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Abstract. In this paper, we study the class of all monadic implicational subreducts,
that is, the {→, ∀, 1}-subreducts of the class of monadic MV-algebras. We prove that
this class is an equational class, which we denote by ML, and we give an equational
basis for this variety. An algebra in ML is called a monadic �Lukasiewicz implication
algebra. We characterize the subdirectly irreducible members of ML and the con-
gruences of every monadic �Lukasiewicz implication algebra by monadic filters. We
prove that ML is generated by its finite members. Finally, we completely describe
the lattice of subvarieties, and we give an equational basis for each proper subvariety.

1. Introduction

�Lukasiewicz implication algebras are the algebraic counterpart of the im-
plicational fragment of Super-�Lukasiewicz logic ([13], [12]). In fact, they are
the class of all implicational subreducts, that is, the {→, 1}-subreducts of MV-
algebras ([10], [3]). They are also called C-algebras in [13] and �Lukasiewicz
residuation algebras in [2].

Monadic MV-algebras, MMV-algebras for short, were introduced and stud-
ied by Rutledge in [15] as an algebraic model for the monadic predicate calculus
of �Lukasiewicz infinite-valued logic, in which only a single individual variable
occurs. He called these algebras monadic Chang algebras. Rutledge followed
Halmos’ study of monadic boolean algebras and represented each subdirectly
irreducible MMV-algebra as a subalgebra of a functional MMV-algebra. From
this representation, he proved the completeness of the monadic predicate cal-
culus. As usual, a functional MMV-algebra is defined as follows. Let us
consider the MV-algebra VX of all functions from a nonempty set X to an
MV-algebra V, where the operations ⊕, ¬ and 0 are defined pointwise. If for
p ∈ V X , there exist the supremum and the infimum of the set {p(y) : y ∈ X},
then we define the constant functions ∃∨(p)(x) = sup{p(y) : y ∈ X} and
∀∧(p)(x) = inf{p(y) : y ∈ X} for every x ∈ X. A functional MMV-algebra
A′ is an MMV-algebra whose MV-reduct is an MV-subalgebra of VX and
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such that the existential and universal operators are the functions ∃∨ and ∀∧,
respectively. Observe that A′ satisfies that

(1) if p ∈ A′, then the elements sup{p(y) : y ∈ X} and inf{p(y) : y ∈ X} exist
in V,

(2) if p ∈ A′, then the constant functions ∃∨(p) and ∀∧(p) are in A′.

By a functional representation of an MMV-algebra A we simply mean a func-
tional MMV-algebra A′ such that A is isomorphic to A′. When X is a finite
set with k elements, we write Vk instead of VX .

In this paper, we study the class of all monadic implicational subreducts,
that is, {→,∀, 1}-subreducts of monadic MV-algebras. One of the main pur-
poses of this work is to demonstrate that the class of all monadic implicational
subreducts of MMV-algebras is an equational class. We denote this class by
ML. Each algebra in ML is called a monadic �Lukasiewicz implication algebra.
From this, we have that there is a fundamental relationship between varieties
of MMV-algebras and varieties of monadic �Lukasiewicz implication algebras.
Because of this relation, several results about varieties of MMV-algebras will
be needed in this paper. In fact, this work can be considered as a continuation
of [8], and it is the second of three. These three papers are part of the PhD.
Thesis [6].

After a preliminary section, where we state the main results about �Lukasie-
wicz implication algebras and MMV-algebras that we need for this paper, we
prove in Section 3 that the class of all monadic implicational subreducts is a va-
riety. We also give here the set of identities that characterize the variety. Next,
we study general properties of the variety. We establish an order-isomorphism
from the lattice of congruences of a monadic �Lukasiewicz implication algebra
A onto the lattice of monadic filters of A and, in addition, we prove that the
lattice of all monadic filters of A is isomorphic to the lattice of all filters of
the subalgebra ∀A. From this, we characterize the subdirectly irreducible and
the finite simple members of the variety.

In Section 4, we prove that ML is exactly the class of all monadic impli-
cational subreducts of MMV. As a first application of the relation between
MMV and ML, we demonstrate that the variety ML is generated by its
subdirectly irreducible finite members, and also by the monadic implicational
subreduct of the functional MMV-algebra [0,1]N, where we denote by N the
set of positive integer numbers.

The last section is dedicated to the study of the lattice Λ(ML) of subvari-
eties of ML. First, we introduce the notion of width of an ML-algebra. We
prove that if A is a subdirectly irreducible ML-algebra of width less than or
equal to a finite positive integer k, then A is isomorphic to a subalgebra of
(∀A)k, where the universal operator in (∀A)k is defined as the constant func-
tion ∀∧. The equational class of all ML-algebras of width k is generated by
[0,1]k, and the identity (αk) characterizes the ML-algebras of width k. The
main goal of this section is to prove that the width of a subdirectly irreducible
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monadic �Lukasiewicz implication algebra A and the order of the �Lukasiewicz
implication subalgebra ∀A determine the subvariety generated by the alge-
bra (Theorem 5.8). Next, we give the join-irreducible members of Λ(ML),
and we prove that each non-trivial proper subvariety of ML-algebras is the
supremum of a finite number of join-irreducible subvarieties. From this, we
describe Λ(ML) completely. Moreover, we characterize each proper subvariety
of Λ(ML) by a single identity.

2. Preliminaries

MV-algebras were introduced by C. C. Chang in [3] as algebraic models for
�Lukasiewicz infinitely-valued logic. We refer the reader to [5].

An MV-algebra is an algebra A = 〈A;⊕,¬, 0〉 of type (2, 1, 0) satisfying the
following identities:

(MV1) x ⊕ (y ⊕ z) ≈ (x ⊕ y) ⊕ z,
(MV2) x ⊕ y ≈ y ⊕ x,
(MV3) x ⊕ 0 ≈ x,

(MV4) ¬¬x ≈ x,
(MV5) x ⊕ ¬0 ≈ ¬0,
(MV6) ¬(¬x ⊕ y) ⊕ y ≈ ¬(¬y ⊕ x) ⊕ x.

On each MV-algebra A, we define the constant 1 and the operations 
 and
→ as follows: 1 := ¬0, x 
 y := ¬(¬x ⊕ ¬y), and x → y := ¬x ⊕ y. For any
two elements a and b of A, we define a ≤ b if and only if a→ b = 1. It follows
that ≤ is a partial order, which is called the natural order of A. The natural
order determines a lattice structure in A. Specifically, the join a ∨ b and the
meet a∧ b of a and b are given by a∨ b = (a→ b)→ b and a∧ b = a
 (a→ b).

