Theoretical study of SO₂ adsorption on goethite (1 1 0) surface

Carolina E. Zubieta a,⁎, Leandro F. Fortunato b, Patricia G. Beelli a, Ricardo M. Ferullo b

a IFISUR, CONICET and Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca, Argentina
b INQUISUR, CONICET and Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca, Argentina

ARTICLE INFO

Article history:
Received 8 April 2014
Received in revised form 23 June 2014
Accepted 24 June 2014
Available online 14 July 2014

Keywords:
FeOOH
SO₂
Adsorption
Density functional calculations
Surface vacancies

ABSTRACT

Adsorption of SO₂ on fully hydrated and partially dehydrated (1 1 0) surface of goethite (α-FeOOH) has been investigated using density functional theory (DFT) and periodic conditions. Different degrees of dehydration were modeled by eliminating one or two water molecules from the fully hydrated surface. Calculations indicate that SO₂ shows preference to adsorb on dehydrated surface and the transformation to surface sulfite, bisulfite and sulfate was observed. In particular, surface sulfite can be formed over a variety of different dehydrated surfaces as monodentate and bidentate complexes. Theoretical vibrational frequencies of all the species have also been computed. Taking into account all the structures, we found frequency values within the 650–1030 cm⁻¹ region due to S–O stretching, and between 1010 and 1190 cm⁻¹ due to S=O stretching. Furthermore, monodentate mononuclear and bidentate binuclear sulfite complexes present distinctive features at low frequencies (600–700 cm⁻¹).

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Iron oxides and oxyhydroxides have been object of numerous studies because of their technological importance in different areas such as corrosion and catalysis. They present high affinity with an important variety of contaminants and nutrients and as a result they play an important role in environmental processes [1]. Their efficient adsorbent role of organic and inorganic species makes them a big potential material for industrial applications. Goethite (α-FeOOH) is a common constituent of surface water sediments and soils, and it is one of the most important components of aerosol particles present in the atmosphere.

Sulfur dioxide is one of the main components of air pollution and smog. Its transport and transformation is an important environmental objective because of its capacity to form acid rain with the consequent environmental and human health effects. This gas is toxic and irritating, affecting the mucous membranes and respiratory system. Therefore, the process of SO₂ conversion to other sulfur-containing compounds of lower risk is highly desirable. The interaction of SO₂ with oxide surfaces is of great interest owing to different reasons. For instance, metal oxides have been investigated as adsorbents to clean industrial emissions of SO₂ [2]. On the other hand, atmospheric aerosol particles can act as substrates to catalyze the SO₂ oxidation in the troposphere, an important topic in relation with the formation of acid rain [3].

The adsorption of SO₂ over a wide variety of materials has been previously reported [3–14]. Zhang et al. have studied the irreversible SO₂ adsorption on different oxides to form sulfite, bisulfite and sulfate species [4]. They observed a high reactivity with FeOOH in comparison with other oxides such as Al₂O₃, MgO, Fe₂O₃ and MgO. Furthermore, surface-active oxygen and hydroxyl on the particles were found to be the key factors to the conversion of SO₂ to sulfate, bisulfate and sulfate surface species. Site-blocking experiments with bases and acids on alumina show that strong chemisorption of SO₂ occurs on basic sites, whereas acidic sites seem to be responsible for weak adsorption [5].

