CIS and ISCC.

" The odds ratio was calculated for L-SIL versus H-SIL. The lowest grade of cer-
vical lesions (L-SIL) is taken as a reference. NLIM cytology could not be computed
because one of the cells is zero.

Berumen et al., 2001; Sichero et al., 2007; Smith et al.,, 2011).
Therefore, the distribution of HPV16 variants worldwide and their
relative risks for cervical cancer appear to be population
dependent.

These differences may be attributed to several factors, including
viral genetics, human genetics and viral co-evolution within human
ethnic groups (Zehbe et al., 2001; Hildesheim et al., 2001; Beskow
et al., 2001; Burk et al., 2003; Xi et al., 2006; de Araujo Souza et al.,
2008; Zuna et al., 2009; Cornet et al., 2013). Given that viral co-evo-
lution within human populations is a long held hypothesis, we
explored the temporal framework for the origin of HPV16 variants
with a Bayesian analysis. In our population, all variants coalesced
to a tycra Of 119,103 years, a date that is consistent with the emer-
gence of anatomically modern humans (Homo sapiens) prior to their
expansion out of Africa (Behar et al., 2008). Two additional time
points are worth highlighting. Lineage D2 coalesced to a tycra Of
21,421 years ago and lineage A to a tycra Of 41,793 years ago. The
median values of these tycraS Were similar to those estimated with
the mtDNA lineages of Amerindian and European populations
(Achilli et al., 2008; Torroni et al., 2006). Therefore, HPV16 variants
from lineage D2 may have evolved in association with Amerindian
populations, beginning thousands of years ago. On the other hand,
HPV16 variants from lineage A were probably brought to Misiones
during the Spanish colonization (15th century) of the region and
later European immigration in the 19th century.

In this regard, an ongoing analysis of larger fragments of the
genome (E6, E7 and L1 genes) is showing that several different
European variants are circulating within the urban population,
although most of them not detected with the 350bp LCR
sequences. Therefore, the hypothesized introduction of European
variants into this population is plausible and needs to be further
studied.

As a final point, it is important to recall that the results of the
coalescence analyses with the 322 bp sequences do not provide
the definitive evolutionary history of HPV16. However, they do
provide a glimpse in this matter. In fact, given the large confidence
intervals with our estimates, those results should be interpreted
cautiously (also see Section 6).

5. Conclusions

The ongoing implementation of vaccination programs in Argen-
tina has reinforced the need for more knowledge about the regio-
nal prevalence of HPV16 types and variants in this population. To
date, only fifty sequences of HPV16 LCR from our country were
available in Genbank. This work will significant enlarge that data-
set by adding 116 sequences, some of which are presumed to be
novel variants. Our results also show that HPV16 variants from
lineage D are more pathogenic than isolates from the A lineage
in a multiethnic population of northeastern Argentina. The
increased odds ratio data obtained in this study provides us with
important insights into the oncogenic potential of the variants
detected in this population, but due to our limited sample size
future pooling efforts are needed to confirm the patterns of genetic
diversity and disease association observed in this project. Whether
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the observed association is due to a direct effect by the LCR vari-
ants detected here or to an indirect effect resulting from “lineage
fixation” (co-variations with other regions of the viral genome)
(Chen et al., 2005; Smith et al., 2011; Burk et al., 2013), further
analysis of other genes of clinical importance such as E6, E7 and
L1 will help to clarify these evolutionary and clinical questions
about HPV16 infection.

6. Study limitations and future research

Thus far, our analysis suggests that HPV16 lineages have
co-evolved with human populations and provides a potential con-
gruence between HPV16 and demographic histories in Misiones.
However, there is some concern regarding the mutation rate used
in this study. In fact, the rate of 1 x 1077 s/s/y is a theoretical esti-
mate based on the assumption that the convergence hypothesis is
correct (Halpern, 2000). Therefore, we tested our data with two dif-
ferent rates that were independent of the co-evolution hypothesis:
(1) 3.94 x 103 s/s/y, a higher nucleotide substitution rate esti-
mated by using time-structured data (Firth et al., 2010); and (2)
1.95 x 1078 s/s/y, a value estimated using fossil calibration points
for Felidae Papillomavirus tree (Rector et al., 2007). The two rates
imply different scenarios for HPV evolution. On the one hand, with
a substitution rate of 3.94 x 1073 s/s/y, our data coalesce to a root
of nearly 3 years, with the divergence of the D2 lineage occurring
during the last few months, which is a very unlikely epidemiolog-
ical scenario for human papillomavirus.

On the other hand, when using a fixed rate of 1.95 x 1078 s/s/y,
all HPV16 lineages diverged from their common ancestors within
the last million years (mean = 560,240 ybp; HPD 95% 254,550-
1,010,200), which corresponds to a period of time when several spe-
cies from the genus Homo, including Homo erectus and Homo heidel-
bergensis, lived on earth (Tattersall, 1995). Interestingly, Chen et al.
(2009) obtained a similar tycra for HPV18 variants (<0.7 Myr).
Moreover, the divergence of the HPV16 D2 lineage can be estimated
at nearly 85,951 ybp, close to the date at which modern humans
expanded out of Africa. Under this scenario, the current patterns
of viral infection are the result of a combination of dispersal events
(migration and founder effects) and viral co-evolution with humans.
By extension, in scenarios involving the 1 x 1077s/s/y and
1.95 x 1078 s/s/y mutation rates, Asian-American variants evolved
in association with modern human populations, beginning thou-
sands of years ago (data available upon request).

An additional point that needs to be addressed regarding viral/
host evolution is the tree topology. While specific lineages do pre-
dominantly exist within certain populations and the tycraS
appears to match their population histories—at a fixed rate of
1 x 1077 s/s|y—the overall shape of the tree is not consistent with
pattern of human evolution, with one of the main discrepancies
being that the HPV16 B and C lineages (which are associated with
African populations) are not basal to the HPV phylogeny. This lack
of congruence between virus and host phylogenies favors the
hypothesis of dispersal over strict co-evolution, giving additional
support to the lower rate of 1 x 1078 s/s/y. An alternative explana-
tion to the phylogenetic incongruence is that either a basal African
strain of HPV has gone extinct or has not yet been isolated, the
being a possibility given that the African continent is a more poorly
studied geographical region compared to Europe, North America
and Latin America. However, this discrepancy cannot be resolved
with our current data set. It will be difficult to statistically test
the degree of congruence between phylogenetic trees of virus
and host genomes with our short DNA sequences and relatively
small sample of viral and human ethnic diversity.

Nevertheless, the present study provides new ways of thinking
about HPV16 evolution. In addition, our investigation of the rates

and processes of HPV16 evolution independently of the hypothesis
of co-divergence constitutes an important avenue for future
research.
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