The real interval [0, 1] enriched with the operations a ⊕ b = min{1, a + b}
and ¬a = 1− a, is an MV-algebra denoted by [0,1]. Chang proved in [4] that
this algebra generates the variety MV of MV-algebras. For every n ∈ N, we
denote by Sn = 〈Sn =

{
0, 1

n , . . . , n−1
n , 1

}
;⊕,¬, 0〉 the finite MV-subalgebra of

[0,1] with n + 1 elements.
Mundici defined a functor Γ between MV-algebras and abelian �-groups

with strong unit, and proved that Γ is a categorical equivalence [14]. For
every abelian �-group G, the functor Γ equips the unit interval [0, u] with the
operations x⊕ y = u∧ (x + y), ¬x = u− x and 1 = u. The resulting structure
〈[0, u];⊕,¬, 0〉 is an MV-algebra. Set Sn,ω = Γ(Z × Z, (n, 0)), where Z is the
totally ordered additive group of integers and Z×Z is the lexicographic product
of Z with itself. Let us observe that Sn is isomorphic to Γ(Z, n), and we write
Sn

∼= Γ(Z, n).
Monadic MV-algebras (monadic Chang algebras in Rutledge’s terminology)

were introduced and studied by J. D. Rutledge in [15] as an algebraic model for
the monadic predicate calculus of �Lukasiewicz infinite-valued logic, in which
only a single individual variable occurs. An algebra A = 〈A;⊕,¬,∃, 0〉 of
type (2, 1, 1, 0) is called a monadic MV-algebra (an MMV-algebra for short) if
〈A;⊕,¬, 0〉 is an MV-algebra and ∃ satisfies the following identities:
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(MMV1) x ≤ ∃x,
(MMV2) ∃(x ∨ y) ≈ ∃x ∨ ∃y,
(MMV3) ∃¬∃x ≈ ¬∃x,

(MMV4) ∃(∃x ⊕ ∃y) ≈ ∃x ⊕ ∃y,
(MMV5) ∃(x 
 x) ≈ ∃x 
 ∃x,
(MMV6) ∃(x ⊕ x) ≈ ∃x ⊕ ∃x.

The variety of MMV-algebras is denoted by MMV.
In each MMV-algebra A, we define ∀ : A → A by ∀a = ¬∃¬a, for every

a ∈ A. Clearly, the following identities dual to (MMV1)–(MMV6) are satisfied:

(MMV7) ∀x ≤ x,
(MMV8) ∀(x ∧ y) ≈ ∀x ∧ ∀y,
(MMV9) ∀¬∀x ≈ ¬∀x,

(MMV10) ∀(∀x 
 ∀y) ≈ ∀x 
 ∀y,
(MMV11) ∀(x 
 x) ≈ ∀x 
 ∀x,
(MMV12) ∀(x ⊕ x) ≈ ∀x ⊕ ∀x.

For our purposes, it is more convenient to consider the operator ∀ instead
of ∃. So, from now on, we consider an algebra A = 〈A;⊕,¬,∀, 0〉 as an MMV-
algebra if ∀ satisfies the identities (MMV7)–(MMV12). We often write 〈A;∀〉
for short.

The next lemma collects some basic properties of MMV-algebras.

Lemma 2.1. [15], [7] Let A ∈ MMV. For every a, b ∈ A the following
properties hold:

(MMV13) ∀0 = 0,
(MMV14) ∀1 = 1,
(MMV15) ∀∀a = ∀a,
(MMV16) ∀(∀a ⊕ ∀b) = ∀a ⊕ ∀b,

(MMV17) ∀(∀a →∀b) = ∀a →∀b,
(MMV18) ∀(a → b) ≤ ∀a →∀b,
(MMV19) ∀(a ∨ ∀b) = ∀a ∨ ∀b.

Let us consider the set ∀A = {a ∈ A : a = ∀a} = {a ∈ A : a = ∃a}. From
the last lemma, we have that ∀A = 〈∀A;⊕,¬, 0〉 is an MV-subalgebra of the
MV-reduct of A.

If A is a finite subdirectly irreducible MMV-algebra, then A is isomorphic
to (∀A)k, for some positive integer k, where ⊕, ¬, and 0 are defined pointwise
and ∀∧ : (∀A)k → (∀A)k is defined by

∀∧ (〈a1, a2, . . . , an〉) = 〈a1 ∧ a2 ∧ · · · ∧ an, . . . , a1 ∧ a2 ∧ · · · ∧ an〉.
Moreover, ∀A is isomorphic to the diagonal subalgebra of the product [9]. Let
us observe that ∃∨ : (∀A)k → (∀A)k is defined by

∃∨ (〈a1, a2, . . . , an〉) = 〈a1 ∨ a2 ∨ · · · ∨ an, . . . , a1 ∨ a2 ∨ · · · ∨ an〉.
For each integer n ≥ 1, let Kn be the class of MMV-algebras that satisfy

the identity
xn ≈ xn+1. (δn)

It is easy to see that an MMV-algebra A satisfies (δn) if and only if A satisfies

x
n→ y ≈ x

n+1−→ y. (εn)



 Monadic MV-algebras II: Monadic implicational subreducts 205

The subvariety K1 is the variety of monadic boolean algebras, and it is clear
that if n ≤ l then Kn ⊆ Kl. If A is a finite subdirectly irreducible MMV-
algebra in Kn, then A ∼= Sk

m, for some integer m such that 1 ≤ m ≤ n and
some positive integer k [9]. Moreover, Kn = V(

{
Sk

m : k ∈ N, 1 ≤ m ≤ n
}

and
MMV = V({Sk

n : n, k ∈ N}) [7].
Let X be an infinite set and [0,1]X a functional MMV-algebra. Then

VMMV
(
[0,1]X

)
= VMMV

({[0,1]k : k ∈ N}).
In particular, VMMV(SN

n) = VMMV
({Sk

n : k ∈ N}). If we consider the func-
tional MMV-algebras SN

m, 1 ≤ m ≤ n, then Kn = V({SN
1 ,SN

2 , . . . ,SN
n}) [8].

The subvariety of MMV generated by the algebra [0,1]k is characterized
by the identity (αk) (see [8]) where

x ≈ ∀x, (α1)

and if k ≥ 2, then

∨
1≤i<j≤k+1

(
∀(xi ∨ xj) →

k+1∨
s=1

∀xs

)
≈ 1. (αk)

For each A ∈ MMV, we define the width of A, which is denoted by
width A, as the least integer k such that (αk) holds in A. If k does not
exist, then we say that the width of A is infinite and we write width A = ω.
This definition is motivated by the following result.

Proposition 2.2. [8] Let A be a subdirectly irreducible MMV-algebra that
satisfies (αk); then A is isomorphic to a subalgebra of (∀A)k.