The oxidation of SO₂ in the presence of O₂ on different iron oxides was also studied by using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) [6]. The results revealed adsorption bands between 1000 and 1300 cm⁻¹ on α-FeOOH and α-Fe₂O₃ assigned to the stretching motion of adsorbed sulfate on the surface. Baltrusaitis et al. by using X-ray photoelectron spectroscopy (XPS) have observed that SO₂ in the absence of H₂O and O₂, adsorbs preferentially as sulfate on goethite and hematite, although evidences for adsorbed sulfate was also found [7]. In the presence of O₂, adsorption of SO₂ on hematite resulted in the formation of sulfate with no detectable sulfite. In the case of goethite, there was an increase in the amount of sulfate in the presence of O₂, but the predominant surface species remained sulfite. Interestingly, Kaneko and Matsumoto found that highly crystalline goethite exhibits higher chemisorption ability for SO₂ [8].
The aim of this work is to contribute to the understanding of the interaction between SO_2 and the α-FeOOH(1 1 0) surface. As we shall see later, this surface presents several types of hydroxyl groups, and hence different surface defects can be modeled by partial dehydration. A geometry search was performed to identify possible adsorbed SO_2 configurations and analyze their correlation with frequency vibrational values.

2. Computational details

The calculations were carried out in the framework of the density functional theory (DFT) using the Vienna Ab-initio Simulation Package (VASP) [15–17]. In this code, the Kohn–Sham equations are solved using plane wave basis sets. Electron exchange and correlation effects are described by the generalized gradient approximation (GGA) using the functional proposed by Perdew and Wang (PW91) [18,19]. A number of eight valence electrons for Fe atoms ($3d^64s^2$), six valence electrons for O atoms ($2s^22p^4$) and six valence electrons for S atom ($3s^23p^4$) were taken into account. The remaining (core) electrons together with the nuclei were described by pseudo-potentials in the framework of the projected augmented wave (PAW) method [20,21]. For H the ultrasoft PAW potential was used.

The two-dimensional Brillouin integrations were performed using a $(2 \times 3 \times 1$) Monkhorst–Pack k-point grid [22]. The self-consistent field was considered converged when the forces on atoms were smaller than 0.01 eV/Å. The fixed convergence of the plane wave expansion was obtained with a cut-off energy of 450 eV. Spin-polarized GGA calculations were carried out for all adsorbate–surface systems.

The bulk goethite structure can be described as a distorted hexagonally close packing of O and OH groups with iron ions occupying half of the octahedral interstitial holes. For the construction of the FeOOH(1 1 0) surface, it was taken into account a previous study of the bulk goethite using the DFT + U approximation [23]. For magnetic materials such as FeOOH, where d electrons are strongly correlated, the standard DFT fails to predict their proper electronic ground state. A systematic study of several physical properties of bulk goethite was attained varying the value of the effective on-site repulsion term (U). In agreement with experimental results, the geometrical parameters, magnetic and elastic properties at the equilibrium were obtained using GGA + U with U = 6.0 eV. The unit cell parameters of the optimized bulk were $a = 4.601$, $b = 9.994$ and $c = 3.035$ Å, with an antiferromagnetic (AFM) arrangement, where each Fe ion is surrounded by other two with opposite magnetic moments along the b-vector axis of the bulk cell.

In natural and synthetic goethite it was established that the dominant face is the (1 1 0) surface (referred space group Pbnm) [24]. It was constructed by a stoichiometric truncation of the bulk using a 1×3 supercell and containing four Fe layers [25,26]. A vacuum gap in z-direction of approximately 15 Å was employed. In this partially dehydrated surface, three Fe–O and three O–H bonds per unit cell were broken from the bulk structure. From that surface, a fully hydrated surface was modeled by saturating all bonds (Fig. 1, indicated as G0). This hydrated surface presents three singly coordinated (μ_1–OH), three doubly coordinated (μ_2–OH), and six threefold coordinated (μ_3–OH) hydroxyl groups per supercell with calculated Fe–OH distances of about 1.95, 2.0 and 2.1 Å, respectively.