The lattice of subvarieties of the subvariety of MMV-algebras V([0,1]k)
generated by [0,1]k is given in [8]. One of the most important results in
this paper is that the subvariety generated by a subdirectly irreducible MMV-
algebra A ∈ V([0,1]k) depends on its width, the order and rank of ∀A, and
the partition associated to A of the set of antiatoms of the boolean subalgebra
B(A) of its complemented elements.

Let Kk
n the subvariety of Kn generated by {Sk

1 ,Sk
2 , . . . ,Sk

n}. It is well known
that the lattice of subvarieties of K1 is an ω + 1-chain

K1
1 � K2

1 � · · · � Kk
1 � · · · � K1.

More generally,

K1
n � K2

n � · · · � Kk
n � · · · � Kn,

and Kk
n ⊆ Ks

m if and only if n ≤ m and k ≤ s ([9], [1]). An MMV-algebra
A ∈ Kk

n if and only if A satisfies (αk) and (δn) [8].
If A ∈ MMV is a subdirectly irreducible algebra such that ord∀A = m

and width A = k, then A is isomorphic to Sk
m. Clearly V(A) = V(Sk

m).
The next lemma will be needed later.
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Lemma 2.3. [8] If A is an infinite subalgebra of the MV-algebra [0,1], then

VMMV
(
Ak

)
= VMMV

(
[0,1]k

)
.

A �Lukasiewicz implication algebra is an algebra A = 〈A;→, 1〉 of type (2, 0)
that satisfies the identities

(L1) 1 → x ≈ x,
(L2) (x → y) → ((y → z) → (x → z)) ≈ 1,
(L3) (x → y) → y ≈ (y → x) → x,
(L4) (x → y) → (y → x) ≈ y → x.

We denote by L the variety of all �Lukasiewicz implication algebras. The
following properties are satisfied by any �Lukasiewicz implication algebra:

(L5) x → x ≈ 1,
(L6) x → 1 ≈ 1,
(L7) if x → y ≈ 1 and y → x ≈ 1, then x ≈ y,
(L8) x → (y → x) ≈ 1,
(L9) x → (y → z) ≈ y → (x → z).

If A ∈ L, then the relation a ≤ b if and only if a → b = 1 is a partial order
on A, called the natural order of A, with 1 as its greatest element. The join
operation x∨y is given by the term (x→y)→y and if c ∈ A, then the polynomial
p(x, y, c) = ((x→ c)∨ (y → c))→ c is such that p(a, b, c) = a∧ b = inf{a, b} for
a, b ≥ c. The lattice operations satisfy the following properties:

(L10) (x → y) ∨ (y → x) ≈ 1,
(L11) (x ∨ y) → z ≈ (x → z) ∧ (y → z),
(L12) z → (x ∨ y) ≈ (z → x) ∨ (z → y),

and if for a, b ∈ A the meet a ∧ b exists, then for any c ∈ A,

(L13) (a ∧ b) → c ≈ (a → c) ∨ (b → c),
(L14) c → (a ∧ b) ≈ (c → a) ∧ (c → b).

Let us recall that an algebra A = 〈A;→,¬, 1〉 of type (2, 1, 0) is a Wajsberg
algebra if

(W1) 1 → x ≈ x,
(W2) (x → y) → ((y → z) → (x → z)) ≈ 1,
(W3) (x → y) → y ≈ (y → x) → x,
(W4) (¬x →¬y) → (y → x) ≈ 1.

If A = 〈A;→, 1〉 is a �Lukasiewicz implication algebra and c ∈ A, then
Ac = 〈[c) = {a ∈ A : c ≤ a},→c,¬c, c, 1〉 becomes a Wajsberg algebra by
defining ¬cx := x → c and x →c y = x → y. Wajsberg algebras are term-
wise equivalent to MV-algebras. If A = 〈A;⊕,¬, 0〉 is an MV-algebra and we
define on A x → y := ¬x ⊕ y and 1 := ¬0, then 〈A;→,¬, 1〉 is a Wajsberg
algebra. Reciprocally, if A = 〈A;→,¬, 1〉 is a Wajsberg algebra and if we
define x ⊕ y := ¬x → y and 0 := ¬1, then 〈A;⊕,¬, 0〉 is an MV-algebra [11].
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�Lukasiewicz implication algebras are exactly the class of all implicational
subreducts of MV-algebras [10]. For each positive integer n, let

Ln =
〈{0, 1

n , . . . , n−1
n , 1};→, 1

〉

be the �Lukasiewicz implication algebra which is the {→, 1}-reduct of the MV-
algebra Sn. By an abuse of notation, we denote by [0,1] the �Lukasiewicz
implication algebra that is the {→, 1}-reduct of the MV-algebra [0,1].

�Lukasiewicz implication algebras are congruence 1-regular. For each con-
gruence relation θ on an algebra A ∈ L, 1/θ is a filter, i.e., it contains the
element 1 and if a, a → b ∈ 1/θ, then b ∈ 1/θ. In particular, 1/θ is upwardly-
closed with respect to the natural order. Conversely, for any filter F of A, the
relation θF = {(a, b) ∈ A2 : a → b, b → a ∈ F} is a congruence on A such that
F = 1/θF . In fact, the correspondence θ �→ 1/θ gives an order isomorphism
from the family of all congruence relations on A onto the family of all filters
of A, ordered by inclusion. For this reason, we often write A/F instead of
A/θF .

Subdirectly irreducible algebras in L are totally ordered [13]. If A ∈ L
and x ∈ A, the order of x, denoted by ord x, is the least integer n such that
x ∨ (x n→ y) = 1, for every y ∈ A. If n does not exist, then ord x = ω. The
order of A is ord A = sup{ord x : x ∈ A}.

Theorem 2.4. [13] Let A be a subdirectly irreducible �Lukasiewicz implication
algebra.

(a) If ord A = m, then A is isomorphic to Lm.
(b) If ord A = ω, then A has a subalgebra isomorphic to Lm, for each positive

integer m.

The lattice of subvarieties of L is given in [13] and it is an ω + 1-chain:

V(L0) � V(L1) � · · · � V(Ln) � · · · � V([0,1]) = L.

Note that V(L0) and V(L1) are the trivial subvariety and the subvariety of
implication algebras, respectively. Moreover, the subvariety V(Ln) is the sub-
variety of all �Lukasiewicz implication algebras that satisfy the identity

x
n→ y ≈ x

n+1−→ y, (εn)

for each n ∈ N.

3. Monadic �Lukasiewicz implication algebras

We begin this section by studying properties of the monadic implicational
reduct of an MMV-algebra. This leads us to the definition of a monadic
�Lukasiewicz implication algebra. Next, we show that the class of bounded
monadic �Lukasiewicz implication algebras is the class of monadic implica-
tional reducts of MMV. Finally, we prove that for any A ∈ ML, the lattice
ConML(A) of congruences of A, the lattice FM (A) of monadic filters of A,
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the lattice F(∀A) of filters of the �Lukasiewicz implication algebra ∀A, and
the lattice ConL(∀A) of congruences of ∀A are all isomorphic. From this, we
characterize the subdirectly irreducible and finite simple members of ML.