A series of five different partially dehydrated surfaces were modeled by eliminating one or two water molecules from the fully hydrated surface, through the simultaneous releasing of adjacent OH and H (Fig. 1). We label these surface models with roman numbers, from G(I) to G(V). In G(I), G(II) and G(III), one μ_1–OH group is eliminated together with different types of neighbor H atoms. In G(IV) and G(V), two water molecules are simultaneously released. While in G(IV) two adjacent μ_1–OH are missing, in G(V) one μ_4–OH and one μ_3–OH are absent. These two last surfaces are deliberately modeled in order to allow the formation of sulfate complexes. The energies required for the formation of these vacant sites are calculated as the difference between the total energies of the partially dehydrated surface, and the energies of the GO surface and the free water molecule(s). The calculated values are found to be 2.1, 1.7 and 3.4 eV for G(I), G(II) and G(III), respectively. For double vacancies, G(IV) and G(V), the values are 1.9 and 3.0 eV per water molecule, respectively. The large values calculated for G(III) and G(V) are in relation with the existence of a repulsive interaction between two
nearby negatively charged O atoms on these surfaces. In the modeling, environmental dry conditions were taken into account; i.e., possible effects of other adsorbed water molecules or protonated surface hydroxyls on SO$_2$ adsorption were not considered.

Upon the DFT calculations, the adsorption energy (E_{ads}) of SO$_2$ molecule on goethite was defined as: $E_{\text{ads}} = E_{\text{SO}_2/\text{FeOOH}} - E_{\text{FeOOH}}$ where $E_{\text{SO}_2/\text{FeOOH}}$ is the energy of the total system, E_{FeOOH} is the bare surface energy and E_{SO_2} is the energy of SO$_2$ in gas phase. Thus, negative values correspond to exothermic processes. As in all standard DFT studies, entropic effects are neglected. During the geometrical optimization procedure the position of all the surface hydroxyls, the six outermost Fe atoms and the atoms belonging to adsorbed SO$_2$ species are fully optimized. As initial geometry, the SO$_2$ molecule was located above the water vacancies (marked regions in Fig. 1). As mentioned above, the process of eliminating water molecules requires different energies and therefore E_{ads} values depend on the corresponding model of goethite surface (the E_{FeOOH} term). For this reason we used E_{ads} values to analyze the relative stability of the different S-containing structures only when the same goethite surface model is used.

Considering that SO$_2$ can physisorb on the fully hydrated surfaces (see later), complementary calculations were performed using a van der Waals corrected-DFT approach. This is because it is well known that DFT does not correctly describe this type of long-range forces. The so-called DFT-D approximation was employed based on the addition of damped atom-pairwise dispersion corrections [27]. For comparison, one type of chemisorbed sulfite complex was also analyzed using the same methodology. The corresponding results are presented in the next section.

Vibrational frequency and atomic charges are also calculated for all the surface complexes. The vibrational frequencies and the corresponding normal modes were provided by the numerical calculation of the second derivatives of the potential energy surface within the harmonic approach. A geometrical displacement of 0.02 Å was used for all vibrational calculations. Local atomic charges have been calculated with the atoms-in-molecules-analysis developed by Bader [28] using the algorithm performed by Henkelman et al. [29,30].

3. Results and discussion

3.1. Physisorbed SO$_2$

The optimized SO$_2$ structures adsorbed on the fully hydrated FeOOH surface are shown in Fig. 2, and the corresponding adsorption energies and frequency values are summarized in Table 1. Two different geometries were found, indicated as (I) and (II), with very similar adsorption energies, -0.58 and -0.57 eV, respectively. In the first case, a hydrogen bond is formed between an O atom of SO$_2$ and a H atom belonging to μ_3-OH. Consequently, this S--O link is elongated from 1.45 Å, the distance at free SO$_2$, to 1.49 Å. The other O atom of SO$_2$ is tilted away from the surface. The adsorbed molecule is also stabilized by the formation of a relatively short S--O bond, 2.17 Å. The second mode results from the interaction of SO$_2$ with μ_2-OH and μ_3-OH hydroxyls, forming two hydrogen bonds of 2.02 and 2.07 Å, respectively. In this case, the S atom is far from the surface (S--O distance being 2.50 Å) and both S--O bonds are slightly elongated to 1.46 Å. Lo et al. have found similar structures upon SO$_2$ adsorption on a hydrated γ-Al$_2$O$_3$(1 1 0) surface by using periodic DFT [12] but with larger adsorption energies, of around 1 eV. In one of these structures, one O atom of SO$_2$ is close to the surface and other one pointed out form the surface, with a S--O bond of 2.28 Å; in the other configuration, the SO$_2$ molecule is approximately parallel to the surface with a S--O distance of 2.52 Å.