Lemma 3.1. The {→,∀, 1}-reduct of an MMV-algebra satisfies the following
identities:

(ML1) ∀1 ≈ 1,
(ML2) ∀x → x ≈ 1,
(ML3) ∀((x →∀y) →∀y) ≈ (∀x →∀y) →∀y,
(ML4) ∀(x → y) → (∀x →∀y) ≈ 1,
(ML5) ∀(∀x →∀y) ≈ ∀x →∀y,
(ML6) ∀((y → (y →∀x)) →∀x) ≈ (∀y → (∀y →∀x)) →∀x,
(ML7) ∀((x →∀y) → x) ≈ (∀x →∀y) →∀x.

Proof. Identities (ML1), (ML2), (ML3), (ML4), and (ML5) are immediate
from (MMV14), (MMV7), (MMV19), (MMV18), and (MMV17), respectively.

Let us see that (ML6) holds:

∀((b→(b →∀a)) →∀a) = ∀((b2 →∀a) →∀a) = ∀(b2 ∨ ∀a) = ∀b2 ∨ ∀a

= (∀b)2 ∨ ∀a = ((∀b)2 →∀a) →∀a = (∀b → (∀b →∀a)) →∀a.

Let us prove that (ML7) holds in the MV-algebra St
n, for all n, t ∈ N.

Let a = 〈ai〉1≤i≤t and b = 〈bi〉1≤i≤t in St
n. We can assume, without loss of

generality, that a1 = min1≤i≤t {ai} and b1 = min1≤i≤t {bi}. Then ∀∧a is the
constant t-tuple ∀∧a = 〈a1, a1, . . . , a1〉 and similarly ∀∧b = 〈b1, b1, . . . , b1〉. So,
for all j, a1 ≤ aj . Then, aj → b1 ≤ a1 → b1. Thus,

(a1 → b1) → a1 ≤ (aj → b1) → a1 ≤ (aj → b1) → aj .

Hence, min1≤j≤t{(aj → b1) → aj} = (a1 → b1) → a1. Consequently,

∀((a →∀b) → a) ≈ (∀a →∀b) →∀a.

Since the variety MMV is generated by the algebras St
n, we have that (ML7)

holds in every MMV-algebra. �

The above lemma motivates the following definition.

Definition 3.2. An algebra A = 〈A;→,∀, 1〉 of type (2, 1, 0) is a monadic
�Lukasiewicz implication algebra if 〈A;→, 1〉 is a �Lukasiewicz implication alge-
bra and if the identities (ML1)-(ML7) hold.

From the last definition, Lemma 3.1 can be stated in the following way.

Lemma 3.3. The {→,∀, 1}-reduct of an MMV-algebra is a monadic �Lukasie-
wicz implication algebra.

The variety of all monadic �Lukasiewicz implication algebras is denoted by
ML.

Taking into account the definition of the order in a �Lukasiewicz implication
algebra, it follows that the identity (ML2) is equivalent to ∀x ≤ x. We also
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know that the join of a and b is given by a ∨ b = (a → b) → b. Then, (ML3)
can be written as ∀(x ∨ ∀y) ≈ ∀x ∨ ∀y.

Lemma 3.4. Let A ∈ ML. For every a, b ∈ A the following properties hold:

(ML8) ∀∀a = ∀a,
(ML9) if a ≤ b, then ∀a ≤ ∀b,

(ML10) the meet ∀a ∧ ∀b exists if and only if the meet a ∧ b exists,
(ML11) ∀(∀a ∨ ∀b) = ∀a ∨ ∀b,
(ML12) if the meet ∀a ∧ ∀b exists, then ∀(∀a ∧ ∀b) = ∀a ∧ ∀b,
(ML13) if the meet a ∧ b exists, then ∀(a ∧ b) = ∀a ∧ ∀b.

Let us consider the set ∀A = {∀x : x ∈ A}. From (ML1), (ML5), and
(ML8), we have that ∀A = 〈∀A;→,∀, 1〉 is a subalgebra of A.

Lemma 3.5. Let A = 〈A;→,∀, 1〉 be a monadic �Lukasiewicz implication al-
gebra, and let c ∈ ∀A. In [c) = {a ∈ A : c ≤ a}, we define the operations
¬cx := x → c and x ⊕c z := ¬cx → z. Then Ac = 〈[c);⊕c,¬c,∀, c〉 is an
MMV-algebra.

Proof. Since c ∈ ∀A, so c = ∀c and we know that 〈[c);⊕c,¬c, c〉 is an MV-
algebra. Let us prove (MMV7)–(MMV12). Properties (MMV7) and (MMV9)
are immediate from (ML2) and (ML5), respectively. Let a, b ∈ [c). Note that
a∧ b exists and c ≤ a∧ b. Then from (ML13), we have that ∀(a∧ b) = ∀a∧∀b

and (MMV8) holds. Let us see that (MMV10) holds. Indeed,

∀(∀a 
c ∀b) = ∀(¬c(∀a →¬c∀b)) = ∀((∀a → (∀b →∀c)) →∀c)

= (∀a → (∀b →∀c)) →∀c = ¬c(∀a →¬c∀b) = ∀a 
c ∀b.

Next, we prove (MMV11). From (ML6), we have that

∀(a 
c a) = ∀(¬c(a →¬ca)) = ∀((a → (a →∀c)) →∀c)

= (∀a → (∀a →∀c)) →∀c = ∀a 
c ∀a.

Finally, by (ML7), it follows that

∀(a ⊕c a) = ∀((a →∀c) → a) = (∀a →∀c) →∀a = ∀a ⊕c ∀a.

Hence, the claim is proved. �

Let us remark from the proof of the last lemma that we prove (MMV11)
and (MMV12) from (ML6) and (ML7).

An ML-algebra is bounded if it has a first element. The following corollary
is immediate from Lemma 3.5.

Corollary 3.6. If A is a bounded ML-algebra with first element 0, then A0

is an MMV-algebra.

Therefore, Lemma 3.3 and Corollary 3.6 imply that the class of bounded
ML-algebras is the class of the {→,∀, 1}-reducts of the MMV-algebras.
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In the following, we state the existence of isomorphisms between the lattice
of monadic filters of an ML-algebra A, the lattice of congruences of A, the
lattice of filters of the L-algebra ∀A, and the lattice of congruences of ∀A.

Let A be an ML-algebra. A subset F ⊆ A is called a monadic filter of A if
F is a filter of A and ∀a ∈ F whenever a ∈ F .

We denote by FM (A) the set of all monadic filters of A, ordered by inclu-
sion. If F ∈ FM (A), then, in particular, F is an order filter, i.e., if a ∈ F and
a ≤ b, then b ∈ F . Since b ≤ a→ b for any a, b in an ML-algebra, the monadic
filters are always subuniverses.

If A ∈ ML and X ⊆ A, X �= ∅, the monadic filter generated by X is:

FMg(X) = {b ∈ A : ∀a1 → (∀a2 → (· · · (∀an → b) · · · )) = 1 : a1, . . . , an ∈ X} .

If X = {a}, then FMg(a) =
{

b ∈ A : ∀a
n→ b = 1, for some n ∈ N

}
. Note that

FMg(X) = Fg(∀X).

Theorem 3.7. Let A ∈ ML. The map ConML(A) → FM (A) defined by
θ → 1/θ is an order-isomorphism, with inverse map F → θF .

It is also straightforward to see the following.

Theorem 3.8. Let A ∈ ML. The correspondence FM (A) → F(∀A) defined
by F → F ∩ ∀A is an order-isomorphism, with inverse map M → FMg(M).

From the above, we have that if A ∈ ML, then

ConML(A) ∼= FM (A) ∼= F(∀A) ∼= ConL(∀A).

As a consequence, the variety ML is congruence-distributive and it has the
congruence extension property. We also have the following result.

Corollary 3.9. Let A ∈ ML. Then A is subdirectly irreducible (simple) if
and only if ∀A is a subdirectly irreducible (simple) L-algebra.

We know that the subdirectly irreducible algebras in the variety L are to-
tally ordered. Then the above corollary implies the following result.

Lemma 3.10. If A is a subdirectly irreducible ML-algebra, then ∀A is totally
ordered.

Let n and k be positive integers. We denote the {→,∀, 1}-reduct of the
MMV-algebra Sk

n by Lk
n. In the next lemma, we characterize the finite simple

algebras in ML.

Lemma 3.11. The finite simple algebras in ML are the algebras Lk
n, where

n and k are positive integer numbers.

Proof. It is clear that Lk
n is simple. Let A be a finite simple algebra in ML.

From Corollary 3.9, we know that ∀A is a finite simple �Lukasiewicz implication
algebra. Then ∀A ∼= Ln, for some integer n [13]. In particular, A has a least
element 0. From Lemma 3.5, we know that A0 = 〈[0);→,∀, 1〉 is an MMV-
algebra which it is also simple and finite. Then A0 ∼= Sk

n, for some k [9]. As a
consequence, A ∼= Lk

n. �
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4. Monadic implicational subreducts of MMV-algebras

The main goal in this section is to show that every ML-algebra is isomor-
phic to a monadic implicational subreduct of a bounded ML-algebra. This
implies, together with the results of the last section, that every ML-algebra
is isomorphic to a monadic implicational subreduct of an MMV-algebra. This
fact gives an important relation between the subvarieties of MMV and ML.
As a first application, we show in this section a characteristic algebra of ML
and we prove that ML has the finite model property.

We say that an algebra A ∈ ML is directed if for all a, b ∈ A there exists
c ∈ A such that c ≤ a and c ≤ b.

Lemma 4.1. Every directed ML-algebra can be embedded into a bounded ML-
algebra.

Proof. Let A be a directed ML-algebra. For each z ∈ A, the set [∀z) =
{x ∈ A : ∀z ≤ x} is a bounded subuniverse of A and [∀z) is a bounded ML-
algebra with first element ∀z. Let us see that A ∈ ISPU ({[∀z) : z ∈ A}).

For each a ∈ A, let (a] = {x ∈ A : x ≤ a}. Let us consider the family
{(a] : a ∈ A}. Since A is directed, for each a, b ∈ A, there exists c ∈ A

such that (c] ⊆ (a] ∩ (b]. Then the family {(a] : a ∈ A} has the finite in-
tersection property. Thus, there exists an ultrafilter F in the boolean alge-
bra Su(A) of subsets of A, containing all the members of the family. Let
ψ : A → (

∏
z∈A[∀z))/F be defined by ψ(a) = (a ∨ ∀z)z∈A/F . Let us prove

that ψ(∀a) = ∀(ψa), ψ(a → b) = ψ(a) → ψ(b), and ψ is injective.
So, ∀(ψa) = ∀ ((a ∨ ∀z)z∈A/F ) = ∀ ((a ∨ ∀z)z∈A) /F = (∀(a ∨ ∀z))z∈A /F .

Then ψ(∀a) = ∀(ψa) if and only if {z ∈ A : ∀z ∨ ∀a = ∀(a ∨ ∀z)} ∈ F . From
(MMV19) we have that {z ∈ A : ∀z ∨ ∀a = ∀(a ∨ ∀z)} = A ∈ F . Hence,
ψ(∀a) = ∀(ψa).

For each a, b ∈ A, there exists c ∈ A such that c ≤ a, b. Let us see that

(c] ⊆ {z ∈ A : ∀z ∨ (a → b) = (∀z ∨ a) → (∀z ∨ b)} .

Indeed, if z ∈ (c], then ∀z ≤ z ≤ c ≤ a, b. Then ∀z ≤ a → b. Thus,

∀z ∨ (a → b) = a → b = (∀z ∨ a) → (∀z ∨ b).

Since (c] ∈ F , we have that {z ∈ A : ∀z ∨ (a → b) = (∀z ∨ a) → (∀z ∨ b)} ∈ F .
As a consequence, ψ(a → b) = ψ(a) → ψ(b).

Let a, b ∈ A such that ψ(a) = ψ(b). Then {z ∈ A : ∀z ∨ a = ∀z ∨ b} ∈ F .
Since (a] ∈ F , we obtain that (a]∩{z ∈ A : ∀z ∨ a = ∀z ∨ b} ∈ F . In particular,
this intersection is not empty.

Let w ∈ (a] ∩ {z ∈ A : ∀z ∨ a = ∀z ∨ b}. Then a = ∀w ∨ a = ∀w ∨ b, and
consequently b ≤ a. Similarly, considering (b] ∈ F , we obtain that a ≤ b. Then
a = b and this proves that ψ is injective. �
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Lemma 4.2. Every subdirectly irreducible ML-algebra is isomorphic to a mo-
nadic implicational subreduct of a bounded ML-algebra B where, in addition,
∀B is totally ordered.

Proof. Let A be a subdirectly irreducible ML-algebra and let a, b ∈ A. Since
∀A is totally ordered, let ∀z = min{∀a,∀b}. Clearly, ∀z ≤ a, b. Thus, A is
directed.

From Lemma 4.1, we know that there exists B ∈ ML, which is bounded,
such that A is embedded into B. Since ∀A is totally ordered, then for each
z ∈ A, we have that ∀([∀z)) is totally ordered. The property of being totally
ordered is a first order property; thus, it is preserved under ultraproducts. It
follows that ∀B is totally ordered. �

In every bounded ML-algebra, we can define the structure of an MMV-
algebra. Then in Lemma 4.2, we prove that every subdirectly irreducible
ML-algebra is isomorphic to a monadic implicational subreduct of an MMV-
algebra.