Gas-phase SO$_2$ molecule presents three characteristic vibrational modes calculated at $1368, 1175$ and 493 cm$^{-1}$, attributed to asymmetric/symmetric stretching and bending modes, respectively. In structures (I) and (II), while the bending mode is slightly modified, the stretching asymmetric/symmetric modes decrease by about 150–170 and 100–150 cm$^{-1}$, respectively. The longer S--O distance in structure (I), correlates with the corresponding lower values of stretching modes (Table 1). Bader population analysis indicates a slight charge transfer from the surface to SO$_2$; for structures (I) and (II) we have computed a net SO$_2$ charge of -0.1 and $-0.2e$, respectively. From IR measurements, Kaneko and Matsumoto have detected a weak peak at 1038 cm$^{-1}$ during SO$_2$ adsorption on goethite that they assigned to negatively charged SO$_2$ [8], in line with our calculated values of 1029 and 1069 cm$^{-1}$ due to ν_3SO stretching mode.

3.2. Surface sulfite species

Six stable forms of surface sulfite have been identified (Fig. 3). Both types of partially dehydrated goethite surfaces (with one or two missing water molecules) can produce sulfite structures. We found two monodentate monouuclear configurations, indicated by MdMn(I) and MdMn(II), and four bidentate (Bd) structures. These latter geometries can be binuclear, indicated as BdBn(I) and BdBn(II), or polinuclear, labeled as BdPn(I) and BdPn(II). In BdPn complexes, one O of sulfite is singly coordinated and the other one is threefold coordinated with Fe ions.

In MdMn structures, the S--O$_{Fe}$ distance is longer than the other S--O ones. Besides, one of the three oxygen atoms belonging to sulfite presents a hydrogen bond with O--H distances of 1.72 and
Table 1
Calculated adsorption energies and vibrational frequencies of adsorbed SO$_2$ on FeOOH(1 1 0).