Proposition 4.3. Every ML-algebra is isomorphic to a monadic implicational
subreduct of an MMV-algebra.

Proof. Let A ∈ ML. Let ϕ : A → ∏
i∈I Ai, where each Ai is subdirectly

irreducible, be a subdirect representation of A. From Lemma 4.2, we know
that for each i ∈ I, there exists Bi ∈ MMV such that ∀Bi is totally ordered
and Ai is isomorphic to a monadic implicational subreduct of Bi. Then A is
isomorphic to a monadic implicational subreduct of

∏
i∈I Bi. �

It is straightforward to see the next results.

Proposition 4.4. If V is a variety of MMV-algebras, then S{→,∀,1}(V), the
class of all monadic implicational subreducts of V, is a variety of ML-algebras.

Corollary 4.5. Let B be an MMV-algebra and A its {→,∀, 1}-reduct. Then

VML(A) = S{→,∀,1}(VMMV(B)).

Corollary 4.6. The monadic implicational subreduct of the functional MMV-
algebra [0,1]N generates the variety of monadic �Lukasiewicz implication alge-
bras. That is, ML = V(〈[0, 1]N;→,∀∧, 1〉).
Proof. From the previous corollary, Proposition 4.3, and since the variety of
MMV-algebra is generated by the MMV-algebra [0,1]N (see [7]), we have that

ML = S{→,∀,1}(MMV) = S{→,∀,1}(V(〈[0, 1]N;⊕,¬,∀∧, 0〉))
= V(〈[0, 1]N;→,∀∧, 1〉). �

From Lemma 3.11 and since the variety MMV is generated by its finite
members [7] and ML is the class of all monadic implicational subreducts of
MMV, we obtain the following result.
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Corollary 4.7. The variety ML is generated by its finite members. More
precisely, ML = V ({Lk

n : n, k ∈ N}).

5. The lattice of subvarieties

In this section, we completely describe the lattice of subvarieties of ML.
We also give an equational basis for each proper subvariety.

Let us consider the subvariety of MMV-algebras

Kn = VMMV({SN

1 ,SN

2 , . . . ,SN

n})

characterized in MMV by the identity (εn) (see Section 2). We denote by
LN

k the monadic implicational reduct of the MMV-algebra SN

k . From Propo-
sition 4.4, we know that S{→,∀,1}(Kn) is a variety of ML-algebras. Moreover,
S{→,∀,1}(VMMV{SN

m : 1 ≤ m ≤ n}) = VML
(
LN

n

)
. Therefore, we have the

following result.

Lemma 5.1. For each positive integer n, the subvariety V(LN
n) is characterized

by the identity (εn).

Since x
n→ y ≤ x

n+1→ y is satisfied in every ML-algebra, the identity (εn) is
equivalent to the identity (ε′n)(x n+1→ y)→ (x n→ y) ≈ 1. The following relation
between the subvarieties V(LN

n) is easily proved.

Corollary 5.2. The subvarieties V(LN
n) form an ω + 1-chain

V(LN

1 ) � V(LN

2 ) � · · · � V(LN

n) � · · · � V([0,1]N) = ML,

in the lattice of subvarieties of ML.

Let us recall that the subvariety of MMV-algebras generated by the MMV-
algebra [0,1]k is characterized by the identity (αk) (see Section 2). Since
x∨y = (x→y)→y, we have that (αk) is an identity for the monadic �Lukasiewicz
implication algebras. As a consequence of this and Corollary 4.5, we have the
following result.

Lemma 5.3. Let k be a positive integer. The subvariety of ML-algebras gen-
erated by 〈[0, 1]k;→,∀∧, 1〉 is characterized by the identity (αk). In addition,
V({Lk

n : n ∈ N}) = V([0,1]k).

Since VMMV([0,1]s) � VMMV([0,1]k) if and only if s < k, we obtain the
following result.

Corollary 5.4. There is an ω + 1-chain in the lattice of subvarieties of ML
given by

V([0,1]) � V([0,1]2) � · · · � V([0,1]k) � · · · � V([0,1]N) = ML.
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Let us consider a subdirectly irreducible monadic �Lukasiewicz implication
algebra A that satisfies (αk) for some positive integer k. We know that A
is a monadic implicational subreduct of an MMV-algebra B, and from the
construction of B (see Lemma 4.2), we have that B also satisfies (αk). In
addition, as ∀B is totally ordered, then the MMV-algebra B is isomorphic to
a subalgebra of the functional MMV-algebra 〈(∀B)k;∀∧〉 (see Proposition 2.2).
Let us see that A is isomorphic to a subalgebra of (∀A)k. The proof is similar
to the proof of Proposition 2.2, but it has some changes.

Proposition 5.5. Let n be a positive integer. If A is a monadic �Lukasiewicz
implication subalgebra of 〈Vn;∀∧〉 such that ∀∧A is totally ordered and V is
a totally ordered �Lukasiewicz implication algebra, then A is a subalgebra of
〈(∀∧A)n;∀∧〉.
Proof. For each i ∈ {1, . . . , n}, let us consider the epimorphism πi �A : A → V.
We will show that for each i, πi �A (∀∧A) = πi �A (A). Clearly, πi �A (∀∧A) ⊆
πi �A (A). Let us prove that for every b ∈ A, there exists c ∈ ∀∧A such that
πi(b) = πi(c). To see this, we use an induction argument on n.

The case n = 1 is trivial because A = ∀∧A. Let us suppose that it is
true for n = k. Let A ⊆ V k+1 and a = 〈a1, a2, . . . , ak, ak+1〉 ∈ A. Since
V is a chain and ai ∈ V , we can assume, without loss of generality, that
we have a1 ≤ a2 ≤ · · · ≤ ak ≤ ak+1. So, π1(a) = a1 = π1(∀∧a). We
define ∃∨ : A → A by ∃∨a = ∀∧(a → ∀∧a) → ∀∧a, for each a ∈ A. Then
πk+1(a) = ak+1 = πk+1(∃∨a). Let us calculate (a → ∀∧a) ∨ (∃∨a → a). We
have that a → ∀∧a = 〈1, a2 → a1, . . . , ak+1 → a1〉 and also that ∃∨a → a =
〈ak+1 → a1, ak+1 → a2, . . . , ak+1 → ak, 1〉. Hence,

(a→∀∧a)∨(∃∨a→a) = 〈1, (a2→a1)∨(ak+1→a2), . . . , (ak→a1)∨(ak+1→ak), 1〉.
Let B be the subalgebra of Vk+1 with B = {a ∈ V k+1 : a1 = ak+1}. Thus,
B ∼= Vk and (a→∀∧a)∨(∃∨a→a) ∈ B; in fact, (a→∀∧a)∨(∃∨a→a) ∈ A∩B.

Let us consider i such that 1 < i < k+1. Then πi((a→∀∧a)∨(∃∨a→a)) =
(ai → a1) ∨ (ak+1 → ai). Since V is a chain, two cases arise.

Case 1: ai → a1 ≥ ak+1 → ai.
Then((a →∀∧a) ∨ (∃∨a → a)) →∀∧a = 〈ej〉1≤j≤k+1, where

ej =

⎧⎪⎪⎨
⎪⎪⎩

a1 if j = 1 or j = k + 1,

((aj → a1) ∨ (ak+1 → aj)) → a1 if j /∈ {1, i, k + 1},
(ai → a1) → a1 if j = i.

Then the i-component of ((a→∀∧a)∨(∃∨a→a))→∀∧a is equal to ai∨a1 = ai.
In addition, ((a → ∀∧a) ∨ (∃∨a → a)) → ∀∧a ∈ B ∩ A, and by the induction
hypothesis over A∩B ∼= A∩Vk, there exists c ∈ ∀∧(A∩B) ⊆ ∀∧A such that
πi(c) = ai.

Case 2: ai → a1 ≤ ak+1 → ai.
Then πi((a→∀∧a)∨(∃∨a→a)) = ak+1→ai. Let us consider the MMV-algebra
[∀∧a), where ¬∀∧ax := x → ∀∧a and x 
∀∧a y := ¬∀∧a(x → ¬∀∧ay). Let us
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note that ∀∧a ≤ (a → ∀∧a) ∨ (∃∨a → a) and ∀∧a ≤ ∃∨a. Consequently, we
have that ((a →∀∧a) ∨ (∃∨a → a)) 
∀∧a ∃∨a ∈ [∀∧a). In addition,

π1(((a →∀∧a) ∨ (∃∨a → a)) 
∀∧a ∃∨a) = (ak+1 → a1) → a1 = ak+1 ∨ a1

= ak+1 = πk+1(((a →∀∧a) ∨ (∃∨a → a)) 
∀∧a ∃∨a).

Then ((a → ∀∧a) ∨ (∃∨a → a)) 
∀∧a ∃∨a ∈ [∀∧a) ∩ B ⊆ A ∩ B, and by the
induction hypothesis, we have that there exists d ∈ ∀∧(A ∩ B) ⊆ ∀∧A such
that

πi(d) = πi(((a →∀∧a) ∨ (∃∨a → a)) 
∀∧a ∃∨a)

= ((ak+1 → ai) → (ak+1 → a1)) → a1

= ((ai → ak+1) → (ai → a1)) → a1 = (ai → a1) → a1 = ai. �

Corollary 5.6. If A is a subdirectly irreducible �Lukasiewicz implication al-
gebra that satisfies (αk) for some k, then A is isomorphic to a subalgebra of
(∀A)k.

The previous result motivates the following definition.

Definition 5.7. Let A ∈ ML. We define the width of A, which is denoted
by width A, as the least integer k such that (αk) holds in A. If k does not
exist, then we say that the width of A is infinite and we write widthA = ω.

In the following theorem, we characterize the subvariety generated by a
subdirectly irreducible algebra A by means of the order of ∀A and the width
of A.

Theorem 5.8. Let A be a subdirectly irreducible monadic �Lukasiewicz impli-
cation algebra.

(1) If ord∀A = n < ω and width A = k < ω, then V(A) = V(Lk
n).

(2) If ord∀A = n < ω and width A = ω, then V(A) = V(LN
n).

(3) If ord∀A = ω and width A = k < ω, then V(A) = V([0,1]k).
(4) If ord∀A = ω and width A = ω, then V(A) = ML.

Proof. Let A be a subdirectly irreducible monadic �Lukasiewicz implication
algebra. By Corollary 3.9, we know that ∀A is a subdirectly irreducible
�Lukasiewicz implication algebra.

(1): If ord∀A = n < ω, then ∀A is isomorphic to Ln. In particular, A is
bounded. From Corollary 3.6, we have that A0 = 〈A;∀〉 is an MMV-algebra.
Since width A = k < ω, then width A0 = k and A0 is isomorphic to Sk

n. Thus,
A is isomorphic to Lk

n. This implies that V(A) = V(Lk
n).

(2): Analogously to (1), A0 is an MMV-algebra and ∀A is isomorphic to
Ln. Since width A = ω, then width A0 = ω, and we have that VMMV(A0) =
VMMV(SN

n) (see Section 2). Then from Corollary 4.5, we obtain that

VML(A) = S{→,∀,1}(VMMV(A0)) = S{→,∀,1}(VMMV(SN

n)) = VML(LN

n).



216 C. R. Cimadamore and J. P. Díaz Varela Algebra Univers.

(3): Suppose that ord∀A = ω and widthA = k < ω. From Lemma 5.3,
we have that A ∈ V([0,1]k). Also, for all n, there exists ∀a ∈ ∀A such that
ord(∀a) = n. Since [∀a) is bounded, we can define in [∀a) an MMV-algebra
structure. Then VMMV(Sk

n) ⊆ VMMV([∀a)) for all n (see [8]). Then V(Lk
n) ⊆

V(A) for all n. Hence, from Lemma 5.3, we have that V([0,1]k) = V(A).
(4): Suppose that ord∀A = ω and width A = ω. By a similar argument

to that of (3), we can show that V(Lk
n) ⊆ V(A) for all n and k. Hence, from

Proposition 4.7, ML = V(A). �

Let us recall that an MMV-algebra A ∈ Kk
n = V({Sk

1 , . . . ,Sk
n}) if and only if

A satisfies (αk) and (δn) (see Section 2). Then as an immediate consequence of
Theorem 5.8 (1) and having into account that Lk

n is the monadic implicational
reduct of the MMV-algebra Sk

n, we have the following corollary.

Corollary 5.9. Let n and k be positive integer. Then A ∈ V(Lk
n) if and only

if (ε′n) and (αk) hold in A.

In the next lemma, we give a single identity that characterizes the subvariety
generated by Lk

n. This identity will be needed later.

Lemma 5.10. Let n and k be positive integers. Then the variety V(Lk
n) is

characterized by the following identity (βk
n):

[(
∀(

(x n+1→ y) → (x n→ y)
) →∀z

)
∨

(
∀( ∨

1≤i<j≤k+1
(∀(xi ∨ xj) →

k+1∨
s=1

∀xs)
) →∀z

)]
→∀z ≈ 1.