<table>
<thead>
<tr>
<th>Adsorption mode</th>
<th>Goethite slab</th>
<th>E_{adh} (eV)</th>
<th>Frequencies (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physiosorbed SO$_2$ (I)</td>
<td>G0</td>
<td>-0.58</td>
<td>1194 (ν_{m}OSO), 1029 (ν_{m}OSO), 520 (OSO)</td>
</tr>
<tr>
<td>Physiosorbed SO$_2$ (II)</td>
<td>G0</td>
<td>-0.57</td>
<td>1221 (ν_{m}OSO), 1069 (ν_{m}OSO), 501 (OSO)</td>
</tr>
<tr>
<td>Sulfite MdMn(I)</td>
<td>G(I)</td>
<td>-1.59</td>
<td>1126 (ν_{m}OSO), 976 (ν_{m}OSO${\text{b}}$), 648 ($\nu{\text{m}}$OSO$_{\text{b}}$)</td>
</tr>
<tr>
<td>Sulfite MdMn(II)</td>
<td>G(V)</td>
<td>-2.62</td>
<td>1126 (ν_{m}OSO), 977 (ν_{m}OSO${\text{b}}$), 868 (vSO${\text{b}}$), 541 (OSO$_{\text{b}}$)</td>
</tr>
<tr>
<td>Sulfite BdBn(I)</td>
<td>G(I)</td>
<td>-2.50</td>
<td>1022 (sSO), 791 (sSO${\text{b}}$), 672 (vSO${\text{b}}$, 578 (OSO$_{\text{b}}$)</td>
</tr>
<tr>
<td>Sulfite BdBn(II)</td>
<td>G(V)</td>
<td>-3.48</td>
<td>1049 (sSO), 809 (sSO${\text{b}}$), 661 (vSO${\text{b}}$, 530 (OSO$_{\text{b}}$)</td>
</tr>
<tr>
<td>Sulfite BdPn(I)</td>
<td>G(II)</td>
<td>-1.66</td>
<td>1056 (sSO), 904 (sSO${\text{b}}$), 553 (OSO${\text{b}}$), 522 (OSO$_{\text{b}}$)</td>
</tr>
<tr>
<td>Sulfite BdPn(II)</td>
<td>G(IV)</td>
<td>-1.99</td>
<td>1058 (sSO), 873 (sSO${\text{b}}$), 561 (δOSO${\text{b}}$),</td>
</tr>
<tr>
<td>Bisulfite</td>
<td>G(III)</td>
<td>-2.29</td>
<td>1111 (sSO), 1087 (ν_{m}OSO), 1011 (sSO), 564 (OSO${\text{b}}$), 539 (OSO${\text{b}}$)</td>
</tr>
<tr>
<td>Sulfate</td>
<td>G(V)</td>
<td>-5.02</td>
<td>1176 (ν_{m}OSO), 1029 (ν_{m}OSO${\text{b}}$), 918 (vSO${\text{b}}$), 791 (vSO${\text{b}}$), 602 (OSO${\text{b}}$), 583 (OSO${\text{b}}$), 540 (OSO${\text{b}}$)</td>
</tr>
</tbody>
</table>

1.77 Å for MdMn(I) and for MdMn(II), respectively. Concerning the BdBn structures, both of them present similar geometries with two S–O$_{\text{Fe}}$ distances of about 1.6 Å. In BdPn, the two S–O$_{\text{Fe}}$ distances are very different, one relatively short of about 1.56 Å and the other one much longer (1.78 and 1.73 Å for BdPn(I) and BdPn(II), respectively). On the other hand, BdBn states show short hydrogen bonds at 1.69 and 1.64 Å. BdPn present somewhat longer hydrogen bonds, about 1.7 Å.

Nearly in all the structures, the Fe–O$_{3}$ distance is around 2 Å, indicating a strong bonding with the surface. The only exceptions are the distances with the three-coordinated O present at both BdPn configurations, with larger values of about 2.2 Å.

It is interesting to note that MdMn(I) and BdBn(I) are formed on G(I), and MdMn(II) and BdBn(II), on G(V). Besides, for each case, adsorption energy values are 0.9 eV more stable for BdBn due to the double anchoring with the surface.

Both MdMn geometries present two frequency values at 1126 and 976 cm$^{-1}$ corresponding to OSO$_{\text{b}}$ and OSO$_{\text{b}}$ asymmetric stretching modes, respectively. The longer S–O$_{\text{Fe}}$ in MdMn(I) in comparison with (II) is reflected in the corresponding stretching modes; indeed, a band at 648 cm$^{-1}$ appears in (I), associated to symmetric OSO$_{\text{Fe}}$, and another one is present in (II) but at higher frequencies (868 cm$^{-1}$) because it involves a shorter distance (1.55 Å).

Both BdBn states present very similar frequencies. It is interesting to note that the features at 672 and 661 cm$^{-1}$, together with the value of 648 cm$^{-1}$ corresponding to MdMn(I), are distinctive of these sulfite geometries. Indeed, neither of the other structures presented here show values in the range between 600 and 700 cm$^{-1}$. In general, the FTIR spectra are recorded from 700 cm$^{-1}$ to higher values and that is why bands within the 600–700 cm$^{-1}$ range were not previously reported.

Concerning the bidentate polinuclear configurations, we can see that BdPn(I) presents a higher value of the SO$_{\text{Fe}}$ stretching in comparison with the same mode present in (II) (904 and 873 cm$^{-1}$, respectively) owing to the longer S–O$_{\text{Fe}}$ distance at (I).