Proof. Let A be a subdirectly irreducible algebra in ML. If (ε′n) and (αk)
hold in A, then it is straightforward to see that (βk

n) holds, too. Reciprocally,
let us suppose that (βk

n) holds in A, that there exists a, b ∈ A such that
ε′n(a, b) = (a n+1→ b) → (a n→ b) < 1, and that there exist a1, . . . , ak+1 ∈ A such
that αk(a1, . . . , ak+1) =

∨
1≤i<j≤k+1

(∀(ai ∨ aj) → ∨k+1
s=1 ∀as

)
< 1. Since ∀A

is a chain, we know that there is c ∈ A such that ∀c ≤ ∀(ε′n(a, b)) < 1 and
∀c ≤ ∀(αk(a1, . . . , ak+1)) < 1. Then

[
(∀ (ε′n(a, b)) →∀c) ∨ (∀(αk(a1, . . . , ak+1)) →∀c

)] →∀c

= ∀ (ε′n(a, b)) ∧ ∀ (
αk(a1, . . . , ak+1)

)
< 1,

which is impossible since (βk
n) holds in A. Therefore, (ε′n) and (αk) hold

in A. �

Since ML is congruence distributive, from Jónsson’s results, we know that
the lattice of subvarieties Λ(ML) is also distributive. Next, we characterize
the ordered set J (Λ(ML)) of join-irreducible elements of Λ(ML) with the
objective of determining Λ(ML).
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Let n, m, s, and t be positive integers. If n ≤ m and s ≤ t, then Ls
n is a

subalgebra of Lt
m and V(Ls

n) ⊆ V(Lt
m). In addition, Lk

n is a subalgebra of the
algebras [0,1]k and LN

n. Then, V(Lk
n) ⊆ V([0,1]k) and V(Lk

n) ⊆ V(LN
n).

V(L1
1)

V(L3
1)

V(LN
1 )

V(L2
1)

V(LN
3 )

ML

V(LN
2 )

V(L3
2)

V(L2
2)

V(L1
2)

V(L1
3)

V(L2
3)

V(L3
3)

V([0,1]) = L
V([0,1]2)

V([0,1]3)

Figure 1. J (Λ(ML))

Theorem 5.11. The set of join-irreducible subvarieties in Λ(ML) is

J (Λ(ML)) =
{V(Lk

n) : n, k ∈ N
} ∪ {V([0,1]k) : k < ω}
∪ {V(LN

n) : n < ω} ∪ {V([0,1]N)}.
If V is a proper non-trivial subvariety of ML-algebras, then V is a supremum
of a finite number of subvarieties of the set

{V(Lk
n) : n, k ∈ N} ∪ {V([0,1]k) : k < ω} ∪ {V(LN

n) : n < ω}.
Proof. Let V be a proper non-trivial subvariety of ML-algebras. We denote
by si(V) the family of subdirectly irreducible members of V. Let us consider
the subset A of (N∪{ω})× (N∪{ω}) defined by the pairs (n, k) which satisfy
that there exists A ∈ si(V) such that ord∀A = n and widthA = k. Since V
is non-trivial, then A �= ∅. We define in A the partial order (n, s) ≤ (m, t) if
and only if n ≤ m and s ≤ t. Since V is proper, from Theorem 5.8 (4), we
know that there is not A ∈ si(V) such that ord∀A = ω and width A = ω. In
addition, there are not Ai ∈ si(V) such that (ord∀Ai, width Ai) is a strictly
increasing infinite sequence.
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Let us prove that there exists a finite set B = {(ni, ki) : 1 ≤ i ≤ p} of
maximal elements in A such that V =

∨p
i=1 V(Ai), where ord∀Ai = ni and

width Ai = ki, for each i.
Let us suppose that there is in A an element of the form (ω, k1) or that there

are elements in A of the form (ni, k1) such that {ni} is a strictly increasing
infinite sequence. In this case, there exists a maximal element of the form
m1 = (ω, k1) with k1 ∈ N, and in addition, it is unique. Analogously, if there
exists a maximal element of the form m2 = (n2, ω), then it is unique.

Let A′ = A − {(n, k) : (n, k) ≤ m1 or (n, k) ≤ m2}. If A′ = ∅, then V has
one of the following three forms:

(a) V = V([0,1]k1),
(b) V = V(LN

n2
),

(c) V = V([0,1]k1) ∨ V(LN
n2

).

Let us suppose that A′ �= ∅. Then A′ ⊆ N × N and it is finite. Thus, there
exists in A′ a finite set of maximal elements (ni, ki) for i ∈ I ′.

Let I = I ′ ∪ {m1, m2}. It is clear that
∨

i∈I V(Ai) ⊆ V. Let A ∈ si(V).
Then (ord∀A, width A) ∈ A. Then there exists (ni, ki) that is maximal
and (ord∀A, width A) ≤ (ni, ki). Thus, V(A) ⊆ V(Ai). Therefore, V =∨

i∈I V(Ai). �

From Lemma 5.10, Lemma 5.3, and Lemma 5.1, we have the identity that
characterizes each join-irreducible subvariety in ML. Finally, in the next
theorem we obtain the identity for each proper subvariety of ML.

Theorem 5.12. Let {Vi : 1 ≤ i ≤ s} be a finite set of join-irreducible subvari-
eties in Λ(ML) and let λVi(xi1, . . . , xini) ≈ 1 be the identity that characterizes
Vi, for each i = 1, . . . , s. If V =

∨s
i=1 Vi then the identity

λV(x11, . . . , x1n1 , x21, . . . , x2n2 , xs1, . . . , xsns
) =

s∨
i=1

∀ (λVi
(xi1, . . . , xini

)) ≈ 1,

characterizes the subvariety V.

Proof. Let A be a subdirectly irreducible algebra in ML. Let us suppose
that A ∈ si(V). We know that A ∈ si(Vi) for some i = 1, . . . , s. Then
λVi(xi1, . . . , xini) ≈ 1 holds in A, and consequently, ∀ (λVi(xi1, . . . , xini)) ≈ 1
also holds in A. Hence, A satisfies

∨s
i=1 ∀ (λVi

(xi1, . . . , xini
)) ≈ 1. Conversely,

let us suppose that A /∈ si(V). Then, A /∈ si(Vi) for any i = 1, . . . , s. We
choose elements ai1, . . . , aini

∈ A such that λVi
(ai1, . . . , aini

) < 1. Then,
∀ (λVi

(ai1, . . . , aini
)) < 1, for each i. Since ∀A is totally ordered, there exists

t ∈ {1, . . . , s} such that

s∨
i=1

∀ (λVi
(ai1, . . . , aini

)) = ∀ (λVt
(at1, . . . , atnt

)) < 1.

Thus,
∨s

i=1 ∀ (λVi
(xi1, . . . , xini

)) ≈ 1 does not hold in A. �
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Departamento de Matemática, Universidad Nacional del Sur, Instituto de Matemática
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