On the other hand, considering all the sulfite structures, bending modes vary in a rather narrow range, between 522 and 593 cm$^{-1}$. These adsorption bands are usually very weak and hence rarely reported.

IR studies performed by Kaneko and Matsumoto [8] show two main adsorption bands at 940 and 850 cm$^{-1}$ that they assigned to

Fig. 3. Optimized structures of surface sulfite species on dehydrated goethite (violet = Fe, red = O, white = H, yellow = S). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
“−OSO₂” species on goethite. Some of the sulfate-like complexes obtained in our models give similar values. Indeed, both MdMn structures present features at 977 cm⁻¹ due to stretching OSO. Besides, MdMn(II) and BdPn(II) present bands at 868 cm⁻¹ and 873 cm⁻¹, respectively, due to SO₄̂ stretching mode.

Bader analysis shows that all the sulfate complexes present a net charge of the SO₃ group of about −1.4e.

3.3. Surface bisulfate species

Only the adsorption on the G(III) yields to the spontaneous formation of a bisulfite-like structure, via bonding between S and an O atom belonging to μ₁OH. Two hydrogen bonds contribute also to its stabilization. As we can see in Fig. 4A, one of the S−O distances is much larger than the others. This geometry is not possible on the fully hydrated goethite very likely due to steric effects. Lo et al. have found a similar structure on alumina surfaces using periodic DFT [12]. Bader analysis shows a net charge of the HSO₃ complex of −0.8e.

Experimentally, the same IR adsorption range is assigned to the features owing to sulfuric and bisulfate species. For instance, Zhang et al. have assigned a broad band between 850 and 1100 cm⁻¹ observed in IR spectra to bisulfite and sulfate complexes obtained during SO₂ adsorption on alumina [4]. Goodman et al. have attributed a band between 900 and 1200 cm⁻¹ to bisulfite and sulfites also on alumina [14]. In comparison, we have found signals at the upper limits of those ranges for bisulfate, between 1011 and 1111 cm⁻¹.

3.4. Surface sulfate species

The sulfate structure is formed on G(IV) and G(V) surface models, giving exactly the same structure (Fig. 4B). The adsorption energy was calculated as −2.29 and −5.02 for G(IV) and G(V), respectively. The large value in the latter case is in relation with the above mentioned relative instability of the G(V) surface. As seen in Table 1, sulfate MdMn(II) and BdBn(II) complexes are also formed on this surface; the adsorption energies follow the sequence (in magnitude) sulfate > sulfite BdBn(II) > sulfite MdMn(II), as expected taking into account the number of links with the goethite surface.

The sulfate species has two O singly coordinated and one O threefold coordinated with Fe ions. The O−Fe distances are 2.08, 2.34 and 2.48 Å, and for this reason it could be associated with a tridentate geometry. As shown in the figure, a relatively long hydrogen bond is also formed. The calculated charge for the SO₄ group is −1.6e.

Using IR spectroscopy, Fu et al. [6] have detected three main peaks at 1203, 1145 and 1042 cm⁻¹ attributed to bidentate sulfate formed on goethite, together with a weak peak at 994 cm⁻¹. Our calculations show three bands in the same range, at 1176, 1029 and 918 cm⁻¹ due to asymmetric OSO, asymmetric OSO₄, and symmetric OSO stretching modes of the sulfate structure, respectively. Besides, our model predicts a feature at lower frequencies, 791 cm⁻¹, owing to SO₄̂ stretching. We can tentatively assign the calculated values at 1176, 1029 and 918 cm⁻¹ to the bands experimentally recorded at 1203, 1042 and 994 cm⁻¹. The band at 1145 cm⁻¹ may be associated to sulfite structures, for instance, those at 1126 cm⁻¹ corresponding to SO stretching modes at sulfate MdMn species. In fact, as mentioned above, XPS experiments show that sulfate complexes are the predominant species upon SO₂ adsorption on goethite, even in the presence of oxygen [7]. Thus, sulfate and sulfite species could be simultaneously present in the reported IR spectrum [6], and not only bidentate sulfate.

As mentioned above, we have tested the effect of including the dispersion forces using a corrected DFT methodology. For that, we have used the PBE functional with a fitted empirical term to account for the dispersion interactions [27]. We have chosen two different adsorption modes: physisorbed SO₂ (structure II) and sulfate BdBn(I). Calculations indicate that the adsorption energies increased by about 0.2 eV in magnitude. Concretely, E_ads resulted to be −0.77 and −2.75 eV for physisorbed SO₂ and sulfate BdBn(I), respectively. In relation with the optimized geometries, while the S−O distances change slightly, less than 0.01 Å, hydrogen bonds between surface hydroxyls and the O of SO₂ vary around 0.03 Å. Frequency values increase by about 9 cm⁻¹ at the most, for both stretching and bending modes. We thus observed that the inclusion of the dispersion forces correction does not seem to modify the general trends and the main conclusions obtained using non-corrected DFT.

It is important to take into account that the results presented here are concerned with the SO₂ adsorption on goethite exposing only the (1 1 0) face, while the experimental data are obtained from synthetic goethite samples where more than one crystallographic plane are exposed. Villalobos et al. have recently found that other surfaces such as (0 2 1), apart from the (1 1 0) one, are very reactive to different adsorbates [31,32]. Therefore, other surfaces may have a great affinity toward SO₂ adsorption. Besides, adsorbed SO₂ could show different frequency values according to the exposed surface. For instance, changes in the band positions recently observed in IR spectra upon phosphate adsorption on microgoethite and nanogoethite samples could be attributed, at least in part, to the variations in different exposing facets [33]. Thus, further
investigations on other surfaces are needed to acquire a complete theoretical description of the SO$_2$–goethite interface.

4. Conclusions

The adsorption of SO$_2$ on hydrated and partially dehydrated goethite was evaluated. A series of five different dehydrated surfaces were modeled by eliminating one or two water molecules. On the hydrated surface, SO$_2$ adsorbs molecularly through the formation of S–O and hydrogen bonds. Most of the hydrated surface models give rise to sulfate species, with both monodentate and bidentate structures. Only one of our models yields to the formation of bisulfite, via bonding between the S atom and an O atom belonging to μ_1–OH. On the other hand, SO$_3$ transforms into sulfate species on the surfaces with two missing water molecules.

Bader charges of SO$_x$ species follow the sequence SO$_4$ (−1.6e$^+$) > SO$_3$ (−1.4e$^+$) > HSO$_3$ (−0.8e$^+$) > physorbs SO$_2$ (−0.1e$^+$)–(−0.2e$^+$).

The frequency values for monodentate mononuclear sulfite structures calculated at 977 cm$^{-1}$ (asymmetric OSO stretching) and 868 cm$^{-1}$ due to (SO$_2$$_x$ stretching) agree quite well with two adsorptions bands at 940 and 850 cm$^{-1}$ observed using IR spectroscopy. For sulfate, the calculated values obtained at 1176, 1029 and 918 cm$^{-1}$ due to asymmetric SO$_2$, asymmetric OSO$_x$, and symmetric OSO stretching modes of the sulfate structure, respectively, are also in line with reported IR spectra. It is interesting to note that features at around 660 cm$^{-1}$, found for several sulfite geometries, are distinctive of these structures because neither of the other species shows values in the 600–700 cm$^{-1}$ range (usually not explored in IR experiments). Taking into account that all the SO$_x$ structures analyzed here present bands in the same range, between 800 and 1250 cm$^{-1}$, the predicted bands falling into the 600–700 cm$^{-1}$ region can be used in future measurements for the detection of sulfite species.

References